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Abstract: This study presents a comparative analysis of representative object detection-
based Al deep learning models(YOLOv4, YOLOX, RT-DETR) to enhance the accuracy and
real-time performance of fabric defect detection, a critical step in textile manufacturing
processes. Experimental results indicate that RT-DETR outperforms the other models in
Accuracy, Recall, and F1-Score, with the exception of Precision. In particular, RT-DETR
demonstrates a significantly higher Recall, suggesting its suitability for product categories
where defect omission is unacceptable. This superiority appears to stem from its Trans-
former-based architecture, which effectively captures global features in textile images
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characterized by repetitive patterns and complex surface textures. However, RT-DETR
exhibits a maximum processing speed of approximately 130 FPS, which is lower compared

to the other models. While it is sufficient for general manufacturing processes, it may
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impose limitations in ultra-high-speed production environments. Overall, the findings con-
firm that the Transformer-based RT-DETR model represents the most suitable option for
fabric defect analysis using Al deep learning techniques.
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Figure 1. Object detection architecture.
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Figure 2. Anomaly object detection frame work.
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Figure 3. Comparison of one-stage and two-stage detector.
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Figure 4. Yolov4 BoF image augmentaion; (a) crop, rotation, flip, hue, saturation, exposure, aspect, (b) MixUp, (c) CutMix, (d) mosaic, and (e) blur.
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Figure 6. MS COCO object detection model bench mark.
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Figure 8. RT-DETR architecture.
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2.5. RT-DETR Model
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Figure 9. Fabric defect image.
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Accuracy (%) = TP+TN M
TP+TN+FP+FN
Precision (%) = Tp @
TP+FP
Recall (%) = rp 3)
TP+FN
Fl1-Score (%) = 2 x Precision x Recall @

Precision x Recall

TP (True Positive)

correct answer (correct answer number)

: number of questions matching the

TN (True Negative) : number of times the correct answer
is judged as correct (correct answer number)

FP (False Positive) :
answer that is not correct (number of false positives)

number of questions that output an

FN (False Negative) : number of missed correct questions

(number of missed questions)
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Table 1. Results of analysis for each deep learning models

Models type Accuracy (%) Precision (%) Recall (%) F1-Score (%)
YOLOv4 7444 9233 69.04 79.00
YOLOX 68.69 7765 68.75 7293
RT-DETR 81.95 79.22 94.04 86.00
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(d)

Figure 10. Results of analysis for each deep learning models; (a) accuracy of each deep learning models, (b) precision of each deep learning
models, (c) recall of each deep learning models, and (d) F1-score of each deep learning models.
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