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1)1. Introduction

The process of designing a deep learning model 

takes a lot of time. Therefore, it is very important to 

accelerate the training process of the model. To mi-

nimize the training time of the deep learning model, 
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distributed deep learning training that utilizes the 

computing resources of multiple nodes is required [1]. 

Each of these nodes has a deep learning training 

(DLT) job consisting of several tasks executed in 

parallel.

This parallelism can be achieved with two kinds of 

methods, model parallelism and data parallelism. 

Model parallelism is a parallel processing method 

where input data is loaded evenly in multiple nodes. 

A large-scale training model is first divided and 

loaded, which then performs the training. On the 

other hand, data parallelism is a parallel processing 

method where the training model is loaded evenly on 

each node, large-scale input data is divided and 
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loaded, and then training is performed. Some studies 

[2-4] have achieved very high scalability efficiencies 

using data parallelism approaches, indicating that the 

communication overhead is not excessive. Nonetheless, 

some data parallelism applications may experience 

excessive communication overhead between devices, 

which seriously hinders the scalability of large model 

training [5]. An alternative to this is model parallelism, 

which is mainly used when the model is too large to 

fit in the memory of a single device, and data paral-

lelism cannot be used. In general, an effective way to 

accelerate the training of large-scale deep learning 

models is to use data parallelism [6]. The main rep-

resentative approach in data parallelism is the pa-

rameter server approach [7].

In a parameter server architecture, DLT job is di-

vided into worker tasks that train the model and 

parameter server tasks that maintain the globally 

shared parameters. Each DLT job may have different 

requirements for different resources. In other words, 

while processing many DLT jobs in multiple time units, 

the demand for resources will have high volatility. If 

a job with high resource requirements is scheduled 

first, other jobs cannot be scheduled at the same time, 

which may decrease the overall resource utilization 

of the cluster. This may lead to a situation where the 

job completion time (JCT) of DLT jobs in each node 

increases. Therefore, when considering the minimized 

JCT for each DLT job in the cluster, a scheduling 

strategy that considers dynamic resource allocation 

and priorities is important.

One of the many tools used for distributed deep 

learning training is Kubeflow, which runs on Kubernetes, 

a container orchestration tool [8]. Kubeflow makes it 

simple to deploy machine learning workflows on 

Kubernetes. It also provides Kubernetes custom resources 

to simplify complex distributed training and supports 

various frameworks such as TensorFlow, PyTorch, 

and MXNet. Therefore, it is relatively easy to perform 

distributed deep learning training on Kubernetes 

using Kubeflow. To run distributed training jobs using 

TensorFlow, one of the most used deep learning 

frameworks in Kubernetes, the Kubernetes custom 

resource TFJob is used. And this TFJob is managed 

through the existing operator called tf-operator [9].

However, in the process of parameter server-based 

distributed deep learning training using tf-operator, 

Kubernetes's default scheduling policy cannot dynamically 

allocate or release cluster resources to jobs, so jobs 

cannot be scheduled in consideration of priority. In 

addition, since the task placement occurs without 

considering the task affinity of the distributed training 

job, communication overhead occurs and the JCT 

may be delayed or suffer from low resource utilization. 

Therefore, this paper proposes a new operator that 

efficiently schedules distributed deep learning training 

jobs by considering job priorities and task affinity to 

minimize JCT and increase resource utilization.

The main contributions of the paper are summarized 

as follows: 1) We propose and evaluate a resource 

adjustment operator that extends from the existing 

tf-operator of Kubernetes to increase resource utilization 

and minimize the job completion time of distributed 

training jobs. 2) We implemented a dynamic scaling 

algorithm that considers the priority of distributed 

training jobs based on weights. 3) We implemented a 

policy to place tasks in consideration of the affinity 

between worker tasks and parameter server tasks in 

distributed training jobs. 

The remainder of this paper is organized as fol-

lows. Section 2 introduces iterativeness of the training 

process, parameter server architecture, and Kubernetes 

default scheduler. Section 3 describes the scheduling 

strategy designed for the proposed operator. Section 4 

describes the proposed operator implementation. Section 

5 presents results from deep learning experiments 

with various models and batch sizes. Section 6 con-

cludes the paper.

