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요 약  

 

본 연구는 변동성이 높은 산업 전력 데이터를 처리하는 데 있어 기존 이상 탐지 방법의 한계를 극복하기 위해, 장단기 

메모리 오토인코더(LSTM-AE)와 소프트 액터-크리틱(SAC) 강화학습 알고리즘을 결합한 새로운 프레임워크를 제안한다. 

LSTM-AE 모델은 시계열 데이터로부터 정상 패턴을 학습하고, 재구성 오차를 이상 탐지에 활용한다. 그 후, SAC 

에이전트는 재구성 오차 분포의 통계적 속성을 상태로 입력받아 F1 점수를 최대화하는 최적의 동적 이상 탐지 임계값을 

탐색한다. 실제 산업 전력 데이터셋에 대한 실험 결과, 제안된 모델은 단일 LSTM-AE 모델에 비해 F1 점수와 정밀도 

측면에서 더 높은 성능을 달성한다. 이는 동적 임계값 설정을 위한 강화학습 기반 접근 방식이 복잡한 시계열 데이터의 

이상 탐지 성능을 효과적으로 향상시킬 수 있음을 보여준다. 

 

 

Ⅰ. 서론  

산업 전력 데이터의 정확한 이상 탐지는 필수적인 

과제이다. 그러나 정적 임계값이나 단일 모델에 의존하는 

전통적인 이상 탐지 방법은 계절적 및 상황적 변화와 

같은 다양한 요인의 영향을 받는 산업 전력 데이터의 

높은 변동성으로 인해 명확한 한계를 가진다[1]. 예측 

불가능한 패턴의 변화는 성능 저하의 주요 원인이다. 

본 연구는 장단기 메모리 오토인코더(LSTM-AE) 모델을 

사용하여 데이터의 재구성 오차를 계산 후 소프트 액터-

크리틱(SAC) 강화학습 알고리즘을 통해 동적으로 

임계값을 조정해 이상 탐지를 진행하는 방법론을 

제안한다. 

 

Ⅱ. 본론  

2.1 SAC 를 통한 동적 임계값 최적화 

고정된 전역 임계값 대신, SAC 을 사용하여 동적 

임계값 정책을 학습한다[2]. 훈련 데이터(정상 

데이터)오차 분포를 평균과 표준편차로 요약한다: 

𝜇 = 𝐸𝑡 ∈ 𝐷𝑛𝑜𝑟𝑚[𝑒𝑡], 𝜎 = 𝑉𝑎𝑟𝑡 ∈ 𝐷𝑛𝑜𝑟𝑚[𝑒𝑡] (3) 

연속적인 행동 𝑘 ∈ [𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥]는 다음과 같다: 

𝜏(𝑘) = 𝜇 + 𝑘 𝜎 (4) 

그리고 테스트 시 예측은 𝑒𝑡 > τ(𝑘) 일 때 윈도우를 

이상으로 탐지한다. SAC 에이전트는 상태로서 간단한 

통계(예: 𝜇 , 𝜎  및 검증 실행 평균)를 관찰하고  𝑘 를 



샘플링하며, 재현율(Recall)이 0 으로 떨어질 때 강한 

페널티와 함께 검증 F1 점수를 이용한다. 이는 

에이전트가 아무것도 탐지하지 않는 해결책을 방지하고 

더 균형적으로 작동한다[2]: 

𝑟(𝑘) = 𝐹1(𝑘) − 𝜆𝐼[𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) = 0], 𝜆 ≫ 0 (5) 

SAC 의 엔트로피 정규화 목표는 k 에 대한 탐색을 

촉진하고 지역 최적점을 피한다. 훈련 후, 기대 보상을 

최대화하는 𝑘∗ 를 배포하고 추론 시 τ∗ = μ + 𝑘∗ 를 

사용한다. 

2.2 실험 데이터셋 전처리 

실험 및 평가는 15 분마다 샘플링된 1 년 동안의 산업 

전력 데이터셋(2020 년 1 월-12 월)으로 진행한다. 시간 

관련 특성을 추가하고, MinMaxScaler 를 이용해 전력 

사용량을 정규화한다. 훈련/검증/테스트로 분할한 후, 

오토인코더를 학습시키는 데는 정상 데이터만 사용한다. 

2.3 베이스라인 및 성능 지표 

베이스라인은 검증 데이터에 대해 그리드 서치(Grid 

Search)로 고정 임계값을 가진 LSTM-AE 와 학습 

데이터의 정상 오차에 3-시그마 규칙을 적용한 방식이다.  

정밀도/재현율의 트레이드오프와 F1 점수를 사용해서 

강건하고 정밀한 수치를 얻는다. 최종 수치는 보류된 

테스트 분할에서 한 번 계산된다. 

SAC 기반 동적 임계값 설정은 주로 정밀도를 높여 

그리드 서치 베이스라인보다 F1 점수를 향상시키는 반면, 

재현율은 비슷한 수준을 유지한다. 허위 경보 처리 

비용이 높은 생산 환경에서 선호되는 결과이다. 

테스트 오차 분포는 양성 과도 현상과 예정된 고부하 

이벤트로 인해 정상과 이상 재구성 오차 간에 중첩을 

보인다(그림 1). 단일 전역 임계값은 이러한 분포에서 

완전히 분리할 수 없다. 따라서 학습된 정책은 재현율을 

무너뜨리지 않으면서 FP 를 줄이는 방향을 선호한다.  

또한, 시간당 전력 사용량의 값에 대한 빈도와 밀도를 

시각화했을 때, 데이터의 주 분포 구간인 [75000, 85000] 

이외에 초록 점선으로 표시된 구간에서도 유효한 밀도 

구간이 나타난다(그림 2). 이는 공장의 주요 작동 상태가 

아닌 부분/대기 상태이거나 부하 상태임을 알 수 있다. 

이는 상황 인식 및 분포/비용 민감에 대한 목표가 될 수 

있다. 

 

Method F1 점수 Precision Recall 

LSTM-AE  0.6718 0.6369 0.7108 

SAC(ours) 0.7313 0.7720 0.6965 

표 1. LSTM-AE 단일 모델과 SAC 적용 모델 비교 

 

 

그림 1. 테스트 데이터의 재구성 오차 분포 

      정상(파란색), 이상(주황색) 

 

 

그림 2. 시간당 전력 사용량 빈도, 밀도 그래프 

        빈도(파란색), 밀도(빨간색) 

Ⅲ. 결론  

본 논문에서는 재구성-오차 임계값 설정을 학습 가능한 

결정 문제로 구성하고, 임계값을 조정하기 위해 SAC 을 

사용한다. 실제 산업 전력 데이터셋에서 학습된 정책은 

재현율을 비슷하게 유지하면서 단일 LSTM-AE 모델의 

고정/그리드 서치 임계값보다 F1과 정밀도를 향상시킨다. 

정상 및 비정상 오차 분포 간의 중첩이 주요 병목 

현상으로 남아 있다. 향후 연구에서는 재현율을 희생하지 

않으면서 FP 를 더욱 줄이기 위해 상황 인식 상태 및 

분포/비용 민감에 목표를 추가한다. 
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