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요 약

풍력 단지에서 신규 터빈의 위치를 결정하는 과정은 후류 효과로 인한 발전 효율 저하 문제 때문에 단순한 격자식 배치만으로는 충분하지 않다. 본
논문은 기존풍력 단지의 운영 데이터를 활용하여새로운풍력 터빈의 최적 입지를 결정하는 강화학습기반 프레임워크를 제안한다. 후류 효과를 정량
적으로 모델링하기 위해 SDWPF 데이터셋을 기반으로 후류 밀도, 상풍 발전량, 상풍 유입 풍속의 세 가지 특성 변수를 산출했다. 이를 LightGBM
모델의 입력으로 사용하여 터빈별 유효 발전량을 예측하는 서러게이트 모델을 구축했으며, 최적 입지 탐색을 위해 Soft Actor-Critic(SAC) 강화학습
알고리즘을 활용했다. 평가 결과, 강화학습이 제안한 신규 좌표는 기존 좌표 대비 예측 발전량이 0.51 kW (0.12%) 증가했으나, 이는 기존 배치가 이미
최적에 가까웠기 때문으로 보이며, 통계적 유의성보다는 기존과 동등한 수준의 입지를 제시하는 방법론으로서의 의의를 갖는다.

Ⅰ. 서론

기후 변화대응을위한 에너지전환이가속화되면서풍력 발전은 핵심적

인청정에너지원으로부상하고있다. 풍력 발전소의입지선정은풍력자

원 지도, 송전망 접근성, 환경 규제 등 복합적인 요소를 고려하는 거시적

관점이 있다. 부지가 확정되면개별 터빈을 배치하는 미시적설계 단계로,

후류 효과를고려해야한다. 후류 효과는상류터빈이후방의풍속을감소

시키고난류를증가시키며, 이는 후방터빈의발전량감소및 설비 피로도

를 높일 수 있다. 이를 완화하기 위해 기존에는 터빈을 일정한 간격의 격

자나 엇갈린 형태로 배열했으나, 이는 변화하는 풍향에 능동적으로 대응

하기 어렵고, 터빈 간 거리를 넓히게 되면 부지 면적과 케이블 연결 비용

의 증가로 이어져 경제성을 악화시킬 수 있다. 특히 국내의 경우 국토가

좁고 풍력자원이 특정 지역에집중되어제한된 입지 내에서발전효율을

극대화해야 하는 제약이 있다.

따라서, 본 논문은 기존 풍력 단지의 운영 데이터를 통해 후류 효과 및

유효 발전량을 예측하고, 강화학습 기반의 시뮬레이션을 통해 제약된 범

위 내 신규 터빈의 최적 입지를 결정하는 방법을 제안한다(그림 1).

Ⅱ. 본론

2.1 SDWPF 데이터셋 기반 전처리

풍력 단지 내 신규 터빈의 최적 입지 선정을 위해 터빈의 위치 좌표가

포함된 Spatial Dynamic Wind Power Forecasting (SDWPF) 데이터셋

을 활용한다[1]. SDWPF는 단지 내 134기 터빈의상대 좌표(x, y)와 지형

고도를 포함하며, 1년간 10분 간격으로 연속 수집된 시계열 형태이다. 각

터빈의 발전·운영 상태(Patv, Pab, Prtv 등), 풍속 정보(Wspd, Wdir), 기

상 데이터(Wspd_w, Wdir_w, T2m, Sp, RelH, Tp)를 제공한다.

새로운 위치의 후류 효과를 예측하기 위해 SWDPF 데이터셋을 기반으

로 풍력 발전 단지 내 터빈 간의 후류 효과를 정량적으로 모델링한다. 이

웃 터빈을 탐색할 영향 반경( ), 주 풍향에서 벗어나는 허용 각도

(±∆ ), 거리에 따른 영향력 감소를 조절하는 거리 감쇠길이()을 설
정값으로 한다. 각 시각( )마다 특정 터빈을 후보로 설정하고, 기상관측
풍향 데이터(기상 관례 North=0°)를 단지 내부 좌표(East=0°)에 맞게 변

환한다. 변환된 풍향을 기준으로, 설정된 반경( )과 허용 각도(±∆ )

그림 1. 풍력 단지 내의 신규 터빈의 최적 위치를 결정하는 방법에 대한 전체적인 구성도



내에 위치하며 후보 터빈의 바람을 막는상풍위치에 있는 이웃 터빈들을

선별한다. 각이웃터빈이후보터빈에미치는영향력은후보와이웃간의

거리( )를 이용한 가우시안 가중치(  exp  )를 적용하
여 거리가 멀수록 영향이 지수적으로 감소하도록 계산한다[2]. 이 가중치

를 기반으로 상풍 이웃 터빈의수와근접성을종합적으로 나타낸 후류밀

도, 상풍 터빈들의실제 발전량을가중평균한 상풍발전량, 상풍 터빈으로

유입되는 풍속을가중 평균한 상풍 유입풍속의세 가지후류특성변수를

산출한다. 이는 모델의 발전 예측과 강화학습을 통한 최적의 터빈 입지를

선정하는 과정의 신뢰성을 높이기 위해 활용한다.