2. Related Works

2.1 Iteration for Distributed Training

Deep learning model training is generally performed 

iteratively due to the large size of the training data-

set. In general, the entire data set is divided into 

equal-sized data chunks and assigned to each 

worker. And each data chunk contains multiple mini- 

batches divided into equal sizes. Here, the size of the 

mini-batch is called the batch size. 

Iteration means the number of repetitions of train-

ing using a given batch size. In each iteration, workers 

perform training through forward propagation and back 

propagation using a set batch size [10]. Forward prop-

agation refers to the process of sequentially calculating 

and storing variables from the input layer to the output 

layer of the training model. Backward propagation re-

fers to a process of sequentially calculating and storing 

gradients of parameters from the output layer to the 

input layer. In this case, hyperparameters such as 

batch size and learning rate are values that a neural 

network designer must determine in advance before 

training, and often has a great influence on the train-
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ing result. If the batch size is too large, the training 

speed will be slowed because there is a large amount 

to be processed at one time, and in some cases, it may 

suffer from insufficient memory. On the contrary, if 

the batch size is too small, that can also be a problem. 

The reason is that the training is relatively unstable 

because the parameters are updated frequently by ref-

erencing too few samples. Therefore, it is important to 

set the appropriate batch size. And the learning rate 

should be determined to be an appropriate value that 

is neither too large nor too small to reach the local 

minimum.

2.2 Parameter Server Architecture

In distributed deep learning training, the parameter 

server architecture is mainly used for training by dis-

tributing the large computational load of deep learn-

ing training across multiple nodes [11]. In the parame-

ter server architecture, a distributed training job con-

sists of tasks with two roles: a parameter server (ps) 

and a worker. As shown in Fig. 1, the overall training 

is performed by the worker who trains the divided data 

and the ps that sums up the training results of each 

worker and manages them. Each worker has the same re-

plicated training model and receives some training data. 

Since each worker's model trains using different data, it 

consequently has different local parameters. Therefore, 

there must be a global parameter that integrates these 

local parameters. There are asynchronous and syn-

chronous training methods to create global parame-

ters by integrating local parameters of all workers.

The asynchronous training is a training method 

where each worker completes one iteration and then 

proceeds with the next iteration independently without 

waiting for other workers. Each worker synchronizes 

new global parameters in the following way and pro-

ceeds with the next iteration. In the forward propa-

gation process of each worker, the model that re-

ceives the data outputs the predicted value using the 

initialized weights (). Then, the loss function finds 

the loss between the predicted value and the correct 

answer. Loss is the penalty for a bad prediction. If 

the model's prediction is perfect, the loss is zero. The 

purpose of training the model is to find a set of 

weights that minimizes this loss. Lastly, the gradient 

() is calculated through an optimizer function 

during the backward propagation process. Each 

worker sends the computed gradient to ps. Then, ps 

immediately applies the gradient received from a 

specific worker to the global parameter along with 

the learning rate (), and then synchronizes the new 

global parameter ( ) only to that worker. There-

fore, workers receive synchronized global parame-

ters that are not the same as each other and proceed 

with the next iteration. That is, the asynchronous 

training supports a fast-training speed because each 

worker performs training independently. However, as 

many ‘fast workers’ make significant progress in 

training, the delayed gradients of ‘slow workers’ are 

applied to global parameters, which has a limitation 

of degrading training accuracy. 

The synchronous training is a training method 

where ‘fast workers’ complete one iteration and then 

wait until the iteration of ‘slow workers’ is completed 

without independently proceeding with the next 

iteration. Each worker synchronizes new global para-

meters in the following way and proceeds with the 

next iteration. Each worker sends the computed gra-

dient to ps. Then ps applies the gradients received from 

all workers to the global parameters in turn, and then 

synchronizes the new global parameters to all workers. 

Therefore, workers receive the same synchronized 

global parameters as each other and proceed with the 

next iteration. That is, the synchronous training can 

guarantee training accuracy as workers always receive 

the same synchronized global parameters from ps. 

However, there is a limitation in that the training 

speed decreases due to the delay caused by ‘fast 

workers’ waiting for ‘slow workers’ in each iteration. 

Due to these limitations of the synchronous training, if 

there many nodes, or if the jobs have different prior-

ities or functions, the asynchronous training that pre-

vents workers from waiting for each other may be a 

better choice. Therefore, this paper focuses on train-

ing the model using an asynchronous training in the 

parameter server architecture.

