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요 약  
본 논문에서는 송수신기가 분리된 바이스태틱 통한 센싱-통신 통합 시스템(ISAC) 시스템에서 레이더 자기 간섭 억제와 

커버리지 확장을 고려한다. 이를 위해, 완전한 채널 상태 정보 없이 레이더 에코 스냅샷을 직접 다운링크 빔포밍으로 

변환하는 트랜스포머 기반 예측 빔포밍 기법을 제안한다. 레이더 에코 수신 ISAC 기지국은 신호처리를 통해 예측 

빔포밍을 만든 후 송신 기지국으로 전달하여 송신 기지국은 통신 및 센싱 신호를 전송한다. 또한, 두 개의 CNN 모듈과 

하나의 트랜스포머 모듈로 구성된 바이스태틱 에코 기반 트랜스포머 네트워크(B-ECTNet)를 활용하여 비볼록 최적화 

문제를 해결한다. 시뮬레이션 결과, 제안 기법은 우수한 스펙트럼 효율과 레이더 제약 조건을 동시에 만족함을 확인하였다.  

 

Ⅰ. 서 론  

차량 통신망의 급격한 발전은 자율주행, 스마트 시티 

서비스, 실시간 모니터링 등 다양한 응용에서 

기가비트급 통신 성능과 센티미터 단위의 정밀 센싱을 

동시에 요구한다. 이러한 수요에 대응하기 위해 통합 

센싱 및 통신(ISAC) 기술이 각광받고 있으며, 이는 

스펙트럼 자원의 효율적 활용과 하드웨어 중복 

감소라는 장점을 제공한다. 기존 연구에서는 다중 입력 

다중 출력 (MIMO) 레이더 빔포밍과 칼만필터 기반 빔 

추적 기법[1], CNN-LSTM 기반 예측 빔포밍 등이 

제안되었으나[2], 이들은 채널 상태 정보(CSI)에 대한 

높은 의존성과 병렬 처리 한계로 인해 신호 부하와 

지연 증가, 정확도 저하 문제를 안고 있다. 최근에는 

CSI 추정을 생략하고 빔포밍 행렬을 직접 생성할 수 

있는 트랜스포머 기반[3] 접근이 새로운 대안으로 

떠오르고 있다. 그러나 선행 연구들은 대부분 

모노스태틱 ISAC 에 국한되어 있으며, 송수신 배열을 

지리적으로 분리해 자기 간섭을 회피하고 넓은 

커버리지를 확보할 수 있는 바이스태틱 구조는 

상대적으로 연구가 부족하다. 이에 본 연구에서는 

바이스태틱 에코 기반 CNN-트랜스포머 네트워크(B-

ECTNet)를 제안하여, 실시간 레이더 에코 스냅샷을 

직접 예측 빔포밍 벡터로 변환함으로써 스펙트럼 

효율을 향상시키고, 동시에 레이더 신호 대 간섭 및 

잡음비 (SINR) 제약을 충족함을 보인다. 

Ⅱ. 본론  

본 논문에서는 하향링크 MU-MIMO ISAC 시스템을 

고려하며, 전체 Nt개의 uniform liner array antenna 

(ULA) 기지국 송신안테나, Nr개의 수신 안테나를 가진 

K명의 차량 유저들로 이루어짐. 기지국은 full-duplex 

상황을 가정 한다. 𝐱𝐱n(𝑡𝑡)  ∈ ℂ𝑁𝑁𝑡𝑡 를 다음과 같이 

정의한다: 
𝐱𝐱n(𝑡𝑡) = 𝐖𝐖𝑛𝑛𝐬𝐬𝑛𝑛(𝑡𝑡), 

여기서 𝐬𝐬𝑛𝑛(𝑡𝑡)는 송신된 시그널이며, 𝐖𝐖𝑛𝑛 ∈ C𝑁𝑁𝑡𝑡×𝐾𝐾는 송신 

빔포밍 매트릭스로 가정한다. 다음으로 차량으로부터 

반사된 에코 시그널은 다음과 같다. 

