Nanoparticles 🗆 Combustion	aerosol partic	cles 🗌 Air	Cleaning & c	ontamination	control	☐ IAQ
Bioaerosol 🗆 Atmospheric A	erosol 🗌 Ins	strumentation	□ Filtrat	ion ☑ Mater	ial Proc	essing

플라즈마 공정을 통한 이황화몰리브데넘-이황화텅스텐 박막형 대면적 이종구조 제작

 $\underline{4$ 현호 1 , 김형우 1,2 , Yonas Tsegaye Megra 3 , Chaitanya K. Kanade 1 , Vinit K. Kanade 1 , 4지원 1,3 , 김태성 1,3

¹성균관대학교 성균나노과학기술원 나노과학기술학과 ²Department of Materials Science and Engineering, Northwestern University, Evanston, United States, ³성균관대학교 기계공학과

E-mail: tkim@skku.edu

keywords: plasma, MoS2, WS2, heterostructure, PE-CVD

플라즈마 화학기상증착법 (Plasma-enhanced chemical vapor deposition)을 활용하여 이황화 몰리브데넘-이황화텅스텐 박막형 수직 이종구조 제작에 성공하였다. 플라즈마에 의한 황화 수소 가스의 이온화로 인해 300도의 저온에서 제작이 가능하며, 4인치 웨이퍼 스케일의 높 은 수율을 확보하였다. 본 연구는 미래 반도체 소재 제작을 위한 새로운 공정을 제시하였다.

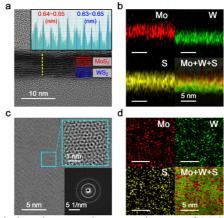


Fig. 1 High-Resolution transmission electron microscopy images of MoS₂-WS₂ vertical heterostructure.

감사의 글

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF2017R1A2B3011222).

참고문헌

Ahn, C.; Lee, J.; Kim, H. U.; Bark, H.; Jeon, M.; Ryu, G. H.; Lee, Z.; Yeom, G. Y.; Kim, K.; Jung, J., Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. *Advanced Materials* **2015**, *27* (35), 5223–5229.