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요 약

본 논문은 수중 분산 다중 에이전트 시스템에서 SA-PSO（Simulated Annealing Particle Swarm Optimization）와 Taylor 방
식을결합한 TDOA(Time Difference of Arrival) 기반 위치추정방법을제안한다. 본 알고리즘은잡음벡터노름최소화에기반한
고정밀 수중 음향 네트워크 TDOA 위치 추정 모델을 활용한다. 최소자승법(Least-Squares, LS)을 통해 목표 위치의 초기 추정치
를계산한 후, 관측점 자신의위치 오차와 TDOA 측정오차를 결합모델링하여 잡음이 위치 추정성능에 미치는 영향을 최소화하
는 목표 함수를도출하였다. 이후 글로벌 최적화 단계에서는 SA-PSO를 도입하여 수렴속도를 향상시키고 local 최적값에 빠지는
문제를 극복하며, Taylor 알고리즘을 이용해 local 정밀 탐색을 수행하였다. 시뮬레이션 결과, 제안된 방법은 다른 두 단일 알고리
즘에 비해 위치 추정 정확도가 우수하며, 잡음 환경에서도 더욱 높은 강인성을 가지는 것을 보였다.

Ⅰ. 서 론

수중 신호원 위치 추정은 수중 탐사, 수중 작업 등 다양한 분야에서 핵

심적인 요구기술이다. 수중 신호원 위치 추정은 일반적으로 다중 센서에

수신된 신호의 TDOA(Time Difference of Arrival)를 활용한다. 그러나

각 센서에서 측정된 TDOA의 경우, 다중경로, 도플러, 그리고 강한 잡음

등 신호의 왜곡이 크게 발생하여 오차를 가지며, 수중 음속의 느린 전달

속도로 인해 이러한 오차 영향은 심화된다. 이러한 오차를 보정하지 않을

경우위치추정성능이크게저하된다. 그러나오차를추정하는것은수중

의 동적인 환경에서는 매우 복잡한 문제이다.

PSO (Particle Swarm Optimization) 알고리즘은 복잡한 문제에 대한

최적의 결과를 도출하기 위한 방법으로써, AUV(Autonomous

Underwater Vehicle), UUV(Unmanned Underwater Vehicle) 등의 위치

추정에 다양하게 적용되고 있다[1]. 그러나 PSO의 경우에는초기 값설정

에 따라 성능이 보장되지 않을 수 있으며, 느린 수렴 속도를 가져 실시간

처리에 어려움이 있다. 또한, 한정적인 반복 시행을 적용할 경우 낮은 추

정 성능을 가진다.

이러한문제를해결하기위해서, 본 논문에서는 [2]에서 제안된 잡음벡

터 노름 최소화　개념을 기반으로, SA-PSO[3]와 Taylor 알고리즘[4]을

결합한 협력 위치 추정 방법을 제안한다. 본 논문에서 제안한 방법은 [2]

을 통해오차모델링이결합된목표함수를구성한다. 그리고 TDOA 위치

추정을기반으로 초기 값을 설정한 후, SA-PSO와 Taylor를 결합한방법

으로수렴속도를향상시킬뿐만아니라위치추정성능을향상시킨다. 시

뮬레이션 실험을 통해 제안한 알고리즘의 우수성이 검증되었다.

Ⅱ. 본론

두 센서가 각각 수신한 신호를 와라고 가정하면,  （１）

   （２）

여기서는 음원 신호이며，와 는 각각 두 센서가 수
신한 잡음을 나타낸다. 는 두 센서에서 신호의 시간 지연이다:
일반화 상호 상관 함수법(Generalized Cross-Correlation, GCC)[5]:

    ∞
∞    （3）

여기서   는 상호 전력 스펙트럼 밀도 함수이며,와 
는 각각 와의 Fourier transform 결과를 나타낸다. 또한는 의 켤레 복소수를 의미하고 는 가중 함수이다. 가중
함수가 PHAT 함수일 경우, 식(4) 와 같다.

  
（4）

   값을구하고이에대해피크검출을수행하면시간지연추정
결과를 얻을 수 있다.

수중 환경의 복잡성과 노드 드리프트(Node Drift) 및 측정 오차로 인해

위치추정정확도가저하된다. 이를 해결하기위해잡음벡터노름최소화

기반의 고정밀 TDOA 위치추정 방법을제안한다. 본 방법은 최소자승법

(LS)에 기초하여초기오차의영향을최소화함으로써 위치추정정확도를

높이고 알고리즘의 강인성을 강화한다.

LS 원리를 이용하여, 목표 위치는 다음식과 같다.

  argmin   (5)

실제에서는, 일반화 상호 상관법을 통해 얻은 시간 지연 추정치(TDE) 은 잡음을 포함하고 관측자의위치에는 와같은 오차가 있다.
오차 벡터는 로 정의되며, 다음과 같이 나타낼 수 있다:



   †  (6)

여기서 는 상수 행렬이다. 오차 벡터의 크기를 최소화하도록 하여,
최종적으로 얻어진 공식은 다음과 같다:min       ∆∆   (7)

본 논문에서 제안한 협력 위치 추정 방법은 SA-PSO로 얻은 위치를

Taylor 알고리즘의 초기값으로 설정하고 반복 추정을 통해 정확도를 향

상시킨다. 제안한 협력 위치 추정 알고리즘의 절차는 그림 1에 나타나 있

다.

Figure 1. Flowchart of the cooperative localization algorithm.

Ⅲ. 전산 모의 실험

협력 위치 추정 알고리즘의 유효성을 검증하기 위해 전산 모의 실험을

진행하였다. 시뮬레이션 환경은 한 변이 1000m인 정사각형 영역으로, 네

꼭짓점에 분산된 관측점을 배치하였다. 목표 신호는 LFM(Linear

Frequency Modulation) 파형이며, 목표 위치는 (350, 100) m이다.

SA-PSO 알고리즘을적용하여최종위치추정결과를그림 2에나타내었

다. 약 90회 반복 이후알고리즘이 수렴하는경향을보였으며, 최종적으로 좌표는 목표의 위치로 수렴하였다.
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Figure 2. Convergence Direction during Iterations: X-axis and Y-axis.

다음, 좌표를 Taylor 알고리즘의 초기 추정값으로 설정하
고, 반복 계산을수행하여최종 위치추정결과를도출한다. 시뮬
레이션에서는 TDE error를 0.001, 0.01, 0.1, 1ms로 설정하고,

TDOA-Taylor, TDOA-SA-PSO, 제안한 협력 위치 추정 알고리즘의 성

능을 1000회 Monte Carlo 실험으로 비교하였다.

TDE 오차변화에따라세방법모두유사한추세를보였으며, 제안한협

력위치추정알고리즘이다른두방법보다실제위치에더근접한결과를

제공함을 확인할 수 있다. 이러한 경향은 그림 3에서 확인된다.
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Figure 3. Errors in location results for different methods.

IV. 결론

본 논문에서 제안한 잡음 벡터 노름 최소화 기반 SA-PSO/Taylor 융

합기법은노드 드리프트및 TDOA 측정오차를 종합적으로 고려하여 초

기오차의영향을최소화하였다. 이를 통해목표위치추정의정확도와강

인성이 향상되었으며, 시뮬레이션 결과, 제안된 알고리즘은 단일

SA-PSO 및 Taylor 알고리즘보다 오차가 작고 강인성이 뛰어나 우수한

성능을 보였다.
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