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요 약  

 
예지보전(Prognostics and Health Management, PHM) 분야에서 잔여수명(RUL, Remaining Useful Life) 예측은 설비의 

안정적인 운영과 유지보수 비용 절감을 위한 핵심 기술로 주목받고 있다. 특히 회전체 설비의 주요 구성 요소인 베어링은 

고장이 발생하면 생산 라인의 예기치 못한 중단과 안전 문제를 유발할 수 있어 정밀한 수명 관리가 필요하다. 최근 센서 

데이터와 공개 벤치마크 데이터셋의 활용이 확대되면서, 데이터 기반 RUL 예측 연구가 활발히 진행되고 있다. 기존의 

통계 분석이나 전통적 머신러닝 기법은 진동 신호의 비선형성과 장기 시계열 의존성을 충분히 반영하지 못하는 한계를 

가진다. 본 연구에서는 이러한 문제를 극복하기 위해 Transformer 기반 중앙집중형 학습 프레임워크를 제안하였다. 

Transformer 는 자기 주의(attention) 메커니즘을 통해 장기간의 열화 패턴과 신호 내 상호 연관성을 효과적으로 학습할 

수 있으며, 시계열 데이터의 복잡한 특성을 포착하는 데 강점을 갖는다. 제안된 방법에서는 시간, 주파수, 시간– 주파수 

영역에서 다중 특징을 추출하고, 분산 기반 선택 기법으로 의미 있는 입력 변수를 정제하여 모델 학습에 적용하였다. 

XJTU-SY 데이터셋을 활용한 실험 결과, 본 연구의 Transformer 기반 방법은 테스트 베어링에서 평균제곱오차(MSE) 

0.0001, 평균절대오차(MAE) 0.0066 를 기록하며 높은 예측 정확도와 안정성을 확인하였다. 

 

Ⅰ. 서 론  

회전체 설비의 잔여수명(Remaining Useful Life, RUL) 

예측은 예지보전(Prognostics and Health Management, 

PHM)의 핵심 연구 주제 중 하나이다[1,2]. 정확한 RUL 

추정은 상태 기반 유지보수를 가능하게 하여 불필요한 

정비를 줄이고, 갑작스러운 고장을 예방하며, 나아가 산

업 시스템의 신뢰성과 운영 효율성을 향상시킬 수 있다. 

특히 베어링은 회전체 기계의 핵심 부품으로서, 돌발적인 

고장은 막대한 경제적 손실과 안전 사고로 이어질 수 있

다. 따라서 베어링의 RUL 을 안정적으로 예측하는 기술

은 산업 현장에서 중요한 과제로 자리 잡고 있다. 

최근 센서 계측 기술의 발달과 더불어 XJTU-SY 

Rolling Element Bearing Accelerated Life Test(XJTU-

SY) 데이터셋[3]과 같은 공개 벤치마크의 활용은 데이터 

기반 접근법의 발전을 가속화하였다. 기존의 통계적 방법

과 같은 규칙 기반 방법[4,5]은 실제 베어링 열화 과정

의 비선형성 및 장기적인 시계열 의존성을 충분히 반영

하지 못하며 일반화가 어렵다는 한계가 존재하였다. 이로 

인해 다양한 운전 조건과 복잡한 환경을 가진 실제 산업 

현장에 적용할 경우 예측 성능이 불안정하게 나타나는 

문제가 있었다. 

이러한 한계를 극복하기 위해 딥러닝 기반 연구가 주

목받고 있으며, 그중 Transformer 모델은 자기 주의

(attention) 메커니즘을 활용하여 시계열 전반의 복잡한 

상관 관계와 장기 열화 패턴을 효과적으로 학습할 수 있

는 장점을 지닌다[6]. 기존의 CNN 이나 LSTM 이 각각 

지역적 특징 추출 혹은 시계열 종속성 학습에 강점을 가

진 반면, Transformer 는 두 가지 특성을 동시에 포착하

면서 더 높은 일반화 성능을 확보할 수 있다. 

본 연구에서는 XJTU-SY 데이터셋을 기반으로 

Transformer 구조를 적용한 중앙집중형 RUL 예측 프레

임워크를 제안한다. 진동 신호로부터 시간 영역, 주파수 

영역, 시간– 주파수 영역의 다도메인 특징을 추출한 뒤, 

분산 기반 특징 선택 기법을 통해 모델 학습에 적합한 

특징만을 선별하였다. 이를 Transformer 예측기에 입력

함으로써 베어링 열화 과정을 정밀하게 반영할 수 있도

록 하였다. 

실험 결과, 제안된 Transformer 기반 방법은 테스트 

베어링에서 평균 제곱 오차(Mean Squared Error, MSE) 

0.0001, 평균 절대 오차(Mean Absolute Error, MAE) 

0.0066 을 기록하였다. 이는 다도메인 특징 추출과 

Transformer 의 장기 의존성 학습 능력이 결합될 때, 산

업용 베어링의 RUL 예측에서 높은 정확성과 강건성을 

동시에 달성할 수 있음을 보여준다. 