𝐫𝐫𝑛𝑛(𝑡𝑡)

= 𝜙𝜙�𝛽𝛽𝑘𝑘,𝑛𝑛𝑒𝑒𝑗𝑗2𝜋𝜋𝜇𝜇𝑘𝑘,𝑛𝑛𝑡𝑡𝐛𝐛�𝜃𝜃𝑘𝑘,𝑛𝑛
𝑟𝑟𝑟𝑟 �𝐚𝐚H�𝜃𝜃𝑘𝑘,𝑛𝑛

𝑡𝑡𝑡𝑡 �𝐱𝐱𝑛𝑛�𝑡𝑡 − 𝜏𝜏𝑘𝑘,𝑛𝑛�
𝐾𝐾

𝑘𝑘=1

+ 𝐧𝐧𝑟𝑟(𝑡𝑡) 

여기서, 𝜙𝜙 = �𝑁𝑁𝑡𝑡𝑁𝑁𝑟𝑟 안테나 게인, 𝜇𝜇𝑘𝑘,𝑛𝑛는 도플러 주파수, 

𝜏𝜏𝑘𝑘,𝑛𝑛는 시간 지연, 𝛽𝛽𝑘𝑘,𝑛𝑛는 반사 계수, 𝜃𝜃𝑘𝑘,𝑛𝑛
𝑟𝑟𝑟𝑟와𝜃𝜃𝑘𝑘,𝑛𝑛

𝑡𝑡𝑡𝑡 는 ISAC 

수신(Rx) 기지국과 차량 사이의 각도 및 ISAC 송신

(Tx) 기지국과 차량 사이의 각도 가정한다. 또한, 𝐚𝐚(⋅)
와 𝐛𝐛(⋅)는 각각 송신 수신 안테나 어레이 벡터로 가정

한다.다음으로 k 번째 차량이 송신한 시그널은 다음과 

같다. 

𝐲𝐲𝑘𝑘,𝑛𝑛 = 𝜙𝜙��𝛼𝛼𝑘𝑘,𝑛𝑛𝑒𝑒𝑗𝑗2𝜋𝜋𝜇𝜇𝑘𝑘,𝑛𝑛𝑡𝑡𝐚𝐚H�𝜃𝜃𝑘𝑘,𝑛𝑛
𝑡𝑡𝑡𝑡 ��𝑤𝑤𝑖𝑖,𝑛𝑛x𝑖𝑖,𝑛𝑛(𝑡𝑡)

𝐾𝐾

𝑘𝑘=1

+ 𝜂𝜂𝑘𝑘,𝑛𝑛(𝑡𝑡), 

여기서, 𝜙𝜙� = �𝑁𝑁𝑡𝑡  안테나 게인, 𝛼𝛼𝑘𝑘,𝑛𝑛 = 𝛼𝛼0�𝑑𝑑𝑘𝑘,𝑛𝑛/𝑑𝑑0�
−Ξ

 

pathloss 상수로 가정하였으며 다음으로 수신 기지국에

서 수신된 SINR는 다음과 같다. 

𝑆𝑆𝑘𝑘,𝑛𝑛 =
𝜙𝜙2�𝛽𝛽𝑘𝑘,𝑛𝑛𝐛𝐛H�𝜃𝜃𝑘𝑘,𝑛𝑛

𝑟𝑟𝑟𝑟 �𝐛𝐛�𝜃𝜃𝑘𝑘,𝑛𝑛
𝑟𝑟𝑟𝑟 �𝐚𝐚H�𝜃𝜃𝑘𝑘,𝑛𝑛

𝑡𝑡𝑡𝑡 �𝐰𝐰𝑘𝑘,𝑛𝑛�
2

∑ 𝜙𝜙2�𝛽𝛽𝑖𝑖,𝑛𝑛𝐛𝐛H�𝜃𝜃𝑖𝑖,𝑛𝑛𝑟𝑟𝑟𝑟�𝐛𝐛�𝜃𝜃𝑖𝑖,𝑛𝑛𝑟𝑟𝑟𝑟�𝐚𝐚H�𝜃𝜃𝑖𝑖,𝑛𝑛𝑡𝑡𝑡𝑡�𝐰𝐰𝑖𝑖,𝑛𝑛�
2 + 𝜎𝜎𝑧𝑧2𝐾𝐾

𝑖𝑖≠𝑘𝑘

. 

