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요 약  

 
본 논문은 산업 설비의 잔여수명(Remaining Useful Life, RUL) 예측을 위해 데이터 프라이버시 보호와 성능을 동시에 

보장하는 연합학습 기반 프레임워크를 제안한다. 기존의 중앙 집중형 학습은 데이터 공유 과정에서 기업 간 기발 유지나 

보안상 제약이 크다는 한계가 있다. 이를 극복하기 위해, 본 연구에서는 각 클라이언트가 자체 데이터를 활용하여 

Encoder-LSTM 기반의 로컬 모델을 학습하고, 서버는 이를 Federated Matched Averaging(FedMA) 기법을 통해 집계 

및 통합하여 글로벌 모델을 형성한다. 실험에는 항공기 엔진의 열화 특성을 반영한 NASA 의 C-MAPSS 데이터셋의 

FD004 서브 데이터셋이 활용되었다. 실험 결과, 연합학습을 기반으로 생성된 글로벌 모델은 RMSE 20.93, Asymmetric 

Score 1870.18 을 기록하였다. 이는 중앙집중형 모델에 비해 절대 성능은 다소 낮지만, 본 연구에서 제안한 프레임워크가 

데이터 프라이버시를 유지하면서도 안정적이고 실용적인 수준의 예측 성능을 확보할 수 있음을 보여준다. 

 

Ⅰ. 서 론  

잔여 수명 (Remaining Useful Life, RUL) 예측은 예지 

보전(Predictive Maintenance)의 핵심 요소 중 하나로, 

유지보수 시점에 대한 합리적 의사결정을 가능하게 한다 

[1-3]. 이를 통해 불필요한 유지보수를 줄이고 예기치 

못한 생산 중단을 방지하며, 설비 운영의 안정성과 

경제성을 동시에 확보할 수 있다. 최근에는 IoT 센서와 

빅데이터 기술의 발전으로 대규모 설비 운용 데이터를 

수집 및 활용할 수 있게 되면서, 인공지능 기반 데이터 

기반 RUL 예측 연구가 활발히 진행되고 있다. 

그러나 기존의 중앙집중형(Centralized Learning) 

방식은 다양한 기업과 설비로부터 데이터를 한 곳에 

모아야 한다는 점에서 현실적인 제약이 크다. 특히, 산업 

현장에서 수집되는 운용 데이터는 설비 구조, 운영 조건, 

유지보수 이력 등 민감한 정보를 포함하기 때문에 기업 

간 데이터 공유가 어려우며, 이는 데이터 프라이버시 및 

보안 문제를 유발한다 [4,5]. 또한, 산업 현장의 

데이터는 이질적(heterogeneous) 특성을 보이며, 단일 

데이터 소스 기반의 학습 모델은 일반화 성능이 

떨어지는 한계가 있다. 

이러한 문제를 해결하기 위한 대안으로 

연합학습(Federated Learning, FL)이라는 학습 

패러다임이 최근 주목받고 있다. 연합학습은 각 

클라이언트가 데이터를 로컬 환경에 유지한 채 모델 

파라미터만 공유함으로써 데이터 프라이버시를 보호함과 

동시에 분산된 데이터의 통합적 활용을 가능하게 한다. 

최근 연구에서는 FedAvg[6], FedProx[7] 등 다양한 

연합학습 기법이 제안되었으나, 이들 방법은 클라이언트 

간 데이터 분포 불균형(non-IID) 상황에서 성능 저하가 

발생할 수 있다 [8,9]. 

이에 본 연구에서는 Encoder-LSTM 기반의 로컬 

모델과 Federated Matched Averaging(FedMA)[10] 

기법을 결합한 연합학습 프레임워크를 제안한다. 제안된 

프레임워크는 클라이언트가 자체 데이터를 기반으로 

Encoder-LSTM 구조의 로컬 모델을 학습하고, 서버는 

FedMA 기법을 통해 클라이언트 모델 파라미터를 집계 

및 통합함으로써 데이터 프라이버시를 보장하면서도 

안정적이고 일반화 가능한 글로벌 모델을 형성한다.  

