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요 약

본논문은 6G 시대의요구사항인초저지연/초연결/초고속서비스를보장하기위한핵심기술인대규모다중안테나(Massive 

MIMO) 및재구성가능한지능형반사표면(RIS) 환경에서의채널추정기법을체계적으로분석한다. 각기법의핵심아이디
어와 성능 특성을 정리하고, 한계점을 비판적으로 논의한 뒤, 이를 바탕으로 향후 연구 방향을 제시한다.

 

Ⅰ. 서 론

 5G를 넘어 6G로진화함에따라, 네트워크 아키텍처와 무선접속기술의
근본적 전환이 요구된다. 6G는 단순 성능 지표의 개선을 넘어 전파환경
제어와 채널(Channel)/시스템(System)) 수준의재설계를요구한다. 이를
달성하기 위한 대표 기술로 대규모 다중안테나(Massive Multi-Input 
Multi-Outpu, Massive MIMO)와 재구성 가능한 지능형 반사 표면
(Reconfigurable Intelligent Surface, RIS)이 주목된다. Massive MIMO는 스
펙트럼/에너지 효율 향상 및 높은 빔 이득과 간섭 억제 효과를 제공한다. 

하지만, 다수의 능동 안테나와 무선 주파수(Radio Frequency, RF) 체인 운
용이 요구됨에 따라 전력/열/계산복잡도 등 공학적 과제가 수반된다 [1]. 

반면 RIS는저전력/저비용수동 소자기반메타표면으로링크품질개선, 

커버리지(Coverage) 확장, 상호운용성 향상을제공한다. 그러나수동이득
의한계와재방사손실, 소자간상호결합과위상양자화/잡음, 환경의존
적성능등현실적제약이존재한다 [2]. 따라서 Massive MIMO의능동빔
포밍과 RIS의 전파환경제어를 상호보완적으로 결합하는 통합 설계에 대
한 접근이 요구된다.

 Massive MIMO와 RIS 기반 통신의 성능을 실효화 하려면 정확한 채널
상태 정보(Channel State Information, CSI)의 추정이 선행되어야 한다. 그
러나 채널의 연쇄(cascaded) 구조와 다수의 안테나/소자 수로 인해 추정
대상의 차원이 상승하고, 파일럿 오버헤드(Pilot Overhead)와 연산 복잡도
가 급증한다. 본 논문은 이러한 제약을 완화하기 위한 채널 추정 기법의
최근 동향을 정리한다.

Ⅱ. 본론

 본 세션에서 Massive MIMO와 RIS 기반 무선 통신용 채널 추정 기법의
최근 동향을 정리한다. 구체적으로, (i) 파일럿 기반 추정, (ii) 압축 센싱
(Compressed Sensing, CS) 기반 추정, (iii) 인공지능 기반 추정, 그리고

(iv) 텐서(Tensor) 분해및저랭크(Low-Rank) 행렬기반추정의네축을비교
하고, 시스템규모/채널조건별적용범위와한계를논의한다. 마지막으로
다중사용자/광대역/근거리(near-field) 등최신시나리오에서의오버헤드–

정확도–복잡도절충설계원칙을제시한다.

 A. 파일럿 기반 채널 추정 기법

  1) Least Square (LS) 기반 채널 추정: 파일럿과 관측치 사이의 선형관
계를 직접 역산하여 채널을 추정하는 방법으로 사전 통계 정보는 필요하
지 않다. Massive MIMO 시스템에서는 구조가 단순하고 병렬화가 용이해
Massive MIMO에서 초기 추정치로 유용하지만, 안테나 수 과 사용자
수 가 커질수록잡음증폭과 파일럿 길이 증가로 인한 오버헤드가 증가
하므로 섹터/사용자 그룹별 파일럿 재사용과 시간 분할 이중화(Time 
Divition Duplex, TDD) 상/하향 상호성 활용으로 오버헤드를 줄이는 운용
이 필요하다 [3]; RIS 환경에서는 반사 패턴(Pattern)의 순차 활성(예

on/off 방법)과 결합해 구현 난이도가 낮다는 장점이 있으나, RIS 소자 수
에 비례해 필요한 패턴 수/파일럿 길이가 늘어 연쇄 채널 차원 증가 시
추정오차가 증가한다. 따라서 소자 그룹화, 부분 활성, 패턴 최적화를 통
해 패턴 수를 압축하는 전략이 요구된다 [4].

