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Algorithm 1 Full-model Fine-tuning
Input: Global model parameters {6y ¢} trained on a generic dataset, batch
size B, CSI samples from a shifted distribution # = {#r, H g}, model prior
p[0]
Output: CSI matrix H
1: Initialize model parameters: ¢ = ¢g, 0 = 6y
2: for epoch = 1 to num_epochs do
3 for each batch b in Hp do
4 Load batch H € {#,}£_, from Hp B
5: Quantize updated decoder parameters: 6 = Q;(8)+6p, with § = 6—6,
6
7
8:

Apply feature encoder and quantization: Z = f,(H), Z=7+AZ
Apply feature decoder: H = g;(Z)
: Compute loss Lzp(¢,0)
9: Backpropagate using STE for Q;(d) and update 0, ¢

10: end for
11: end for

12: return Fine-tuned model parameters {¢*, 6"}

13: Compress H € M to latent representation Z = Q(fs- (H))
14: Compute quantized model parameters: 0__= 0o + 0, with § =
15: Entropy encode: bs = (8;p[d]), b. = v5(Z; pg)

16: Entropy decode: & = y~1(bs;p[d])

17: Compute updated decoder parameters 0=00+0

18: Entropy decode latent: Z = 47 1(b.; pg)

19: Apply de-quantization and feature decoder: H = Q (94(Z))

Qu(6" — 6o)
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