여기서, 𝜎𝜎𝑧𝑧2는 레이더신호의 노이즈 variance 로 가정한

다. 다음으로 k번째 차량에 수신된 통신 SINR 는 다음

과 같다. 

𝑅𝑅𝑘𝑘,𝑛𝑛 =
�𝐡𝐡𝑘𝑘,𝑛𝑛

H 𝐰𝐰𝑘𝑘,𝑛𝑛�
2

∑ �𝐡𝐡𝑖𝑖,𝑛𝑛H 𝐰𝐰𝑖𝑖,𝑛𝑛�
2𝐾𝐾

𝑖𝑖≠𝑘𝑘 + 𝜎𝜎𝐶𝐶2
 

여기서 𝜎𝜎𝐶𝐶2 는 통신신호의 노이즈 variance, 𝐡𝐡𝑘𝑘,𝑛𝑛
H =

𝜙𝜙��𝛼𝛼𝑘𝑘,𝑛𝑛𝐚𝐚�𝜃𝜃𝑘𝑘,𝑛𝑛
𝑡𝑡𝑡𝑡 �로 가정하였다. 

최종적으로, 정의된 최적화 문제는 다음과 같이 구성

된다. 

maximize
𝐖𝐖𝑛𝑛

 𝐸𝐸𝐫𝐫𝑛𝑛−1 �� log2�1 + 𝑅𝑅𝑘𝑘,𝑛𝑛�
𝐾𝐾

𝑘𝑘=1

� 



subject to �|𝐖𝐖n|�𝐹𝐹
2 ≤ 𝑃𝑃, 𝑆𝑆𝑘𝑘,𝑛𝑛 ≥ Γ𝑘𝑘,𝑛𝑛. 

여기서, Γ𝑘𝑘,𝑛𝑛는 최소 센싱 SINR 성능 제약 조건으로 가

정하였으며 다음으로 모델을 학습하기 위한 손실 함수

는 다음과 같이 정의를 할 수 있다. 

L𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑁𝑁𝑁𝑁𝑁𝑁 = − 1
𝐵𝐵
∑ ∑ log2 �1 +