2.2 발전량 예측을 위한 LightGBM

본연구는선행연구[3]에서제시된부스팅기반모델이풍력발전량예측

성능을 향상시킨 사례를 바탕으로, 부스팅 기법을 활용하여 풍력 발전량

을예측한다. 강화학습에이전트의이동에따른좌표별유효발전량(Patv)

을 반복적으로 예측하기 위한 서러게이트 모델로 Light Gradient

Boosting Machine(LightGBM) 모델을 활용한다[4]. 이 모델은 대용량 데

이터 처리와 빠른 연산 속도에 최적화되어 있어 강화학습의 서러게이트

모델로 적합하여 선정하였다. LightGBM은 이전 트리의 오차를 보완하며

순차적으로학습하는그래디언트 부스팅 프레임워크로서, 최대 손실감소

가발생하는 노드를우선적으로분할하는리프 중심트리분할(leaf-wise)

방식을 채택한다. 또한, Gradient-based One-Side Sampling(GOSS)을

통해 그래디언트가 큰 데이터에 집중하여 샘플 수를 감소시키고,

Exclusive Feature Bundling(EFB)를 통해상호배타적특성들을묶어차

원을 축소하는 알고리즘을 사용한다. 이를 통해 비대칭적이지만 더 빠른

수렴속도와높은예측성능을달성할수있다. 따라서, SDWPF 데이터셋

과 터빈 위치 및 고도, 데이터 전처리를 통해 생성한 후류 효과 파라미터

를 입력받아 유효 발전량(Patv)을 학습한다. 이후, 강화학습 에이전트가

제시하는좌표에 대한발전량을실시간에가깝게 예측하여보상으로사용

한다.

2.3 최적의 풍력 터빈 위치를 찾기 위한 강화학습

본 논문에서는 풍력 터빈의 최적 입지 탐색 문제를 해결하기 위해, 연속

행동 공간에서 효율적인 탐색 성능을 보이는 Soft Actor-Critic(SAC) 알

고리즘을 활용한다. 강화학습 정책은 다음과 같이 정의한다.

Ÿ 상태: 후보 터빈의 정규화된 3차원 좌표,      ∈
Ÿ 행동: 이동 벡터,   ∆ ∆ ∆ ∈ℝ
Ÿ 상태 전이:    clip 
Ÿ 보상:    max dmin nearest 
보상은 사전에 학습된 LightGBM 모델이 추정한 예상 발전량()에
서 제약 조건 위반에 대한 페널티를 차감하여 계산된다. 여기서 min은
터빈 간 최소 이격거리, nearest s는후보위치에서가장가까운 기존
터빈까지의 거리, 는 페널티의 강도를 조절하는 가중치이다. 이를 통해
에이전트는 정책을 갱신하며, 제약 조건을 만족하는 동시에 발전 잠재력

을 극대화하는 최적의 좌표로 수렴하는 방법을 학습한다.

Ⅲ. 결과

LightGBM 기반 발전량 예측 결과는 전체 테스트 셋에서 MAE 163.61

kW로 나타났다. 이를 바탕으로 강화학습 기반 위치 최적화의 효과를 검

증하기 위해, 평가 대상터빈(TurbID 23)의 데이터는 강화학습의상태(터

빈 위치 정보)에서 제외한 뒤 탐색을 수행하였다. 그 결과, 기존 좌표

(x=3346.8, y=4989.9, z=1422.7)에서의 예측 발전량은 421.97 kW 이며, 강

화학습이 제안한 신규 좌표(x=2684.7, y=5398.9, z=1422.7)에서는 예측 발

전량이 422.48 kW로 0.51 kW(0.12%)로 증가했다(그림 2 참조). 그러나,

두위치에서의국소예측오차추정치(MAE)의 증가폭이모델오차 범위

에 비해 현저히 작아 통계적으로 유의한 개선으로 단정하기는 어렵다. 이

는 평가대상 터빈(TurbID 23)의 초기배치가이미공학적으로 거의최적

에 가까워 추가 개선 여지가 제한적이었기 때문으로 해석된다.

Ⅳ. 결론

본연구는기존 풍력단지에서신규 터빈의좌표를강화학습으로탐색하

고, LightGBM 모델로 보상을 산출하는최적화프레임워크를 제안하였다.

평가 대상 터빈 대비 강화학습이 제안한 좌표의 예측 발전량이 0.51 kW

더 높았으나, 증가 폭이 작아 통계적으로 유의한 향상보다 기존과 동등한

수준의 대안으로 해석할 수있다. 이는 SDWPF 데이터셋의현 배치가이

미최적에가까워추가개선여지가제한적이었기때문일수있으며, 상대

적으로 비효율적 배치의 경우 더 큰 성능 향상이 기대된다.
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그림 2. 강화학습을 통해 도출한 최적의 좌표 및

터빈의 지리적 분포