2.3 Kubernetes Scheduler

Kubernetes is a representative container orchestration Fig. 1. Parameter Server Architecture
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tool for automating the deployment, scaling, and 

management of containerized applications. In Kubernetes, 

all resource allocation decisions are handled in a 

shared-state scheduling method, where all resource 

allocation decisions are made in the scheduler without a 

central resource allocator. One of the characteristics 

of Kubernetes is that containers are not deployed 

individually, but in units called a pod, which include 

one or more application containers. The Kubernetes 

scheduler is designed to create its own scheduling 

components as desired or needed and use them 

instead of the default scheduler [12]. That is, the pod 

can be scheduled in the Kubernetes cluster using the 

new scheduling policy. The scheduler monitors newly 

created pods with no node placement decisions. For 

every pod the scheduler finds, the scheduler is 

responsible for finding the best node on which that 

pod will run. All state information generated by 

scheduling is processed while recording and sharing 

the state in etcd, a data store. Fig. 2 shows the 

Kubernetes scheduler processing procedure when a 

new pod is assigned to a cluster.

1) When a user's pod creation request is submitted 

to the API Server through a command such as 

kubectl apply, the API Server stores the pod 

information in etcd. API Server is a server that 

provides APIs for users to access the cluster, 

and at the same time, it is a server that interacts 

with all components of Kubernetes.

2) In the pod spec, there is a nodeName field 

indicating the node on which the pod is scheduled. 

If the nodeName field is empty, the pod information 

is stored in etcd in an empty state.

3) The scheduler maintains and manages a FIFO- 

type pod queue to store pods that need to be 

scheduled. The newly created pod will be wat-

ched by the scheduler and added to the pod 

queue. After dequeuing a pod to schedule, the 

scheduler detects that the nodeName field of 

the pod is empty.

4) The scheduler finds the most suitable node for 

the pod after going through two major scheduling 

processes, predicates and priorities, based on 

the configuration of the pod (e.g., by metrics 

such as resource usage and affinity).

5) The scheduler writes the found node in the 

nodeName field of the pod and then sends the 

information to the API Server.

6) When the kubelet located in the node detects 

that a new pod is scheduled on the node, the 

local docker daemon is called to run the pod.

7) Update the status information of the pod to 

etcd. 

 
The Kubernetes default scheduler, including schedulers 

such as YARN and Mesos used in Machine Learning 

(ML) systems, has a disadvantage in that it only cares 

about the number of resources allocated to each job 

without knowing the characteristics of the training 

job. In DLT jobs, there is no communication between 

worker tasks and worker tasks only communicate 

with the ps tasks. Therefore, the node placement of 

ps tasks and worker tasks can greatly affect the 

training speed [13]. That is, for faster training speed, 

the ps tasks and worker tasks of the DLT job should 

be scheduled on the same node. Also, the Kubernetes 

default scheduler is not sensitive to the affinity 

between ps tasks and worker tasks of DLT job during 

the distributed training process. Then, the tasks are 

scheduled in a random node in a FIFO manner 

without considering task affinity. Each job is assigned 

a fixed amount of resources based on the resource 

requirements specified by the job owner. In this 

case, cluster resources cannot be dynamically allocated 

or released to the job, and the ps task can become a 

bottleneck, slowing the job and reducing resource 

utilization. Therefore, to efficiently schedule a DLT job, 

a scheduling algorithm that considers the characteristics 

and the size of the job is required.

3. Proposed Scheduling Strategy

This chapter describes operator design with a 

scheduling strategy that minimizes JCT for concurrent 

DLT jobs and achieves high cluster resource utilization. 

The distributed training architecture of this paper is 

constructed based on Kubernetes. Kubeflow has an 

operator (tf-operator) that makes it easy to manage 

Fig. 2. Kubernetes Scheduling Lifecycle  
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DLT jobs, and Kubeflow uses Kubernetes default 

scheduler. When creating a new DLT job, the existing 

Kubeflow scheduling policy schedules each task on a 

random node with sufficient resources. It works well for 

most workloads, but not for ML workloads. Therefore, 

there is a need for a scheduler to help schedule ML 

workloads more efficiently. 

Session 3.1 describes the overall cluster structure for 

the proposed operator, Session 3.2 describes the pre-

emptive scheduling algorithm, and Session 3.3 de-

scribes the autoscaling algorithm that occurs during the 

scheduling process. The proposed scheduling algo-

rithm provides better scheduling performance than the 

existing ones by combining resource allocation and task 

placement.

