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Abstract—This study proposes quantum machine learning
(QML) for optimization problems in low earth orbit (LEO)
satellite-to-terrestrial communication systems. Specifically, a
QML model is applied to maximize the precoders of the common
and private streams intended for a ground station (GS) in
a down-link LEO satellite-to-terrestrial, rate-splitting multiple
access (RSMA) communication system.
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I. INTRODUCTION

As the global shift to 6G networks draws near, low earth
orbit (LEO) satellites shine in significance due to their high
data rate capacity and low latency. This is because LEO
satellites, contrary to other satellite types, e.g. geostationary
(GEO) satellites, are situated at a lower altitude with denser
constellations [1]. However, they encounter issues with inter-
ference control in multiple input multiple outputs (MIMO)
based networks, as well as inefficient resource allocation and
utilization [2].

To address these limitations, next-generation multiple access
(NGMA) has been suggested [3]. Particularly, for MIMO
systems, Rate-Splitting Multiple Access (RSMA) uses its
versatile interference management techniques, along with fair
user resource block allocation, making it a strong alternative
to traditional methods like Space Division Multiple Access
(SDMA) and Non-Orthogonal Multiple Access (NOMA) [4].

As a result, this study focuses on using the 1-layer rate-
splitting (RS) strategy [5] to split ground station (GS) mes-
sages, compute transmission precoders, and perform succes-
sive interference cancellation (SIC) at the GS. A non-convex
optimization problem of maximizing sum rate and optimal
power allocation, for satellite-to-terrestrial networks (STN) is
realized. This stems from the network’s overall dynamic and
demanding nature [6].

For that reason, a quantum machine learning (QML) [7]
model is integrated aiming to surpass benchmark methods by
reducing computational complexity, and offering a promising
advancement in satellite communication for 6G readiness.

II. RATE SPLITTING MULTIPLE ACCESS MODEL

The system considers an STN comprising an LEO satellite
with a base station (BS) having a single antenna, Mt serving
N GSs, each having a single antenna such that (Mt > N).

The GSs share a frequency channel, hence the BS broadcasts
all message streams in a non-orthogonal manner. A BS has a
set of messages, {W1, ...,WN}. The message Wn, intended
for n-th GS is divided into two parts [8]. A common part W c

n,
and private one W p

n , (n = 1, ..., N). Each of the common
parts is encoded into a common stream sc, while the private
parts are into their respective private streams, solely denoted
as sp,n. Taking into account a linear precoding manner [9],
the streams s = [sc, sp,1, ..., sp,N ] are precoded via a matrix
P =

[
pc,pp,1, ...,pp,N

]
, such that the transmitted signal from

the BS is as follows:

xn = pcsc +
N∑

n=1

pp,nsp,n, (1)

and at the n-th GS, the received signal should be:

yn = hH
n xn + ωn,

= hH
n pcsc + hH

n pp,nsp,n +
∑

j ̸=n,j∈N

hH
n pp,jsp,j + ωn,

(2)
where hn ∈ CMt×1, represents the channel vector between
the BS at the LEO satellite and the n-th GS, while ωn is the
additive white Gaussian noise. According to [10], [11], the
channel model for the satellite to GS is calculated as:

hn = δn

√
GsGn(

c

4πfcds
)2, (3)

in that c is the speed of light, fc is the carrier frequency, ds is
the distance between the path of the n-th ground station from
the LEO satellite, δn represents the small-scale fading with a
Rician distribution, and Gs, Gn is the satellite antenna gain
and ground station antenna gain respectively.

Next, the signal-to-interference plus noise ratio (SINR) of
both the common and private streams are obtained from:

γc
n =

∣∣hH
n pc

∣∣2∑N
n=1

∣∣hH
n pp,n

∣∣2 + σ2
, (4)

γp
n =

∣∣hH
n pp,n

∣∣2∑
j ̸=n,j∈N

∣∣hH
n pp,j

∣∣2 + σ2
, (5)

so that
∥∥∥p(.)

∥∥∥2 = P(.) is the power allocated to that stream,
and σ2 is the noise power [10]. Consequently, the common
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stream’s achievable rate on the n-th GS is given by the output
of Rc

n = min
n=1,...,N

{log2(1 + γc
n)} considering each GS has a

corresponding data in the common stream it must successfully
retrieve after the SIC operation. The private stream achievable
rate is Rp

n = {log2(1 + γp
n)}, so, the total achievable rate for

the n-th GS is Rtot
n = Rc

n/(N + Rp
n).The sum rate for all the

GSs will be obtained from Rsum = Rc +
∑N

n=1 Rp
n.

With the aforementioned RSMA system in mind [10], [11],
the goal is for the LEO satellite BS to be able to distribute the
entire transmit power Ptot, among the GS common and private
streams, following the QML model’s output measurements
under constraints Pc +

∑N
n=1 Pp,n ≤ Ptot, thereby achieving

maximum sum rate. Therefore, the optimization problem def-
inition is:

max
Pc,Pp,1,...,Pp,N

Rsum, (6a)

s.t. Pc +

N∑
n=1

Pp,n ≤ Ptot, (6b)

Rtot
n ≥ Rth

n , n = 1, ..., N, (6c)
Pc > 0,Pp,n > 0, n = 1, ..., N, (6d)

such that Rth
n expresses the least acceptable rate for the n-

th GS to decode their intended message. Noting that the BS
has partial channel state information (CSI), deriving suitable
conditions for the task in 6 is considerably hideous [12]. Thus,
a QML solution is adopted to optimize the linear precoders of
each data stream to find a suitable power allocation strategy.

III. QML FOR LINEAR PRECODING OPTIMIZATION

This study proposes quantum machine learning (QML) for
linear precoder optimization in LEO satellite networks. Let
h = {h1, . . . ,hK} represent the set of channel matrices
that serve as input for QML. Herein, the channel matrices
are mapped to quantum states through superposition states,
expressed as Up ≜

⊗Nqubit
n=1 H(|hn⟩). Subsequently, let Ut

denote the feedforward training in QML, represented by
Ut ≜

(⊗
n = 1NqubitRz(θn)

(∏Nqubit
n=1 Cx(qn|qn−1) ⊗ . . . ⊗

Cx(qNqubit |qNqubit−1)
)
Rz(hn)

)
, where Nqubit and θn denote

the total number of qubits and initial weights, respectively.
Lastly, in the final step of the process, the measurement is
obtained to derive the classical value which expressed as
M = ⟨0|Ut(θ)

†HUt(θ) |0⟩. Due to the development of NISQ,
the measurement is iterated Nshot times, resulting in Ud =

1
Nshot

∑Nshot
n=1 M. Owing to the unsupervised learning manner,

the loss function can be expressed as L = −Rsum. Hereafter,
the gradients in quantum computing employing the parameter
shift rule can be expressed as ∇L(θ) = L(θ+ξ)−L(θ−ξ)

2 sinh(ξ) , where
ξ ∈ (0, π) denotes the shifting phase. Finally, the parameter
update can be expressed as ϑ′ = ϑ−β∇L(θ), where β denotes
learning rate.

IV. CONCLUSION

This paper presents a quantum machine learning (QML)
approach to optimize linear precoding in LEO satellite com-
munications. The methodology tackles complex optimization
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Figure 1. Proposed model for QML linear precoder optimization.

problems in power allocation and aims to demonstrate signifi-
cant improvements in resource optimization. Future work will
focus on expanding the QML applicability to broader RSMA
network optimization.
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