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Table 1. Classification accuracy in Morning and Evening

Cluster Evening Morning
Activity Accuracy (%) Activity Accuracy (%)
Cluster 0 Spare_Time 904 Sleeping 83.0
Cluster 1 Grooming 455 Spare_Time 143
Cluster 2 Leaving 62.5 Sleeping 0.0
Cluster 3 Snack 333 Grooming 1818
Cluster 4 Toileting 588 Showering 16.66
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Table 2. Result of clustering: word- and sentence-level BERT embedding

Cluster Word-level Sentence-level
Activity Accuracy (%) Activity Accuracy (%)

Cluster 0 Toileting 5862 Toileting 63.15
Cluster 1 Grooming 81.81 Grooming 92.53
Cluster 2 Showering 100 Showering 100
Cluster 3 Sleeping 100 Sleeping 100
Cluster 4 Eating 100 Eating 100
Cluster 5 Spare_Time 100 Spare_Time 100
Cluster 6 Leaving %.3 Leaving %.5

0.0 a

I

o, /+ %
: [
)

-0.7

DX} AX

J8 1. 2% =% QHE9| K-means 2

Figure 1. K-means clustering using sentence-level embedding
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