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3D Printing Using k-Carrageenan/Nanosilicates Hydrogels
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Abstract: In this study, the rheological properties, output characteristics, and mechanical
properties of hydrogel mixed with k-carrageenan and Laponite-XLS were quantitatively
analyzed according to 3D printing process conditions. The 3D printing device was
designed and manufactured as a pressure-type device with temperature control for stable
transport and precise layering of hydrogel. The printing quality map was obtained accord-
ing to printing conditions (nozzle temperature, pressure, nozzle movement speed, etc.)

'Corresponding Author: Yang Ho Na and it was confirmed that stable printing was possible under optimal printing conditions.
E-mail: yhna@hnu kr The stability was confirmed through a tensile test on the joints between the printed fibers,
and Dog-bone-shaped specimens were manufactured under printing direction (parallel,
“These authors contributed equally to tilted) and infill density (30%, 50%) conditions and tensile tests were performed. As a result,
this work. the tensile strength tended to significantly increase as the printing direction was aligned
with the tensile load and the infill density increased. As a result, it was confirmed that the
Received July 9, 2025 k-carrageenan/Laponite-XLS composite hydrogel has sufficient potential as materials that
Revised July 26, 2025 satisfies structural precision, rheological controllability, and mechanical stability when
Accepted July 29, 2025 combined with 3D printing technology.
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Figure 1. Effect of Laponite-XLS concentration and temperature on the viscosity of the prepared hydrogel; (a) effect of Laponite-XLS

concentration and (b) effect of temperature.
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Figure 2. FT-IR analysis of k-Carrageenan, Laponite-XLS, and their
composite hydrogel.
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Table 1. Swelling ratio according to immersion time

Immersion time
(minute)

Swelling ratio (%) 411.7 405.5 4144 375.1 2286
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Figure 3. Schematic diagram of experimental setup using modified
3D printer.
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Figure 8. Various 3D printing structures fabricated using hydrogel made of k-carrageenan/Laponite-XLS hydrogels.
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