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ABSTRACT 
In this paper, we explore the enhancement of Integrated Sensing and Communication (ISAC) performance through predictive 

beamforming within Extreme Multi-Input Multi-Output (E-MIMO) systems. We present a framework that anticipates user 

movements, enabling the ISAC system to preemptively align its beams, thereby ensuring robust communication links and precise 

sensing. Our approach addresses the challenge of beam misalignment in dynamic environments, significantly reducing the latency and 

overhead associated with conventional beam training and tracking methods. The results demonstrate a marked improvement in ISAC 

efficacy, with lower overhead, making it a viable solution for high-mobility scenarios. 

 

I. INTRODUCTION 

With the fifth generation (5G) mobile communication networks 

being deployed worldwide, attention is shifting towards 6G 

wireless systems to support advanced applications like immersive 

reality, the metaverse, and autonomous vehicles. Key technologies 

under consideration for 6G include integrated sensing and 

communication (ISAC) and extreme MIMO (E-MIMO), which 

significantly increases number of antennae from several hundreds 

to thousands to enhance spectral efficiency and spatial resolution 

[1]. ISAC systems, which use combined infrastructure for both 

data transmission and environmental sensing, are set to become a 

core technology in the upcoming 6G era. These systems are 

particularly valued for their ability to boost communication 

performance by incorporating sensing data into network 

operations [2].  

However, user mobility in dynamic environments disrupts 

communication links due to beam misalignment from outdated 

channel information. Conventional beam training methods add 

latency and overhead [3-6]. This paper presents a study on using 

predictive beamforming for E-MIMO ISAC systems. By 

anticipating user movements, the system preemptively adjusts 

beams, maintaining robust communication and precise sensing. 

II. SYSTEM MODEL 

We consider a near field ISAC system with E-MIMO, which 

consists of a dual functional radar and communication (DFRC)-

enabled base station (BS) with 𝑀 ≫ 1 antennae, respectively, and 

a single antenna UE. The BS transmits a radar signal to UE on 

downlink and receives echo signal reflected from the UE to 

estimate the state of the UE including AOA/AOD, distance and 

velocity. 

 

A. Near-Field Sensing Model 
 

DFRS-enabled BS transmits the 𝑥𝑛(𝑡) signal at the 𝑛𝑡ℎ epoch 

and time 𝑡 can be expressed as  

𝐬𝑛 (𝑡) =  𝐰𝒏𝑥𝑛(𝑡)  ∈  ℂ𝑀×1 (1)    

𝐰𝒏  ∈  ℂ𝑀×1 is the transmit beamforming vector. The reflected 

echo signal received at the BS is given by 

𝐫𝑛 (𝑡) =  𝜁 𝐚(𝑟𝑛, 𝜃𝑛)𝐚𝑯(𝑟𝑛, 𝜃𝑛)𝐬𝒏(𝑡 − 𝜏𝑛) +  𝐳(t)   (2) 

where 𝜁  is a complex reflection coefficient that includes the 

impact of radar cross section (RCS) of the target. 𝐳(t)  ∈  ℂ𝑀×1  

is the additive white Gaussian noise (AWGN) with zero mean and 

variance of 𝜎𝑚
2 . 𝐚(𝑟𝑛, 𝜃𝑛) =  

√𝜶𝟎

𝑟𝑛
𝐚̅(𝑟𝑛, 𝜃𝑛) denoted the near-field 

array response vector with 𝛼0  is the pathloss at the reference 

distance 1𝑚  and the 𝑚𝑡ℎ  element, ∀𝑚 ∈ {−𝑀, … , 𝑀}  of 

𝐚̅(𝑟𝑛, 𝜃𝑛) is given by 

[𝐚̅(𝑟𝑛, 𝜃𝑛)]𝑚 = 𝑒−𝑗
2𝜋

𝜆
𝑟𝑚(𝑟𝑛,𝜃𝑛)

 (3) 

where 𝑟𝑚(𝑟𝑛, 𝜃𝑛) =  √𝑟𝑛
2 + 𝑚2𝑙2 − 2𝑟𝑛𝑚𝑙 cos 𝜃𝑛, is the distance 

of 𝑚𝑡ℎ element from UE, 𝑟𝑛 is showing the distance of central 

element of ULA located at [0,0]  from the UE located at 
[𝑟𝑛 cos 𝜃𝑛, 𝑟𝑛 sin 𝜃𝑛] and 𝑙 is the spacing of the array element in 

ULA. 

