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Abstract—This paper investigates the performance of varia-
tional quantum circuits (VQC) across different circuit designs.
The VQC is applied to optimize the precoder-combiner in
multiple-input multiple-output (MIMO) systems. The results
show that VQC with circuit 1 has a lower training loss, resulting
in a higher achievable sum rate compared to VQC circuit 2.

Index Terms—combiner, precoder, MIMO, variational quan-
tum circuit.

I. INTRODUCTION

Variational Quantum Circuit (VQC) is a technique that
combines the principles of quantum computing with machine
learning to potentially achieve lower computational complexity
[1]. The VQC process typically involves three crucial steps:
data encoding, weight encoding, and measurement [2]. Data
encoding transforms classical information into quantum states,
allowing the exploitation of quantum phenomena. Weight
encoding maps the model’s parameters onto quantum gates,
enabling the learning algorithm to operate within the quantum
framework. Finally, measurement extracts classical results
from the quantum computations [3]. The effectiveness of
VQCs is dependent on the design of the quantum circuit,
as the arrangement and selection of quantum gates determine
the efficiency and accuracy of the computations. This paper
provides a performance comparison of two different circuit de-
signs. In a specific case, different VQC circuits are employed
to optimize the precoder-combiner in multiple-input multiple-
output (MIMO) systems.

II. VARIATIONAL QUANTUM CIRCUIT

This study considers two different quantum circuits for the
optimization task. The training process in quantum machine
learning can be divided into pre-processing, feed-forward, and
decoding, which can be explained as follows.

A. Pre-processing

In the quantum system, the quantum bits (qubits) can be
prepared in superposition states, which can be expressed as

U [VQC-1],[VQC-2]
pre-processing ≜

Nqubits⊗
n=1

H
(
|xn⟩

)
, (1)

where H denotes the Hadamard gate for superposition repre-
sentation.

(a) VQC Circuit 1

(b) VQC Circuit 2

Figure 1: The considered quantum circuit.

B. Feed-forward VQC Circuit 1
Afterward, the data is processed in the feedforward process,

there is data encoding and weight encoding. VQC circuit 1
utilizes the quantum embedding techniques as described in [4],
where classical data and weights are encoded into quantum
states and repeated across multiple layers as depicted in Fig.
1a, which can be expressed as

UVQC-1 ≜
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n=1

RX
(
θ[l]n
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(
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)
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(2)

where RX
(
θ
[l]
n

)
and RX

(
x
[l]
n

)
denotes the weight encoding

and data encoding of the l−th layer, respectively.

C. Feed-forward VQC Circuit 2
On the other hand, VQC Circuit 2 adopts a different

approach, utilizing another type of circuit proposed in [5]. As
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illustrated in Fig. 1a, the data is encoded just once, and the
weights are repeated as many times as there are layers, which
can be expressed as

UVQC-2 ≜
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(3)

D. Decoding

Quantum measurement is carried out at the final layer of
both VQC circuit 1 and circuit 2 to derive classical output
values, expressed as

M[1,2]
VQC = ⟨0|U [1,2]

VQC (Θ)†HU
[1,2]
VQC (Θ) |0⟩ . (4)

To minimize errors from noisy quantum computations, the
measurement is repeated Nshot times, represented as

y =
1

Nshot

Nshot∑
n=1

M[1,2]
VQC. (5)

Since an unsupervised learning scheme is employed, the loss
is computed as L[1,2]

VQC(θ) = −Rsum. Using the calculated loss,
the gradient is determined via the parameter-shift rule, given
by

∇L[1,2]
VQC(θ) =

L[1,2]
VQC(θ +ϖ)− L[1,2]

VQC(θ −ϖ)

2 sinh(ϖ)
, (6)

where ϖ ∈ [0, π] represents the shifting phase. Finally, the
weight parameters are updated according to θ[1, 2] = θ[1, 2] −
α∇L[1,2]

VQC(θ), with α ∈ (0, 1] denoting the learning rate.

III. BEAMFORMING OPTIMIZATION

In a specific application, the VQC is used to optimize
beamforming to maximize the achievable sum rate. A precoder
is employed at the base station (BS) to direct the signal to
the intended users (UE). The optimal precoder is proposed in
[6]. Meanwhile, at the receiver site, a combiner is employed
to mitigate interference and extract the intended signal, as
proposed in [7]. Based on this, the objective function can be
formulated as:

max
P,W

Rsum (7a)

s.t. C1 : Rsum ≥ Rmin, , (7b)

C2 : ||wk||2 ≤ 1,∀k ∈ {1, . . . , NK}. (7c)

IV. NUMERICAL RESULTS

Figure 2 shows the results for VQC in different circuits. The
results indicate that VQC Circuit 1 has a lower training loss
and achieves better convergence compared to VQC Circuit 2.
The quantum operations were performed using IBM Qiskit.
The simulation parameters were defined as follows: α = 0.01,
Nshot = 1024, Llayer = 2.

Figure 2: The training loss.

V. CONCLUSION

This study presents the performance analysis of VQC with
different circuits. As a particular case, the VQC is applied to
optimize the precoder-combiner in MIMO systems to max-
imize the achievable sum rate. The results show that VQC
with Circuit 1 has a lower learning loss compared to VQC
Circuit 2, resulting in a higher achievable sum rate.
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