Ⅱ. 본론  

본 연구에서는 공개 벤치마크인 XJTU-SY 베어링 데

이터셋을 활용하여 잔여수명 예측 모델을 구축하였다. 데

이터는 베어링 하우징에 수평 및 수직 방향으로 설치된 

가속도계 센서를 통해 수집되었으며, 샘플링 주파수는 

25.6 kHz 로 설정되었고 각 구간은 32,768 포인트의 진

동 신호로 구성되며 1 분 간격으로 연속적으로 측정되었

다. 장시간에 걸쳐 축적된 신호는 일정한 길이의 비중첩 



구간으로 분할하여 학습 가능한 입력 샘플로 변환함으로

써 정상 상태에서부터 열화 및 고장에 이르는 전 구간을 

포함하는 학습 데이터를 확보하였다.  

이후 전처리 과정에서는 먼저 시간, 주파수, 시간– 주

파수 영역을 포괄하는 다도메인 특징을 추출하였다. 시간 

영역에서는 RMS, Peak-to-Peak, Crest factor 와 같은 

진폭 기반 지표뿐만 아니라 신호 형태 및 복잡도 관련 

지표를 포함하였고, 주파수 영역에서는 FFT 를 적용하여 

주요 주파수 대역의 에너지 분포와 베어링 결함 특화 성

분을 산출하였다. 또한 웨이블릿 변환을 이용하여 시간–

주파수 영역의 정보를 반영하는 특징을 추가함으로써 단

일 영역 분석의 한계를 보완하고 베어링 열화 특성을 다

각적으로 반영하였다.  

이어서 분산 기반 특징 선택을 수행하여 불필요하거나 

불안정한 특징을 제거하였다. 구체적으로 각 특징의 분산

을 계산한 뒤, 1e-5 미만의 분산을 가지는 경우에는 열

화 과정을 설명할 수 있는 변동성이 부족하다고 판단하

여 제외하였고, 반대로 1e8 을 초과하는 경우에는 이상치

나 특정 샘플에 과도하게 민감할 가능성이 있어 제거하

였다. 이러한 임계값 설정을 통해 학습 과정에서 정보량

이 충분하고 안정적인 특징 집합만을 최종 입력으로 확

보하였다. 

이러한 특징들을 입력으로 활용하여 Transformer 기

반 RUL 예측기를 학습하였다. 제안된 모델은 입력 특징

을 저차원 공간으로 임베딩한 후, 다중 헤드 자기 주의 

메커니즘을 통해 시계열 전반의 장기 의존성과 복잡한 

열화 패턴을 학습하도록 구성되었다. 피드포워드 신경망 

층은 비선형 활성화 함수를 통해 변환된 특징 표현을 보

강하였으며, 전역 평균 풀링(global average pooling)을 

적용해 시계열의 중요한 정보를 압축하였다. 이후 완전연

결층을 거쳐 Softplus 활성화를 적용한 출력층에서 최종 

RUL 값을 산출하였다.  

학습에는 Adam 옵티마이저(lr=0.001)를 사용하였으며, 

손실 함수는 평균제곱오차(MSE), 성능 평가지표는 평균

절대오차(MAE)로 설정하였다. Transformer 메커니즘을 

활용한 이러한 구조는 베어링 열화 과정을 정밀하게 반

영하고 다양한 운전 조건에서도 높은 일반화 성능을 보

장할 수 있도록 설계되었다. 

Ⅲ. 결론  

본 연구에서는 베어링 잔여수명 예측의 정확도를 높이

기 위해 Transformer 기반 중앙집중형 학습 프레임워크

를 제안하였다. XJTU-SY 베어링 데이터셋을 활용한 실

험 결과, 제안된 모델은 테스트 베어링에서 MSE 0.0001, 

MAE 0.0066 을 기록하며 높은 수준의 예측 성능과 안정

성을 확인하였다. 이는 자기 주의(attention) 메커니즘을 

통해 장기적인 열화 패턴과 복잡한 시계열 상관성을 효

과적으로 학습할 수 있음을 보여준다. 

본 연구의 성과는 Transformer 구조가 실제 산업용 

베어링의 열화 거동을 정밀하게 반영하고 다양한 운전 

조건에서 일반화 가능한 예측 성능을 제공할 수 있다는 

점에서 의의가 있다. 특히 다도메인 특징 추출과 분산 기

반 특징 선택을 결합하여 안정적이고 정보량이 충분한 

입력 집합을 확보한 것이 모델 성능 향상에 기여하였다. 

향후 연구에서는 제안된 Transformer 기반 RUL 예측기

를 연합학습(federated learning) 프레임워크로 확장하여, 

데이터 공유가 제한된 산업 환경에서도 안정적인 성능을 

확보하고 다양한 현장 조건에 대응할 수 있는 범용 예측 

모델 개발로 이어질 예정이다.  
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