 

B. Communication signal Model 

 

The UE receives the signal from the BS at the 𝑛𝑡ℎ epoch and time 

𝑡 is given by 

c𝑛 (𝑡) =  𝜁 ̅ 𝐚𝑯(𝑟𝑛, 𝜃𝑛)𝐰𝑛𝑥𝑛(𝑡) +  n(t)                  (4)  

The beamforming vector 𝐰𝑛 is designed based on the prediction 

of the angle and distance.  

𝐰𝒏 =  𝐚(𝑟𝑛|𝑛−1, 𝜃𝑛|𝑛−1) (5) 

 

The achievable rate of UE is given as  

𝑅𝑛 = log2 (1 + 
𝑝𝑛|𝐚𝑯(𝑟𝑛,𝜃𝑛)𝐚(𝑟𝑛|𝑛−1,𝜃𝑛|𝑛−1)|

𝟐

𝜎2 ) (6) 

 

III.  LSTM-BASED PREDICTIVE BEAMFORMING 
Equation (6) illustrates that maximizing the communication 

throughput depends on the accurate prediction of the beamformer 

based on historical information of UE. We propose a historical 

information based long short-term memory (LSTM) network for 

predictive beamforming in ISAC-based E-MIMO system. We 

discuss the LSTM-based network for the angle and distance 

prediction based on historical information represented as 𝐇𝑛
𝜏 =

[𝐡𝑛−1, 𝐡𝑛−2, … , 𝐡𝑛−𝜏  ]  and 𝐡𝑛  =  𝐚(𝑟̂𝑛, 𝜃𝑛) with 𝑟̂𝑛  and 𝜃𝑛 

being the estimated angles and distances in the previous 𝑛 − 1  to 

𝑛 − 𝜏 time slots. The detailed architecture of the proposed LSTM 

is shown in Fig. 2, which consists of two LSTM layers, and one 

fully connected (FC) layer. The LSTM layers are adopted to 

exploit the temporal dependency of the historical information 

which is given for the past 𝜏 time slots. Generally, in one LSTM 

layer, same LSTM structure is adopted for each time step. In 

LSTM layer 1, after each 𝑛𝑡ℎ time step, LSTM keeps a copy of 

the output 𝑝𝑛
𝐿1 and passes to LSTM layer 2 for further processing. 

Considering LSTM layer 1 & 2 as the LSTM block, the output of 

the LSTM block is given by  

Figure 1: Near-field predictive beamforming 



𝑝𝑛
𝐿2 = 𝑓(𝐇𝑛

𝜏 ) 

Next, the output is given to FC layer with a linear activation 

function to fully exploit the extracted features from LSTM block 

and finally we get the predicted output 𝐚(𝑟𝑛|𝑛−1, 𝜃𝑛|𝑛−1).  

  

IV.   SIMULATION RESULTS 

In this section, we provide the numerical results to validate the 

performance of proposed beamforming scheme in E-MIMO ISAC 

systems. The BS is equipped with M antennae having 𝑑 =
𝜆

2
,  

spacing. We set the noise density power as -174 dBm/Hz. The 

carrier frequency is set to 28 GHz. We set antenna gain and radar 

cross section as 1 and -23dB, respectively. We use 1000 previous 

time instants for training the LSTM-based predictive beamforming 

architecture.   

Figure 3 shows the training loss across successive epochs for 

different numbers of BS antennas. It is observed that a higher 

number of antennas results in greater training loss. This occurs 

because increasing the number of transmit antennas enhances the 

network's complexity. Training such a network requires a larger 

set of data and a more sophisticated LSTM architecture. However, 

using the same architecture in this instance leads to varying 

training losses. 

 

Figure 3: Training Loss with successive epochs. 

Figure 4 illustrates the achievable rate of the proposed predictive 

beamforming approach compared to the optimal beamforming. It 

is observed that the proposed method achieves near-optimal 

performance within just a few epochs. 

 
Figure 4: Achievable Rate on successive epochs. 

CONCLUSION 

This paper proposes a deep learning-based predictive 

beamforming technique for E-MIMO ISAC systems. This method 

anticipates user movement to preemptively adjust beams, 

maintaining robust communication and precise sensing in dynamic 

environments. By eliminating the need for continuous beam 

training, the proposed approach reduces overhead and improves 

system performance, making it particularly suitable for high-

mobility scenarios encountered in 6G applications like 

autonomous vehicles. 
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