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A Deep Learning-Based Study on Tip Burn Occurrence Prediction Using
Greenhouse Environmental Factors and Image Data
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Figure1. Model Operation Flowchart
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Table 2 Model Performance Comparison Chart
2 78 | AGE(%) | AEE(%) | ARE(%) AUC
517
WA 852 84.1 86.0 0.85
doi e | 881 89.5 87.2 0.88
Aot md 94.5 93.8 95.1 0.95
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Figure2. Model Performance Comparison Graph
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