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요 약

In this work, we propose a hardware architecture for prime number generation that combines the Sieve of Eratosthenes with the

Miller–Rabin primality test in a unified design framework. The proposed architecture has been synthesized using a 28nm process, operating at
a frequency of 40MHz. Our design has a power consumption of 3mW. In terms of area occupation, our implementation costs are 148k GEs.

Ⅰ. Introduction

Prime numbers play a crucial role in a wide range of fields, including

mathematics, computer science, and cryptography. In particular, they

form the foundation of many cryptographic algorithms. For instance,

the RSA algorithm [1] relies on large prime numbers to generate

secure keys, with its security depending on the computational

difficulty of factoring large composite numbers. Furthermore, prime

numbers underpin key exchange protocols such as Diffie–Hellman and
are also used in digital signature schemes to ensure message

authenticity and integrity. Motivated by the wide range of

cryptographic applications and the inherent limitations of conventional

approaches, this work presents a novel prime number generator that

integrates the Sieve of Eratosthenes with the Miller–Rabin primality
test [2] into a unified framework. By leveraging the early elimination

capability of the sieve and the high reliability of probabilistic

verification, the proposed method achieves a significant reduction in

computational time compared to traditional standalone techniques.

Ⅱ. Method

Prime number generation is conventionally performed through

deterministic sieve algorithms or probabilistic primality testing as

shown in Fig. 1. Deterministic sieves, such as the Sieve of

Eratosthenes and the Sieve of Atkin, provide efficient enumeration of

primes within bounded ranges but exhibit prohibitive memory and

computational complexity when extended to cryptographically

significant magnitudes. Conversely, probabilistic methods, including

randomized search with Miller–Rabin testing and incremental search
strategies, scale more effectively to large integers but suffer from

substantial computational overhead due to repeated primality

evaluations. The inherent inefficiency of employing either class of

algorithms in isolation renders them suboptimal for large-scale prime

generation in cryptographic contexts. To mitigate these limitations,

this work introduces a hybrid methodology that integrates sieve-based

preselection with Miller–Rabin verification, thereby reducing candidate
space while maintaining high probabilistic assurance of primality,

ultimately improving both asymptotic efficiency and practical

scalability.

Fig. 1 Conventional prime number generation method.

Figure 2 illustrates the block diagram of the proposed prime number

generation system, which operates on random number inputs and

comprises three primary functional blocks: Initial Modification, Sieve

of Eratosthenes (SoE), and the Miller–Rabin Primality Test. This work
combie The Initial Modification stage enforces structural constraints

by adjusting the most significant bit (MSB) and least significant bit

(LSB) to guarantee the required numerical magnitude while ensuring

that the candidate is odd. The SoE stage performs divisibility checks

against a predefined set of small prime numbers, efficiently eliminating

composite candidates at an early stage. Although this step

significantly reduces the computational burden on subsequent

primality testing, its implementation cost increases with the size of the

prime set due to memory overhead associated with storing large

divisors. Finally, the Miller–Rabin Primality Test is employed as the
conclusive verification stage, offering probabilistic primality assurance
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Technology 28

Input sequence (bits) 512

Frequency (MHz) 40

Area (GE) 148747
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with an error probability lower than 2E-80, thereby ensuring both

reliability and efficiency in large prime generation.

Fig. 2 Block diagram of proposed prime number generator system.

The flowchart of the proposed prime number generation system is

presented in Fig. 3. The process begins with a random number

obtained from the TRNG, which is modified by setting both the MSB

and the LSB to one, thereby ensuring that the candidate is an odd

number of the desired magnitude. The modified number is then

subjected to the SoE, where divisibility is checked against the first 53

prime numbers. While increasing the number of small primes improves

the filtering efficiency, it also introduces significant area overhead due

to storage requirements. If the candidate passes the SoE test, it

proceeds to the subsequent stage; otherwise, its value is incremented

by two to preserve odd parity, and the SoE test is repeated.

Candidates that successfully pass this preliminary screening are

finally verified using the Miller–Rabin primality test, which provides
probabilistic assurance of primality with a negligible error rate. The

Miller–Rabin primality test is a probabilistic algorithm derived from
the principles of the Fermat primality test. Let n be an odd integer

expressed as n = 1+ , where d is odd. A random integer a, with

1 < a < n, is selected as a test base. The number n is classified as

a probable prime if either ≡mod  or 
≡  mod

holds for some 0 ≤ r < e. If neither condition is satisfied, n is declared
composite. In the case where the conditions hold, n may either be

prime or a composite number that behaves like a prime with respect

to the chosen base a; in the latter situation, n is referred to as a strong

pseudoprime to base a, and a is considered a non-witness. Conversely,

when a demonstrates that n fails the test, it is termed a witness to

the compositeness of n.

Fig. 3 System flowchart diagram.

If the number fails the test, two is added to it, and the process returns to the

initial test to repeat all subsequent evaluations. If the number passes the test,

it is identified as a prime number.

Table I Performance summary of the proposed system..

Table I presents the hardware performance of the proposed prime

number generator. The design has been validated and synthesized

using a 28nm process technology, operating at a clock frequency of

40?MHz. The implementation requires 148,747GE and consumes

3.03mW of power. To evaluate the improvement, several random odd

numbers were tested; for example, for the 64-bit hexadecimal number

0x43FE04DCB43295BB, the generation of a prime number using only

the Miller-Rabin primality test required 5,612,500 clock cycles. In

contrast, the proposed system achieves the same result in only

1,812,500 clock cycles, representing an improvement of approximately

300% in generation time.

Ⅲ. Conclusion

This paper proposed a hardware architecture of prime number

generator by using the SoE and Miller Rabin primality test algorithm.

The proposed architecture is synthesized in a 28nm process with an

operating frequency of 40MHz. The synthesis of our design has

yielded a power consumption of approximately 3mW. Additionally, our

implementation cost at only 148,747 GEs in terms of area occupation.
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