3.1 Overall Architecture

Kubernetes is a highly extensible open-source plat-

form with a well-defined API structure. In addition to 

built- in resources (e.g., pods) provided by Kubernetes, 

resources required by users can be defined and used 

internally. Therefore, if a user defines a custom re-

source directly inside the Kubernetes system, it can be 

used with basic Kubernetes commands such as Kubectl. 

And it is possible to create and use custom controllers 

to manage those resources. The controller is a core 

concept of Kubernetes and is implemented as a soft-

ware loop that runs continuously on the Kubernetes 

master node [14]. The controller then compares the ob-

ject's current state with the desired state defined and 

reconciles if necessary. Objects are well-known re-

sources such as Pod, Service, Namespace, or Volume.

The pattern of using custom resources and custom 

controllers together is called the operator pattern 

and allows users to maintain the desired state for 

custom resources. The operator pattern refers to a 

system derived from the concept of an operator in 

the real world. When managing their custom resources, 

the operator can define and handle how each resource 

should operate, how it should be distributed, and 

how to respond to problems by using the application 

domain. In other words, the operator acts as a custom 

controller for custom resources.

TFJob is a Kubernetes custom resource that enables 

distributed training jobs using TensorFlow on Kubeflow. 

That is, TFJob is designed to run distributed training 

jobs on Kubernetes. TFJob consists of several ps 

tasks and worker tasks, each deployed on a different 

node within the Kubernetes cluster. Each task is 

implemented on a container (e.g., pod) in the nodes. 

This paper will show that KOD2 (Kubernetes Operator 

for Distributed Deep learning training job), a new 

operator that replaces the tf-operator that previously 

managed TFJob, provides better scheduling performance. 

The overall architecture of KOD2 running on Ku-

bernetes is shown in Fig. 3. Just like running con-

tainerized applications, KOD2 runs outside the mas-

ter node. When a TFJob where resource specs of ps 

tasks and worker tasks are defined is submitted to 

Kubernetes in the form of a YAML (YAML Ain't Markup 

Language) file, the API Server on the master node 

stores the pod allocation request status information 

in etcd. KOD2 recognizes that the TFJob has been 

created through the watch API, compares the current 

state with the desired state, and, if different, takes 

an action to reconcile to the desired state. In this 

process, efficient scaling of ps tasks and worker 

tasks and node placement decisions are made in 

units of pods. The operation of the internal structure 

of KOD2 is dealt with in section 4.2. Then, after ku-

belet creates a pod, the information that the pod is 

assigned to a specific node and is running is stored 

in etcd through the API server.  

 

3.2 Priority Preemptive Scheduling

The core of KOD2 is a scheduling algorithm that 

minimizes JCT and increases resource utilization of 

the cluster. To achieve this goal, a preemptive sche-

duling algorithm is needed [15]. Although SJF (Shor-

test Job First) and SRTF (Shortest Remaining Time 

First), which are representative preemptive schedu-

ling algorithms, are known to minimize JCT, there is 

a premise that the remaining time of a job needs to 

be known. In DLT jobs, it is not possible to accura-

tely predict the remaining training time. 

However, considering the two main factors that 

affect the training speed of a DLT job, the training 

time is somewhat predictable. As shown in Fig. 4 

(experiment on four deep learning models when batch 

Fig. 3. Overall Architecture  
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size is 256), in the parameter server architecture, when 

there is no bottleneck in the ps task, the training speed 

tends to be faster as the number of worker tasks 

increases. Also, in a cluster with limited resources, if 

one DLT job consumes too many resources, it may 

become a bottleneck, which may affect the training speed 

of other DLT jobs. If jobs that require fewer resources 

are scheduled first, the overall average JCT can be 

decreased. Since TFJob can specify the number of ps 

tasks and worker tasks and resource requirements, it 

can estimate which TFJob's JCT will be shorter by 

comparing the specs of TFJob. 

Therefore, a heuristic priority-based preemption 

scheduling algorithm that gives a higher priority to a 

TFJob that is expected to take a shorter time can be 

considered. When several TFJobs enter the cluster 

with limited resources, applying this scheduling al-

gorithm can lead to the effect of minimizing the 

average JCT and efficient utilization of resources.

