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요 약

본 논문은 시맨틱 특성맵에 파일럿을 임베딩하여 추가 대역폭 소모 없이 채널 왜곡을 보상함으로써, 다양한 채널 환경에
강건한 심층 소스-채널 결합 부호화 방법을 제안한다. 또한, 2단계 연합학습 전략을 적용하여 데이터 프라이버시를 보장하
고 이기종 데이터 및 채널 환경에서의 강건성을 확보하였다.

Ⅰ. 서 론

최근 심층 학습 기반의 소스-채널 결합 부호화 (DeepJSCC) [1]는 열악

한 채널 환경에서도 강건한 성능을 보여주며 큰 주목을 받았다. 하지만

DeepJSCC는 두 가지주요한계를갖는다. 첫째, 모델 학습을위해대규모

사용자 데이터를 중앙 서버로 전송해야 하므로 막대한 대역폭 소모와 개

인정보 유출 위험이 발생한다. 둘째, 학습 시의 채널과 실제 통신 환경이

다르면 재구성 성능이 급격히 저하된다. 이를 해결하기 위해 본 논문에서

는 연합학습을 도입하여 데이터 프라이버시를 보장하고, 채널 변화에 강

건하게 대응하기 위해 파일럿을 삽입하여 채널을 추정하고 보상하는

PCCNet (pilot-aided channel compensation network)을 제안한다.

Ⅱ. 본론

1. 파일럿 기반 채널 보상 네트워크 (PCCNet)

제안하는 PCCNet의 전체 구조는 그림 1과 같이 semantic encoder와

CNet, FiLM 레이어, semantic decoder를 포함한다. 먼저, 송신 측의

semantic encoder는 입력 이미지 ( )로부터 특성맵 ( )을 추출한다. 이
후, 추가적인 대역폭 사용 없이 채널 추정을 위해 특성맵의 특정 위치

( )에 미리 약속된 파일럿 심볼 ( )을 덮어쓴다. 이 파일럿이 삽입된
특성맵 ( )이 페이딩 채널을 통해 수신기로 전송된다.
수신된 신호 ()로부터 채널 왜곡을 제거하기 위해 CNet은 3단계 보상
과정을 수행한다. 첫째, 파일럿 위치의 신호를 이용해 최소 자승 (least

squares) 방식으로 채널을 초기에 추정한다. 이후 zero-forcing 등화를 통

해 채널의 곱셈 왜곡을 1차적으로 보상한다. 둘째, 1차 보상 후에도 남아

있는 미세한 오차를 제거하기 위해 DnCNN [2] 구조에서 영감을 받은 잔

여 학습 (residual learning) CNN 블록이 잔여 오차를 예측하고 보정한다.

마지막으로 파일럿이 덮어썼던 영역의 원본 특성 정보를 복원하기 위해,

마스크된 CNN 기반의 인페인팅 네트워크가 주변의 특성 정보를 활용하

여 해당 영역을 복원한다.

각 클라이언트의 시변 채널 상태에 동적으로 적응하기 위해

feature-wise linear modulation (FiLM) [3] 레이어를 사용한다. FiLM 레

이어는 추정된 채널의 크기와 signal-to-noise ratio (SNR)을 조건으로

입력받아, 각 특성맵 채널에 최적화된 스케일링 및 시프트를 적용함으로

써 재구성 성능을 향상시킨다.

2. 연합학습 방법

이기종 (non-IID) 데이터 분포와다양한 클라이언트별 채널환경에효과

적으로 대응하기 위해 다음과 같은 2단계 연합학습 전략을 사용한다.

먼저, 모든 클라이언트의 평균 SNR을 계산한다. 각 클라이언트는 이 평

균 SNR 환경을 시뮬레이션하여 로컬 데이터를 학습한다. 이때, non-IID

데이터로 인한 성능 저하를 막기 위해 FedProx [5] 알고리즘을 사용하여

로컬 모델이 글로벌 모델에서 크게 벗어나지 않도록 규제하며 안정적인

글로벌 모델을 학습한다.

강건한글로벌모델학습이완료되면, 각 클라이언트는글로벌모델의파

라미터 대부분을 동결시킨다. 그리고 자신의 실제 채널 환경에 적응하기

위해 전체 모델의 2.49%에 불과한 FiLM 레이어의 파라미터만미세 조정

한다. 이 방식은적은계산비용으로각클라이언트환경에빠르고효율적

인 개인화를 가능하게 한다.

Ⅲ. 시뮬레이션 결과

제안하는 PCCNet의 성능을 CIFAR-10 [4] 데이터셋을 이용하여 평가하

였으며, 무선 채널은 Rayleigh 및 Rician 블록 페이딩 모델을 사용했다.

파라미터 는 이미지 전송 시 발생하는 블록 페이딩의 수로 클수록 빠

그림 1. 제안된 PCCNet의 구조



른 페이딩을 의미한다.

그림 2는 학습과 테스트 시 사용된 채널이 동일한 환경에서 기존

DeepJSCC 모델과 peak signal-to-noise ratio (PSNR) 성능을 비교한다.

제안하는 PCCNet이 모든 SNR 구간에서 DeepJSCC보다 높은 PSNR을

달성하며 우수한성능을 보였다. 여기서 는 encoder로 추출한 특성맵의
수를 의미한다.

그림 3은 제안 모델의 핵심적인 강건성을 보여준다. 모든 모델을

Rayleigh (  ) 환경에서 학습시킨 후 더 빠르거나 (  ) 느
린 (  ) Rayleigh 채널 및 Rician 채널에서 성능을 평가했다.

DeepJSCC는 학습 환경과 다른 채널에서 PSNR이 급격히하락하는 반면,

제안하는 PCCNet은 파일럿 기반채널보상을통해어떤채널환경에서도

일관되게 높은 PSNR을 유지하여 뛰어난 강건성을 입증했다.

그림 4는이기종데이터 환경에서제안하는 연합학습방법 (proposed)과

기존의 FedAvg [6], FedLOl [7] 알고리즘의 성능을 비교한 결과이다. 2개

및 5개의 클라이언트환경에서 모두 FedProx 기반의 안정적인 글로벌 학

습과개인화된 FiLM 미세조정을결합한 본논문의방법이다른알고리즘

보다 높은 PSNR을 달성했다.

Ⅳ. 결론

본 논문은 파일럿을 시맨틱 특성맵에 임베딩하여 채널 변화에강건하고,

프라이버시를 보장하는 연합학습에 최적화된 PCCNet을 제안했다. 제안

된 CNet은 채널 등화, 잔여 오차 보정, 인페인팅을 통해 효과적으로 채널

왜곡을 제거한다. 또한, 평균 SNR 기반의 글로벌 모델 학습과 개인화된

FiLM 미세 조정을 결합한 2단계 연합학습 전략은 이기종 환경에서 최소

한의 비용으로 빠르고 효율적인 적응을 가능하게 한다. 향후 연구로는 블

록페이딩 가정을넘어 더동적이고 현실적인 채널 환경으로 확장하고 파

일럿의 수와 위치 등을 최적화하여 시스템의 강건성을 더욱 향상시키는

연구를 진행할 계획이다.
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그림 2. PCCNet과 DeepJSCC의 PSNR 성능 비교

그림 3. 채널 불일치 환경에서의 강건성 평가

그림 4.이기종 데이터 환경에서의 연합학습 알고리즘별 성능 비교