 

Ⅱ. 본론  

본 연구에서 제안하는 연합학습 기반 잔여수명 예측 

프레임워크는 클라이언트 학습과 서버 집계의 두 단계로 

구성된다. 각 클라이언트는 자체 데이터를 활용하여 

Encoder-LSTM 기반 로컬 모델을 학습하고, 서버는 

이를 FedMA 기법을 통해 집계하여 글로벌 모델을 

형성한다. 이 과정에서 원본 데이터는 외부로 공유되지 

않고 파라미터만 전송되므로 데이터 프라이버시가 

보장된다. 

로컬 학습에 앞서 데이터 품질과 학습 안정성을 

확보하기 위해 전처리 과정을 수행하였다. 운전 조건별 

센서 스케일 차이를 줄이기 위해 그룹 표준화 기반 Z-

score 정규화를 적용하였고, 단기적 노이즈를 억제하고 

장기 열화 경향을 부각하기 위해 지수평활법을 

사용하였다. 또한, RUL 레이블은 학습 안정성을 위해 

최대 130 으로 클리핑하였으며, 입력은 과거 50 시점의 



데이터를 하나의 시퀀스로 구성하는 윈도윙 기법을 

적용하였다. 이러한 전처리 과정을 통해 데이터의 편향과 

불안정성을 최소화하고 모델이 열화 패텬을 효과적으로 

학습할 수 있도록 하였다. 

로컬 모델은 Encoder-LSTM 구조로 설계되었다. 

Encoder 는 입력 시계열 데이터를 저차원 잠재공간으로 

압축하여 의미 있는 특징을 추출하며, LSTM 은 시간적 

의존성과 열화 패턴을 학습한다. 학습이 완료된 로컬 

모델의 파라미터는 서버로 전송되며, 서버는 FedMA 

기법을 적용하여 클라이언트 간 모델 파라미터의 

유사도를 고려한 매칭을 수행한 후 집계한다. 이를 통해 

데이터 분포가 불균형(non-IID)한 상황에서도 

안정적이고 일반화 성능이 높은 글로벌 모델을 구축할 

수 있다. 

실험에는 NASA 의 C-MAPSS(Commercial Modular 

Aero-Propulsion System Simulation) 데이터셋[11]의 

FD004 서브셋이 활용되었다. 이 데이터셋은 다양한 

운전 조건과 고장 모드를 포함하여 실제 항공기 엔진의 

열화 특성을 반영한다. 학습 과정에서는 Adam 최적화 

알고리즘을 사용하였으며, 손실 함수로는 평균 제곱 

오차(Mean Squared Error, MSE)를 적용하였다. 성능 

평가는 RMSE 와 Asymmetric Score 를 기준으로 

진행하였으며, 중앙 집중형 모델과 성능 비교를 통해 

학습 안정성과 성능을 확인하였다. 

 

Ⅲ. 결론  

본 연구에서는 데이터 프라이버시를 보장하면서도 

안정적인 예측 성능을 확보하기 위해 Encoder-LSTM 

기반 로컬 모델과 FedMA 전략을 결합한 연합학습 

프레임워크를 제안하였다. NASA 의 C-MAPSS FD004 

데이터셋을 활용한 실험 결과, 제안된 글로벌 모델은 

RMSE 20.93, Asymmtric Score 1870.18 의 성능을 

기록하였다. 이는 동일한 모델을 중앙집중형 방식으로 

학습했을 때의 성능인 RMSE 17.15, Asymmtric Score 

1354.50 과 비교할 때 절대적인 차이는 존재하지만, 

데이터 공유 없이도 실용적이고 안정적인 수준의 성능을 

달성할 수 있음을 보여준다. 

본 연구의 성과는 단순한 성능 비교를 넘어, 실제 산업 

현장에서 데이터 보안 요구와 예측 정확도를 동시에 

만족시킬 수 있는 강성능을 확인했다는 점에서 의의가 

있다. 향후 연구에서는 제안된 연합학습 프레임워크를 

설명가능한 인공지능(eXplainable AI, XAI) 기법과 

결합하여, RUL 예측 과정에서 어떤 특징이 열화 판단과 

의사 결정에 기여하는지를 규명하고, 이를 기반으로 

유지보수 의사결정을 지원할 수 있는 연구로 확장할 

예정이다. 
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