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요 약  

 
FDD 기반 대규모 MIMO 시스템에서는 채널 상호성이 보장되지 않아, 다운링크 빔포밍을 위해 사용자 단말(UE)이 채널 

상태 정보(CSI)를 기지국(BS)으로 피드백해야 하며, 이로 인해 막대한 오버헤드가 발생한다. 본 논문에서는 지역적·전역적 

특성을 동시에 학습하는 ConvTransNet 을 제안한다. 제안 모델은 합성곱 신경망(CNN)과 트랜스포머(Transformer)를 결

합하여 낮은 연산 복잡도로도 높은 복원 성능을 달성한다. COST2100 데이터셋 실험 결과, 합성곱 신경망으로 구성된 

CsiNet+ 대비 0.8M 낮은 연산량으로 유사하거나 더 나은 NMSE 성능을 보였으며, 트랜스포머로 구성된 TransNet 대비 

약 33% 낮은 연산량을 유지하면서도 경쟁력 있는 NMSE 성능을 보였다. 

 
Ⅰ. 서 론 

FDD 기반 MIMO 시스템에서는 다운링크와 업링크 채

널 간 상호성이 보장되지 않아, 다운링크 빔포밍을 위해 

사용자 단말이 기지국으로 CSI 를 피드백해야 하며, 이로 

인해 특히 대규모 안테나 환경에서 막대한 오버헤드가 

발생한다. 이러한 문제를 해결하기 위해 CSI 행렬의 효

율적인 압축 및 복원 기법에 대한 연구가 활발히 진행되

어 왔다. 2018 년 제안된 CsiNet[1]은 최초의 딥러닝 기

반 모델로 합성곱 신경망을 활용하여 기존 압축 센싱 방

법보다 높은 복원 성능을 보였으며, 이후 CsiNet+[2]은 

합성곱 신경망 구조를 개선하여 성능을 향상시켰다. 

2022 년 제안된 TransNet[3]은 [4]에서 소개된 트랜스

포머 구조를 활용해 CSI 피드백 품질을 크게 개선하며 

당대 최고 성능을 달성하였다. 본 연구에서는 CSI 행렬

이 갖는 전역적 특성과 지역적 특성을 동시에 고려하여, 

합성곱 블록(convolutional block)으로 지역 정보를 추출

하고 트랜스포머로 전역 정보를 학습하는 ConvTrans-

Net 을 제안한다. 제안 모델은 낮은 연산 오버헤드로 우

수한 복원 성능을 달성함을 확인하였다. 

Ⅱ. 본론 

A. 시스템 모델 및 문제 정의 

본 논문에서는 [1]을 따라, 다수의 송신 안테나(𝑁௧ ≫ 1)

를 갖는 단일 셀 다운링크 대규모 MIMO 시스템을 고려

한다. 시스템은 OFDM 을 기반으로 하며, 각 부반송파에

서의 수신 신호는 다음과 같이 표현된다: 

𝐲௡ = 𝐡ሚ ௡
ு𝐯௡𝐱௡ + 𝐳௡       (1) 

 

여기서 𝐡ሚ ௡, 𝐯𝑛, 𝐱௡ , 𝐳௡ 는 각각 채널 벡터, 프리코딩 벡터, 

송신 심볼, 잡음을 나타낸다. 모든 부반송파의 채널 벡터

를 결합하면 전체 CSI 행렬 H෩ 를 얻을 수 있으며, UE 는 

파일럿 신호를 기반으로 이를 추정하여 BS 로 피드백한

다. 그러나 송신 안테나 및 부반송파의 개수가 증가할수

록 CSI 차원이 급격히 커지며, 이로 인해 피드백 오버헤

드가 크게 증가하는 문제가 발생한다.  

이를 해결하기 위해 본 연구에서는 2 차원 DFT 를 적

용하여 각도-지연(angular-delay) 도메인으로 변환하고, 

유효한 𝑁௔개의 행만 선택하여 축소된 CSI 행렬 H௔를 구

성한다. 이후 인코더 𝑓௘௡ 을 통해 H௔ 를 저차원 잠재 표현 

𝐬로 변환하고, 디코더 𝑓ௗ௘를 이용하여 이를 복원한다. 

𝐬 = 𝑓௘௡(H௔, 𝜃௘௡)        (2) 
H෡ ௔ = 𝑓ௗ௘(s, 𝜃ௗ௘)        (3) 

 

최종적으로, 본 과정은 평균제곱오차(MSE)를 최소화하

는 최적화 문제로 귀결되며, 그 목표는 다음과 같다: 

(𝜃෠௘௡ , 𝜃෠ௗ௘) = argmin
ఏ೐೙,ఏ೏೐

∥ H௔ − H෡௔ ∥ଶ   (4) 

 

B. 제안하는 모델 ConvTransNet 

그림 1 은 제안하는 ConvTransNet 의 구조이다. 입력 

CSI 행렬 H௔ 는 복소수 행렬로, 크기는 𝑁௔  ×  𝑁௧ 이다. 이 

두 행렬은 결합되어 convolutional block 의 입력으로 사

용되며, 최종 입력은 2 ×  𝑁௔  ×  𝑁௧  크기의 실수 행렬로 

표현된다. convolutional block 의 출력은 2𝑁௔𝑁௧크기의 1

차원 벡터로 변환되며, 이후 완전연결층(Fully Connected 

layer)을 거쳐 𝑁௙௕  차원으로 압축된다. 이 벡터는 코드워

드(codeword) 𝐬 의 형태로 CSI 디코더에 전달된다.  

