Hardware implementation of random prime number generator
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In this work, we propose a hardware architecture for prime number generation that combines the Sieve of Eratosthenes with the
Miller-Rabin primality test in a unified design framework. The proposed architecture has been synthesized using a 28nm process, operating at
a frequency of 40MHz. Our design has a power consumption of 3mW. In terms of area occupation, our implementation costs are 148k GEs.

I. Introduction

Prime numbers play a crucial role in a wide range of fields, including
mathematics, computer science, and cryptography. In particular, they
form the foundation of many cryptographic algorithms. For instance,
the RSA algorithm [1] relies on large prime numbers to generate
secure Kkeys, with its security depending on the computational
difficulty of factoring large composite numbers. Furthermore, prime
numbers underpin key exchange protocols such as Diffie-Hellman and
are also used in digital signature schemes to ensure message
authenticity and integrity. Motivated by the wide range of
cryptographic applications and the inherent limitations of conventional
approaches, this work presents a novel prime number generator that
integrates the Sieve of Eratosthenes with the Miller-Rabin primality
test [2] into a unified framework. By leveraging the early elimination
capability of the sieve and the high reliability of probabilistic
verification, the proposed method achieves a significant reduction in
computational time compared to traditional standalone techniques.

II. Method

Prime number generation is conventionally performed through
deterministic sieve algorithms or probabilistic primality testing as
shown in Fig. 1. Deterministic sieves, such as the Sieve of
Eratosthenes and the Sieve of Atkin, provide efficient enumeration of
primes within bounded ranges but exhibit prohibitive memory and
computational complexity when extended to cryptographically
significant magnitudes. Conversely, probabilistic methods, including
randomized search with Miller-Rabin testing and incremental search
strategies, scale more effectively to large integers but suffer from
overhead due to repeated primality

substantial computational

evaluations. The inherent inefficiency of employing either class of
algorithms in isolation renders them suboptimal for large-scale prime
generation in cryptographic contexts. To mitigate these limitations,
this work introduces a hybrid methodology that integrates sieve-based
preselection with Miller-Rabin verification, thereby reducing candidate
space while maintaining high probabilistic assurance of primality,
ultimately improving both asymptotic efficiency and practical

scalability.
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Fig. 1 Conventional prime number generation method.

Figure 2 illustrates the block diagram of the proposed prime number
generation system, which operates on random number inputs and
comprises three primary functional blocks: Initial Modification, Sieve
of Eratosthenes (SoE), and the Miller-Rabin Primality Test. This work
combie The Initial Modification stage enforces structural constraints
by adjusting the most significant bit (MSB) and least significant bit
(LSB) to guarantee the required numerical magnitude while ensuring
that the candidate is odd. The SoE stage performs divisibility checks
against a predefined set of small prime numbers, efficiently eliminating
composite candidates at an early stage. Although this step
significantly reduces the computational burden on subsequent
primality testing, its implementation cost increases with the size of the
prime set due to memory overhead associated with storing large
divisors. Finally, the Miller-Rabin Primality Test is employed as the
conclusive verification stage, offering probabilistic primality assurance



with an error probability lower than 2E-80, thereby ensuring both
reliability and efficiency in large prime generation.
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Fig. 2 Block diagram of proposed prime number generator system.

The flowchart of the proposed prime number generation system is
presented in Fig. 3. The process begins with a random number
obtained from the TRNG, which is modified by setting both the MSB
and the LSB to one, thereby ensuring that the candidate is an odd
number of the desired magnitude. The modified number is then
subjected to the SoE, where divisibility is checked against the first 53
prime numbers. While increasing the number of small primes improves
the filtering efficiency, it also introduces significant area overhead due
to storage requirements. If the candidate passes the SoE test, it
proceeds to the subsequent stage; otherwise, its value is incremented
by two to preserve odd parity, and the SoE test is repeated.
Candidates that successfully pass this preliminary screening are
finally verified using the Miller-Rabin primality test, which provides
probabilistic assurance of primality with a negligible error rate. The
Miller-Rabin primality test is a probabilistic algorithm derived from
the principles of the Fermat primality test. Let n be an odd integer
expressed as n = 1+d.2° , where d is odd. A random integer a, with

1 < a <n,is selected as a test base. The number n is classified as

a probable prime if either a? = 1(modn) or a>“= —1(modn)
holds for some 0 < r < e. If neither condition is satisfied, n is declared
composite. In the case where the conditions hold, n may either be
prime or a composite number that behaves like a prime with respect
to the chosen base a; in the latter situation, n is referred to as a strong
pseudoprime to base a, and a is considered a non-witness. Conversely,

when a demonstrates that n fails the test, it is termed a witness to
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Fig. 3 System flowchart diagram.

If the number fails the test, two is added to it, and the process returns to the
initial test to repeat all subsequent evaluations. If the number passes the test,

it is identified as a prime number.

This work
Technology 28
Input sequence (bits) 512
Frequency (MHz) 40
Area (GE) 148747
Power (mW) 3.03

Table I Performance summary of the proposed system..

Table I presents the hardware performance of the proposed prime
number generator. The design has been validated and synthesized
using a 28nm process technology, operating at a clock frequency of
40?MHz. The implementation requires 148 747GE and consumes
3.03mW of power. To evaluate the improvement, several random odd
numbers were tested; for example, for the 64-bit hexadecimal number
0x43FE04DCB43295BB, the generation of a prime number using only
the Miller-Rabin primality test required 5,612,500 clock cycles. In
contrast, the proposed system achieves the same result in only
1,812,500 clock cycles, representing an improvement of approximately

300% in generation time.

. Conclusion

This paper proposed a hardware architecture of prime number
generator by using the SoE and Miller Rabin primality test algorithm.
The proposed architecture is synthesized in a 28nm process with an
operating frequency of 40MHz. The synthesis of our design has
yielded a power consumption of approximately 3mW. Additionally, our
implementation cost at only 148747 GEs in terms of area occupation.
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