  2) Minimum Mean Square Error (MMSE) 기반 채널 추정: 채널/잡

음의 통계(공분산)를 활용해 평균제곱오차를 최소화하는 방식으로, 

Massive MIMO에서는 LS 기반 채널 추정 대비 간섭/파일럿 오염 환경에
서 강건하지만 공분산 추정/저장과 역행렬 연산으로 인한 복잡도가

 까지 상승하므로 공분산 행렬의 크로네커(Kronecker) 분리, 블록
(Block) 대각 근사, 저랭크 근사로 연산을 줄이는 설계가 요구된다 [5]; 

RIS 환경에서는 연쇄 채널이 갖는 각도/거리/패턴 기반의 구조적 상관을
공분산에 반영해 오버헤드 대비 정확도를 높일 수 있으나, ×× 

차원의 공분산으로 인해 차원 폭증 문제가 발생하므로 패턴-도메인
(Domain) 분리, 근거리 링(Ring)-도메인표본화(Sampling) 등을통해차원
을 축소한 후 MMSE를 적용하는 절충이 요구된다 [6].

  3) Linear MMSE (LMMSE) 기반 채널 추정: MMSE의 통계 정보(공

분산)를 활용하되 선형 근사로 연산을 줄이는 방식으로, 대규모 배열에서
성능–복잡도 절충에 적합하다. Massive MIMO에서는 공분산을 크로네커
분리하거나 대각/순환구조 가정을적용해 역행렬 연산을 고속 푸리에 연
산(Fast Fuourier Transfrom, FFT)로 대체하고, 슬라이딩 윈도우(Sliding 
Window) 기반공분산 업데이트로 시간 변화를 추적한다 [7]. RIS 환경에
서는 연쇄 채널의 차원 폭증을 고려해 패턴 축 분리와 타일(Tile)/클러스
터(Cluster) 단위 LMMSE로 계산량을 제어하고, 소자 그룹화/부분 활성과
저분해능 패턴을 병행해 파일럿 길이를 단축한다 [8]. 

 결과적으로 LMMSE 기반의 채널 추정은 LS 기반 채널 추정 대비 잡음/

간섭에 강건하면서 MMSE 대비 복잡도를 크게 낮추며, 분리/저랭크/블록
화 같은 구조적 근사와 결합할 때 Massive MIMO 및 RIS에서 실용적인
추정 성능을 제공한다.

 B. 압축 센싱 기반 채널 추정: 채널의 각도/경로 도메인 희소성을 활용
해 필요한 측정(파일럿) 수를 줄이는 접근으로, Massive MIMO/RIS의 고
차원 연쇄 채널을 적은 오버헤드로 복원한다[9, 10]; 일반적으로직교 정
합 추적(Orthogonal Matching Pursuit, OMP)/동시 직교 정합 추정
(Simultaneous Orthogonal Matching Pursuit, SOMP)/기저 탐색(Basis 
Pursuit, BP)/근사 메시지 전달 (Approximate Message Passing, AMP)류 복
원기를 사용하며, RIS에서는 반사 패턴을 무작위/직교/이산 푸리에 변환
(Discrete Fourier Transform, DFT) 기반으로 설계해 측정 행렬의 상호상관
을낮추고조건 수를개선한다. 초고주파수나좁은각도확산환경에서효
과가크지만, 산란이풍부해희소성이약할때 MSE가악화될수있으므로
그리드 불일치(off-grid) 보정, 혼합 정규화, 사전 통계 결합(공분산 기반



가중치) 등으로 민감도를 완화한다. 스케일(Scale) 측면에서는 소자 그룹
화/부분 활성로 측정 차원을 축소하고, 블록 희소성(사용자/반송파
(Subcarrier) 공동지지)과 구조적 사전 행렬 (근거리 링-도메인, 스퀸트
(Squint) 보정)를 이용해 대규모 배열/광대역에서도 연산을 억제한다.