그림 1. ConvTransNet의 구조 



CSI 디코더는 입력된 코드워드를 완전연결층을 통해 

2𝑁௔𝑁௧  크기로 복원한 후, 이를 2 ×  𝑁௔  ×  𝑁௧  형태로 형

상 변환하여 RefineNet-Conv block 에 전달한다. 

RefineNet-Conv block 에서는 잔차 연결(residual 

connection)이 적용되며, 출력은 다시 2 ×  𝑁௔  ×  𝑁௧ 크기

로 형상 변환되어 트랜스포머에 입력된다. 마지막으로 트

랜스포머 인코더와 디코더를 거친 출력은 실수부와 허수

부 행렬로 분리된다. 

ConvTransNet 인코더에서 Convolutional block 은 

CsiNet[1]의 인코더 구조를 기반으로 하며, 이를 통해 

UE 의 연산 복잡도를 최소화하면서도 지역적 특성을 효

과적으로 추출할 수 있도록 설계하였다. ConvTransNet 

디코더에서 RefineNet-Conv block 은 지역적 패턴을 포

착하고, 트랜스포머는 전역적 상관관계를 학습하여 복원 

성능을 향상시킨다. 또한, RefineNet-Conv block 에는 잔

차 연결을 추가하여 안정성과 성능을 더욱 강화하였다.  

 

C. 실험 환경 및 평가 지표 

본 연구에서는 [1]의 설정을 기반으로, COST2100 데

이터셋[5]을 사용하여 실험을 수행하였다. 고려한 시나

리오는 5.3 GHz 대역의 실내 피코셀 환경과 300 MHz 대

역의 옥외 농촌 환경의 두 가지이다. 기지국 안테나 수

(𝑁௧)는 32개로 구성하였으며, FDD 시스템에서 서브캐리

어 수(𝑁௖)는 1024, 유효 딜레이 도메인 성분 수 (𝑁௔) 는 

32 로 설정하였다. 트랜스포머 인코더 및 디코더의 차원 

𝑑௠௢ௗ௘௟은 32로 설정하였다.  

데이터셋은 총 150,000 개의 샘플로 이루어져 있으며, 

이 중 100,000개는 학습용, 30,000개는 검증용, 20,000개

는 테스트용으로 활용하였다. 학습 과정에서는 배치 크기 

200과 학습률 1 × 10ିସ를 적용하였고, 드롭아웃은 사용하

지 않았다. 다양한 압축 비율(1/4, 1/8, 1/16, 1/32, 1/64)에 

대해 400epoch 동안 훈련을 진행하고 NMSE 를 평가하

였다.  

성능 지표로는 원본 CSI 행렬 H와 복원된 CSI 행렬 H෡ 

간의 차이를 나타내는 정규화 평균제곱오차(NMSE)를 사

용하였으며, 이는 다음과 같이 정의된다:  

NMSE = Ε ቊ
ฮୌିୌ෡ ฮ

మ

మ

‖ୌ‖మ
మ ቋ       (5) 

 

D. 실험 결과 

 표 1 은 ConvTransNet 과 기존 모델들의 NMSE 성능 

및 FLOPs 를 비교한 결과를 제시한다. 각 압축 비율(𝜂)

에 따른 NMSE 값은 실내 및 실외 시나리오에서 측정되

었다. 전반적으로 가장 우수한 NMSE 성능을 보이는 모

델은 TransNet 이지만, 동시에 가장 높은 FLOPs 를 요구

한다. 이에 비해 ConvTransNet 은 TransNet 대비 약 

33% 낮은 FLOPs 를 가지면서도 NMSE 성능은 경쟁력 

있는 수준을 유지한다. 또한, ConvTransNet 의 FLOPs 는 

CsiNet+보다 약 0.8M 작으며, 두 모델 간 NMSE 성능

은 시나리오와 압축률에 따라 우위가 달라지지만, 전체적

으로 유사한 수준을 보인다. 즉, 특정 조건에서는 

CsiNet+가 더 우수하고, 다른 조건에서는 

ConvTransNet 이 더 나은 결과를 보인다. 결과적으로, 

표 1 은 ConvTransNet 이 합성곱 신경망과 트랜스포머 

구조를 결합함으로써 최소한의 연산 복잡도 증가로도 

NMSE 성능을 상당히 향상시킬 수 있음을 보여준다.  

 

III. 결론 

본 논문에서는 FDD 대규모 MIMO 시스템을 위한 새

로운 CSI 피드백 프레임워크 ConvTransNet 을 제안하였

다. 이 모델은 경량 합성곱 신경망 인코더로 UE 의 복잡

도를 줄이고, RefineNet-Conv 블록과 트랜스포머를 결합

해 국소·전역 채널 특징을 모두 활용한다. 분석 결과, 

ConvTransNet 은 기존 모델 대비 UE 연산량(FLOPs)을 

최소화하면서도 COST2100 데이터셋에서 NMSE 성능을 

우수하게 달성하였다. 이는 합성곱 신경망과 트랜스포머

의 결합이 차세대 무선통신에서 효율적이고 정확한 CSI 

피드백을 제공할 수 있음을 보여준다. 
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표 1. 제안하는 모델과 기존 모델들의 NMSE(dB) 및 FLOPs 성능 비교 