�𝐡𝐡𝑘𝑘,𝑛𝑛
H 𝐰𝐰𝑘𝑘,𝑛𝑛

(𝑗𝑗) �
2

∑ �𝐡𝐡𝑖𝑖,𝑛𝑛
H 𝐰𝐰𝑖𝑖,𝑛𝑛

(𝑗𝑗)�
2𝐾𝐾

𝑖𝑖≠𝑘𝑘 +𝜎𝜎𝐶𝐶
2
�𝐾𝐾

𝑘𝑘=1
𝐵𝐵
𝑗𝑗=1 +

𝜆𝜆1 �min�0,
𝜙𝜙2�𝛽𝛽𝑘𝑘,𝑛𝑛𝐛𝐛H�𝜃𝜃𝑘𝑘,𝑛𝑛

𝑟𝑟𝑟𝑟 �𝐛𝐛�𝜃𝜃𝑘𝑘,𝑛𝑛
𝑟𝑟𝑟𝑟 �𝐚𝐚H�𝜃𝜃𝑘𝑘,𝑛𝑛

𝑡𝑡𝑡𝑡 �𝐰𝐰𝑘𝑘,𝑛𝑛
(𝑗𝑗) �

2

∑ 𝜙𝜙2�𝛽𝛽𝑖𝑖,𝑛𝑛𝐛𝐛H�𝜃𝜃𝑖𝑖,𝑛𝑛
𝑟𝑟𝑟𝑟�𝐛𝐛�𝜃𝜃𝑖𝑖,𝑛𝑛

𝑟𝑟𝑟𝑟�𝐚𝐚H�𝜃𝜃𝑖𝑖,𝑛𝑛
𝑡𝑡𝑡𝑡�𝐰𝐰𝑖𝑖,𝑛𝑛

(𝑗𝑗)�
2
+𝜎𝜎𝑧𝑧2𝐾𝐾

𝑖𝑖≠𝑘𝑘

− Γ𝑘𝑘,𝑛𝑛 ��
2

+

𝜆𝜆2
1
𝐵𝐵
∑ �max �0, ��𝐖𝐖𝑛𝑛

𝑗𝑗��
𝐹𝐹

2
− 𝑃𝑃��

2
𝐵𝐵
𝑗𝑗=1  . 

여기서, B는 batch size, 𝜆𝜆1과 𝜆𝜆2는 각각 제약함수와 관

련한 penalty 상수라고 가정하였다. 

목적함수는 통신 성능을 나타내는 SINR 을 최대화하

면서 최소 센싱 달성 SINR 을 만족하도록 하는 빔포머

를 형성하는 것을 목표로 한다. 비볼록(Non-convex)한 

문제를 해결하기 위해 딥러닝 기법 CNN 및 

transformer 구조를 활용하고자 한다. 높은 컴퓨팅을 

가진 수신 기지국이 에코 신호 처리를 통해 예측 빔포

머를 생성하여 송신 기지국에게 전달하여 통신 및 센싱

을 수행 한다. 제안한 알고리즘은 off-line training, 

off-line validation, on-line prediction으로 모델을 학

습하여 우수한 레이더 에코 시그널을 통해서 예측 빔포

밍을 하고자 한다. 

  시뮬레이션 환경은 송수신 안테나 16 개, 통신유저수 

4 명, 캐리어 주파수 30GHz, 안테나 aperture 7.5cm, 

레이더 SINR threshold 15 dB 로 두었다. 비교군으로 

Random beamforming (BF), Maximum ratio 

transmission (MRT), LSTM-based Net 

(CLCCNet)[2]으로 비교하였다. 

그림 1 에서, 최대 송신전력에 대한 평균 합 SE 와 

레이더 SINR 를 패널티 제약 λ1 변화에 따라 나타낸다. 

도시하였다. 그림에서 확인할 수 있듯이, 제안하는 B-

ECTNet 알고리즘은 다른 기준 방법들과 비교했을 때 

레이더 SINR 제약을 만족하면서 가장 높은 성능을 

달성한다. LSTM 기반 CLCCNet 은 기존 Random BF, 

MRT 방법보다 우수한 성능을 보이지만, 그 모델링은 

단기 시계열 패턴에 제한된다. 반면, 제안한 

알고리즘의 글로벌 셀프 어텐션 메커니즘은 전체 에코 

시퀀스에 걸친 장기 시공간 종속성을 포착할 수 있어 

더 우수한 성능을 달성한다. 

 

  

Ⅲ. 결론  

본 논문에서는 바이스태틱 ISAC 차량 네트워크를 

위한 트랜스포머 기반 예측 빔포밍 기법과, 기지국이 

CSI 나 과거 채널 데이터를 획득할 필요 없이 신호 

부하를 줄일 수 있는 전송 프로토콜을 제안하였다. 

또한 통신 합산율을 최대화하기 위한 최적화 문제를 

정식화하고, 이를 패널티 기법을 통해 무제약 문제로 

변환하였다. 지역적 에코 특징과 전역적 에코 특징을 

동시에 추출하기 위해 합성곱 기반 전처리 모듈과 

글로벌 셀프 어텐션 모듈을 결합한 B-ECTNet 을 

설계하였다. 시뮬레이션 결과, 제안된 접근법은 최신 

빔포밍 기법들과 비교하여 통신 및 레이더 성능 

모두에서 일관되게 우수함을 입증하였다. 
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그림 1. 최대 송신 전력에 대한 통신 주파수 효율 
및 센싱 SINR 


