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ABSTRACT

In this paper, we explore the enhancement of Integrated Sensing and Communication (ISAC) performance through predictive
beamforming within Extreme Multi-Input Multi-Output (E-MIMO) systems. We present a framework that anticipates user
movements, enabling the ISAC system to preemptively align its beams, thereby ensuring robust communication links and precise
sensing. Our approach addresses the challenge of beam misalignment in dynamic environments, significantly reducing the latency and
overhead associated with conventional beam training and tracking methods. The results demonstrate a marked improvement in ISAC
efficacy, with lower overhead, making it a viable solution for high-mobility scenarios.

I.  INTRODUCTION

With the fifth generation (5G) mobile communication networks
being deployed worldwide, attention is shifting towards 6G
wireless systems to support advanced applications like immersive
reality, the metaverse, and autonomous vehicles. Key technologies
under consideration for 6G include integrated sensing and
communication (ISAC) and extreme MIMO (E-MIMO), which
significantly increases number of antennae from several hundreds
to thousands to enhance spectral efficiency and spatial resolution
[1]. ISAC systems, which use combined infrastructure for both
data transmission and environmental sensing, are set to become a
core technology in the upcoming 6G era. These systems are
particularly valued for their ability to boost communication
performance by incorporating sensing data into network
operations [2].

However, user mobility in dynamic environments disrupts
communication links due to beam misalignment from outdated
channel information. Conventional beam training methods add
latency and overhead [3-6]. This paper presents a study on using
predictive beamforming for E-MIMO ISAC systems. By
anticipating user movements, the system preemptively adjusts
beams, maintaining robust communication and precise sensing.

1. SYSTEM MODEL

We consider a near field ISAC system with E-MIMO, which
consists of a dual functional radar and communication (DFRC)-
enabled base station (BS) with M > 1 antennae, respectively, and
a single antenna UE. The BS transmits a radar signal to UE on
downlink and receives echo signal reflected from the UE to
estimate the state of the UE including AOA/AQOD, distance and
velocity.

A. Near-Field Sensing Mode/

DFRS-enabled BS transmits the x,,(t) signal at the n;, epoch
and time t can be expressed as
sn () = Waxn(t) € CX! €]

w, € CM*1isthe transmit beamforming vector. The reflected
echo signal received at the BS is given by

1, (1) = {a(rm, 6,)af (1, 0p)s5 (¢ — 73) + Z(0) (2)
where ¢ is a complex reflection coefficient that includes the
impact of radar cross section (RCS) of the target. z(t) € CM*x1
is the additive white Gaussian noise (AWGN) with zero mean and

variance of ¢2. a(n;,6,) = @é(rn, 6,,) denoted the near-field

array response vector with « is the pathloss at the reference
distance 1m and the m,, element, vm € {—M,...,M} of
a(ry, 6,) isgiven by
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Figure 1: Near-field predictive beamforming

where 7,,(r, 0,) = /1,2 + m212 — 2r,ml cos 6, is the distance
of mg, element from UE, r, is showing the distance of central
element of ULA located at [0,0] from the UE located at
[, cos 8, 1, sin@,] and [ is the spacing of the array element in
ULA.

B. Communication signal Model

The UE receives the signal from the BS at the n;;, epoch and time
t is given by

() =¢ aH(Tn' 0)Wpx, (t) + n(t) 4
The beamforming vector w,, is designed based on the prediction
of the angle and distance.

Wn = a(rnln—l' 9n|n—1) %)

The achievable rate of UE is given as
R, =log, (1 + p”|aH(r"'gn)a(rnln—l'enln—l)|2)

(6)
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I11. LSTM-BASED PREDICTIVE BEAMFORMING

Equation (6) illustrates that maximizing the communication
throughput depends on the accurate prediction of the beamformer
based on historical information of UE. We propose a historical
information based long short-term memory (LSTM) network for
predictive beamforming in ISAC-based E-MIMO system. We
discuss the LSTM-based network for the angle and distance
prediction based on historical information represented as H}, =
[h,—y by .. ,hy—; ] and h, = a(%,8,) with 7, and 8,
being the estimated angles and distances in the previous n — 1 to
n — t time slots. The detailed architecture of the proposed LSTM
is shown in Fig. 2, which consists of two LSTM layers, and one
fully connected (FC) layer. The LSTM layers are adopted to
exploit the temporal dependency of the historical information
which is given for the past t time slots. Generally, in one LSTM
layer, same LSTM structure is adopted for each time step. In
LSTM layer 1, after each n,y, time step, LSTM keeps a copy of
the output p,l;l and passes to LSTM layer 2 for further processing.
Considering LSTM layer 1 & 2 as the LSTM block, the output of
the LSTM block is given by



Py’ = f(HY)
Next, the output is given to FC layer with a linear activation
function to fully exploit the extracted features from LSTM block
and finally we get the predicted output a(ryjn—-1, Onm-1)-
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Figure 2: LSTM-based proposed architecture

Iv. SIMULATION RESULTS

In this section, we provide the numerical results to validate the
performance of proposed beamforming scheme in E-MIMO ISAC

systems. The BS is equipped with M antennae having d = %

spacing. We set the noise density power as -174 dBm/Hz. The
carrier frequency is set to 28 GHz. We set antenna gain and radar
cross section as 1 and -23dB, respectively. We use 1000 previous
time instants for training the LSTM-based predictive beamforming
architecture.

Figure 3 shows the training loss across successive epochs for
different numbers of BS antennas. It is observed that a higher
number of antennas results in greater training loss. This occurs
because increasing the number of transmit antennas enhances the
network's complexity. Training such a network requires a larger
set of data and a more sophisticated LSTM architecture. However,
using the same architecture in this instance leads to varying
training losses.
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Figure 3: Training Loss with successive epochs.

Figure 4 illustrates the achievable rate of the proposed predictive
beamforming approach compared to the optimal beamforming. It
is observed that the proposed method achieves near-optimal
performance within just a few epochs.
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Figure 4: Achievable Rate on successive epochs.

CONCLUSION

This paper proposes a deep learning-based predictive
beamforming technique for E-MIMO ISAC systems. This method
anticipates user movement to preemptively adjust beams,
maintaining robust communication and precise sensing in dynamic
environments. By eliminating the need for continuous beam
training, the proposed approach reduces overhead and improves
system performance, making it particularly suitable for high-
mobility scenarios encountered in 6G applications like
autonomous vehicles.
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