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Abstract—Efficient, time-sensitive, and precise predictions of
dynamic scenarios is crucial for smooth industrial processes and
production. This study underscores the importance of automating
the detection and prediction of anomalies in manufacturing
execution systems (MES) using artificial intelligence algorithms.
A sophisticated deep learning (DL) model (YOLOVS8) was adopted
as the underlying cognitive prediction model for the MES. The
dataset used comprises 1700 samples of the MVtec dataset in
three categories: good, logical anomaly, and structural anomaly.
The result shows that real-time, efficient, and cost-effective mul-
tivariate anomaly detection in MES is feasible using YOLOv8n
achieving a 92% precision, 94% recall, 90.5% F1-score, 0.6 loss,
and 29.7ms latency prediction performance.

Index Terms—Anomaly Detection, Deep learning, Manufactur-
ing Execution Systems, YOLO,

I. INTRODUCTION

Manufacturing Execution Systems (MES) serve critical
functions such as production control, data acquisition, and
fault detection and segmentation. Specifically, fault detection
constitutes a vital aspect of MES operations, often categorized
as anomaly detection. This involves the real-time identification
of irregularities or faults within the production process that
have the potential to impact product quality or efficiency.
Subsequent responsive actions are then taken to address these
anomalies promptly. Several authors have investigated dif-
ferent anomaly detection strategies in MES, such as tradi-
tional/observatory approach [1], machine learning [2], and
deep learning [3] approaches.

Current anomaly detection methods rely primarily on tex-
tural information, which limits the accuracy of categorized
aberrant samples. Texture information is insufficient to fully
depict the pattern of anomalies, particularly logical abnor-
malities. In [4], authors discuss structural anomaly detection,
while [5] explains both structural and logical anomalies using
a balanced dataset. To overcome this challenge, this work
focuses on enhancing the MES operations through efficient
and cost-sensitive prediction of faults using the You Only
Look Once version 8 (YOLOVS) paradigm to extract complex
texture features of MES objects. The YOLO architecture
has been used for multivariate pattern object recognition and
classification in many applications [6], [7] with optimal results.

II. METHODOLOGY

The overall system model is shown in Fig. 1. The process
starts with data collected from the factory machinery. The

system extracts features from the data. The adopted machine-
learning model (YOLOVS) is then used to analyze the features
and identify anomalies. The model then outputs classification
results. If the model detects an anomaly, the system triggers
an alert. A technician is notified and takes steps to repair or
address the anomaly. If no anomaly is detected, the system
continues to monitor the machinery.
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Fig. 1.  System Architecture of the DL-enabled MES complex texture
anomaly detection.

The YOLOVS architecture uses a modified CSP Darknet53
backbone. Through feature pooling into a fixed-size map, a
spatial pyramid pooling fast (SPPF) layer speeds up compu-
tation. SiLU activation and batch normalization are present
in every convolution. The head is decoupled to process ob-
jectness, classification, and regression tasks independently. To
satisfy the demands of diverse scenarios, YOLOVS is available
in the following size models: nano (n), small (s), medium
(m), large (1), and extra-large (x), depending on the scaling
factor. In this study, YOLOv8n was adopted as the underlying
Al algorithm being the light-weight version of the YOLOvS8
series.

The dataset comprises 1700 data samples in three cate-
gories: good, structural anomaly, and logical anomaly, and was
collated especially to show production in industrial scenarios.
Before feature engineering, data underwent systematic collec-
tion, preprocessing, and cleaning to enhance model predictive
capabilities. Exploratory analysis uncovers patterns, leading
to model development and validation using YOLOv8n deep
learning. The data was divided into 70 percent training, 20
percent testing, and 10 percent validation. The experimental
simulation platform was run in a Python environment using the
PyTorch 1.10 framework on a computer running Windows 10
with the following specifications: Intel(R) Core(TM) i5-8500
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CPU @ 3.00GHz, 6Core(s), NVIDIA GeForce GT 1030, GPU
CUDA.:0 (Tesla K80, 11441.1875MB), and 36GB RAM.

III. RESULTS

The anomaly detection and prediction performance capacity
of the model was validated based on mean average precision,
recall (sensitivity), rationale behavior (Fl-score), error cost
(loss function), and inference time (latency).

Fl-score (F1): examines the model’s rational behavior.

2 X Precision x Recall
Fl= 1
Precision + Recall M
SCYLLA IoU (SIoU) Loss: is an Intercession of Union
(IoU)-based loss function used to estimate the bounding box
localization accuracy for object classification and detection.

The formula for SIoU is given as;

A+

Box_loss(Lpoy) =1 — IoU + 2)
where A is distance cost; and Q is shape cost.
The predictive reliability performance of the adopted model
for anomaly detection is summarized in Table 1.

TABLE I
PREDICTIVE RELIABILITY PERFORMANCE OF DL-BASED ANOMALY
DETECTION

Epoch | Precision (%) | Recall (%) | Box_loss

16 92.0 94.0 0.8
32 80.2 81.4 0.7
64 78.8 79.4 0.6

The values in Table I reveal that YOLOv8n can adequately
detect and classify each class of the MES data, as anomaly
patterns increase with minimal prediction error. At 16 epochs,
92% precision, 94% sensitivity, and 0.8 loss were achieved
by the adopted model as against 0.6 loss when there was an
increase in the anomaly. This implies that with an increase
in the texture feature of anomalies in the MES production
line, the underlying DL model can reliably decipher the good
objects from the anomalies.

Furthermore, Table II compares the performance effective-
ness and efficiency of YOLOv8n with other related methods.

TABLE 11
PERFORMANCE EVALUATION WITH STATE-OF-THE-ART MODELS

Model | Precision (%) | Recall (%) | Fl-score (%) | Time (ms)
VGG-16 [4] 94.8 932 94.2 Hk
YOLOVS5s 80.2 81.4 82.0 25.2
YOLOvVS8n 92.0 94.0 90.5 29.7

Across all the metrics, YOLOv8n achieved a better pre-
dictive performance capacity in anomaly detection as objects’
texture information increases with a precision of 92%, sensi-
tivity of 94%, rationality (F1-score) of 90.5%, YOLOvS5s and
VGG-16 used by authors [4]. This implies that the dynamic
variability of the anomalies in the MES production line can
be sufficiently handled by the adopted underlying DL model

Lastly, the performance efficiency of the models in terms of
prediction timeliness for anomaly detection is shown in Fig 2.
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Fig. 2. DL Models Prediction Timeliness for Anomaly Detection in MES
Production Line.

The result from the chart indicates that timely and cost-
effective prediction of anomalies in advanced MES production
lines is feasible, with the YOLOVSs achieving a prediction
latency of 25.2 ms and 29.7 ms for YOLOVS8n respectively.

IV. CONCLUSION
This study assesses the effectiveness of a deep learning

model for predicting anomalies in MES to optimize decision-
making. The result validates that the application of DL models
can enhance multivariate anomaly detection as texture infor-
mation increases with exact precision, timeliness, and cost-
effectiveness. Future work will seek to expand the dataset and
modify the underlying architecture for higher predictive per-
formance. Additionally, the research will explore integrating
real-time data streams to further improve the responsiveness
and accuracy of anomaly detection.
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