□ Nanoparticl	es 🗌 Combustion aerosol	particles	□ Air (Cleaning & conta	mination con	trol 🗌 IAQ
☐ Bioaerosol	☑ Atmospheric Aerosol	□ Instrum	entation	☐ Filtration	□ Material	Processing

Investigation of air pollution in areas near Yeosu Industrial Complex

한윤덕 1 , 정성현 2 , 이민혁 2 , 전준민 3 , 손부순 $^{12^\dagger}$ 1 순천향대학교 ICT환경보건시스템학과, 2 순천향대학교 환경보건학과, 3 그린환경종합센터 E-mail: Sonbss@sch,ac,kr.

keywords: TSP, PM25 Yeosu, Season

대기 중에는 산업단지에서 배출되는 황산화물, 질소산화물 등 가스상 물질과 더불어 다량의 미세먼지가 공존하여 생태계와 인간의 건강에 악영향을 미칠 수 있다. 본 연구는 여수산단지역의 대기오염도 변화추이를 고려하여 노출지역 4지점과 산업단지로부터 오염물질의 영향을 적게 받을 것으로 예측되는 비교지역 1지점을 선정하여, 2013년 8월부터 2014년 3월까지 측정지점별, 계절별로 각 6일간 연속 측정하여 $PM_{2.5}$ 와 TSP를 포집하였다. 여수지역에서 측정된 TSP의 전체 평균농도는 노출지역 $107.90~\mu g/m^3$, 대조지역 $76.53~\mu g/m^3$ 으로 노출지역에서 높은 농도를 나타났으며, 계절별 차이에서는 노출지역의 가을철 농도는 $118.61~\mu g/m^3$, 대조지역은 봄철에 $92.45~\mu g/m^3$ 로 지점별 농도 차이를 보였다. $PM_{2.5}~$ 평균농도도 대조지역보다 노출지역에서 높은 분포를 보이고 있으며, 계절별 농도 경향을 비교하였을 때, 노출지역의 겨울철 농도는 $39.84~\mu g/m^3$, 봄철은 $37.22~\mu g/m^3$ 으로 여름과 가을철보다 높게 나타났다. 이러한 결과는 조사 기간동안 관측됐던 황사 및 기상영향인 것으로 생각된다.

Table 1. Comparison of seasonal concentrations of PM_{2.5} and TSP by region in Yeosu area (Unit. $\mu g/m^3$)

		TSP				PM _{2.5}			
		Case	se Control Cas		Case	Case			
Season	N	Mean±S.D.	N	Mean±S.D.	N	Mean±S.D.	N	Mean±S.D.	
Summer	24	101.20±27.62	6	50.1±14.71	24	19.83±2.61	6	12.75±2.56	
Fall	24	118.61±26.27	6	77.99±11.17	24	21.12±3.80	6	13.91±4.67	
Winter	24	105.80±19.13	6	85.67±11.38	24	39.84±14.52	6	28.95±6.75	
Spring	24	106.01±25.64	6	92.45±15.79	24	37.22±18.31	6	31.28±17.88	
Total	96	107.90±25.33	24	76.53±20.70	96	29.50±14.86	24	21.72±12.65	

a. Standard Diviation

감사의 글

본 연구는 교육부의 4단계 BK21 사업의 지원에 의하여 수행되었습니다.

참고문헌

Byung-Wook Kang, Jun-Min Jeon, Hak-Sung Lee, (2018), The Characteristics of PM_{2.5} and Trace Elements in the Vicinity of Steel Industrial Complex, Journal of Korean Society for Environmental Technology. 19(1), 18-29.