 C. 인공지능 기반 채널 추정: 데이터로부터공간/주파수/시간상관을학
습해 적은 오버헤드 입력으로 고차원 채널을 복원하는 방식으로, 합성곱
신경망 (Convolutional Neural Network, CNN)/순환 신경망 (Recurrent 
Neural Network, RNN)/트랜스포머(Transformer) 및 확산모델 등을 사용하
며 전통 기법의 초기화/정규화/하이퍼-파라미터(Hyper-Parameter) 선택을
자동화한다. Massive MIMO에서는 사용자/반송파 간 공유 구조를 활용한
다중업무처리/메타러닝(Few Shot Task)이유효하고 [11], RIS에서는패
턴–채널의 비선형 대응(Mapping)과 하드웨어 불완전성(위상 양자화/상
호결합)을암묵적으로흡수해추정강건성을높인다 [12]. 다만일반화와
데이터의존성이한계이므로물리지식주입, 소량라벨(Label)/자기지도
학습, 경량화(프루닝(Pruning)/지연 양자화), 표본(Sample) 효율적 파일럿
설계를 결합해 실시간성/복잡도를 만족시킨다. 또한 융합 접근법(예시
LS/MMSE + 딥러닝(Deep Learning, DL))으로초깃값 안정성과수렴성
을 확보하고, 분산/연합학습으로 다중 셀(Cell)/벤더(Vendor) 환경에서 프
라이버시와 호환성을 확보한다.

 D. 텐서 분해 및 저랭크 행렬 기반 채널 추정: 채널의다차원구조

(안테나 수 × 반송파 수 × 시간 블록 수 × RIS 패턴)를 Canonical 
Polyadic(CP)/PARAFAC(PARAllel FACtors)/터커(Tucker) 분해나 행렬 완
성(핵 노름(Nuclear norm) 최소화)으로 모델링(Modeling)해차원을 축소하
고 파일럿 수를 절감한다; Massive MIMO에서는 크로네커/토플리츠
(Toeplitz)/한켈(Hankel) 행렬 구조를 이용해 공분산을 저랭크로 근사하고
[13], RIS에서는 패턴 축을 포함한 3–4차 텐서 모델(Model)을 사용해 연
쇄채널을분리 복원한다 [14]. 장점은 고차원에서의스케일링과잡음 평
균화효율이높다는점이며, 랭크선택/정규화/수렴 보장이 핵심이슈이므
로 랭크 추정(정보준칙/스펙트럼 갭(Spectral Gap)), 혼합 정규화(희소성
(Sparse)-저랭크), 블록 좌표 강하/교대 최소 제곱(Alternating Least 
Squares, ALS) 가속, 소자 그룹화와 결합한 블록-텐서분해로실용복잡도
를 맞춘다. 근거리/광대역에서는 스퀸트와 편향을 줄이기 위해 주파수별
공통/특이 성분을 분리하는 공통-개별 텐서 모델이나 링-도메인 사전 변
환을 적용한다.

 종합하면, 다중 사용자/광대역/근거리와 같은 최신 시나리오에서는 (1) 

파일럿/패턴의 계층적 설계와 소자/사용자 그룹화로 측정 차원을 압축하
고, (2) 공분산의분리/저랭크/희소성(또는텐서 구조)을 결합한 하이브리
드추정으로정확도를확보하며, (3) 시간변화율에맞춘적응적업데이트
와 경량 인공지능 보조로 연산 예산 내에서 오버헤드–정확도–복잡도의
균형을 맞추는 것이 핵심 설계 원칙이다.

Ⅲ. 결론

 본 논문은 Massive MIMO/RIS 기반 무선에서 채널 추정의 최신 흐름을
파일럿(LS/MMSE/LMMSE), 압축 센싱, 인공지능, 텐서/저랭크의 네 축으
로 간결히 정리하고, 연쇄 구조와 대규모 소자 수로 인한 차원 폭증/파일
럿 오버헤드/복잡도 문제를 중심으로 비교/분석하였다. 핵심은 대규모화
에 대응해 계층적 파일럿/패턴 설계와 소자/사용자 그룹화, 공분산 분리/

저랭크/희소성/텐서 구조를 결합한 하이브리드 추정, 시간 적응 업데이트
와 경량 인공지능 보조를 통해 오버헤드–정확도–복잡도의 균형을 맞추
는 것이다. 향후 연구는 다중 사용자/광대역/근거리 시나리오에서의 공통
설계 원칙을 정교화하고, 파일럿/패턴–추정기 공동 최적화와 실험적 검
증을 통해 실용성을 입증하는 방향으로 나아가야 한다.
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