Algorithm 1 is a pseudocode for the preemptive 

scheduling algorithm applied to KOD2. Each TFJob 

has information on the minimum and maximum 

required number of worker tasks that perform deep 

learning training.

In lines 1-4, when TFJobs (newJobs) with different 

specs enters the cluster, it is first placed in the 

waiting queue. After that, the weight value (′) is 

calculated based on the minimum required resources 

of the newJob. The minimum required resources 

refer to resources calculated by normalizing based 

on the number of minimal worker tasks, CPU, and 

memory required resources. In general, the more the 

number of worker tasks, the faster the training speed 

tends to be (see Fig. 4), and the fewer resources 

required, the more resources can be used by other 

tasks. That is, favoring TFJobs that need less resources 

Table 1. Notation of Algorithm

Fig. 4. Relationship between Training Time 

and Number of Workers  

Algorithm 1. Preemptive Scheduling



쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터  211

has smaller opportunity cost since more resources are 

available for other TFJobs [16].

Therefore, ′ is calculated through a heuristic 

method proportion to the minimum number of 

worker tasks and inverse proportion to the sum of 

required CPU and memory resources. At this time, to 

normalize the weight value to be actually applied to 

a value between 0 and 1, the weight value () is 

defined as Equation (1) in the form of a sigmoid 

function for ′.

                




  ′


(1)

The larger the weight, the higher the priority of 

the TFJob, and the worker tasks of other TFJobs with 

relatively low priority can be preempted through 

scaling. In lines 5-17, it is determined whether a 

newJob with the largest weight in the current waiting 

queue will be placed first in the running queue. If 

the weight is greater than or equal to the TFJob with 

the largest weight in the running queue and there 

are resources more than the minimum required 

resources in the cluster, the newJob is placed in the 

running queue. If the cluster lacks resources, the 

scale-in function is called to preempt worker tasks 

of TFJobs (runJobs) running in the running queue. 

If scale-in is possible, the placement status of 

worker tasks in the cluster is updated and the newJob 

is placed in the running queue thanks to the decreased 

worker tasks in other runJobs. In lines 27-29, if the 

waiting time is longer than STARVELIMIT for newJobs 

that are not placed in the running queue because the 

weight is small, the weight value is updated so that 

they can be scheduled first in the waiting queue. In 

lines 31-36, if the number of worker tasks being 

trained in runJob is less than the maximum number 

of worker tasks, the scale-out function is called to 

increase the number. 

If scale-out is possible, the placement status of 

worker tasks in the cluster is updated and the 

number of worker tasks in the runJob is increased. In 

lines 37-40, when the worker task is trained as much 

as the maximum number of worker tasks, the runJob 

ends and enters the finished queue. As TFJob enters 

the cluster and is scheduled, worker tasks can have 

four states as shown in Fig. 5.

 
① RUNNING: When a new TFJob enters the cluster, 

if there are enough resources available, it is 

immediately enqueued in the running queue. 

② WAITING: If the available resources are not enough, 

it waits in the waiting queue, and when the 

priority condition is met, worker tasks in the 

running queue are preempted and can be 

enqueued in the running queue. 

③ STARVING: If the waiting time is longer than the 

threshold, the weight of the TFJob is updated. 

④ COMPLETED: When all training is completed, the 

TFJob is enqueued in the finished queue.

3.3 Dynamic Auto Scaling

To accelerate job completion and make the most 

of the cluster's resources, the number of tasks in 

TFJob is dynamically adjusted using auto-scaling. There 

Fig. 5. State transition diagram of a TFJob

Algorithm 2. Scale-In
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are maximum and minimum values for the number 

of tasks in the auto-scaling setting. The scale-in, scale- 

out algorithm that applies the scaling plan to the 

cluster when the corresponding condition is satisfied 

by performing the scaling test will be described.

The scale-in function is called when decreasing 

the number of worker tasks of the TFJob being 

trained. When the worker tasks of each TFJobs in the 

cluster are being trained, there will be the TFJob 

with the largest weight among them. At this time, when 

a TFJob (newJob) with the same weight or greater 

weight comes in, the scale-in function is called if the 

cluster has insufficient resources. 

In line 3, running TFJobs (runJobs) are first sorted 

in ascending order by the weight value. Then, the 

scale-in test is performed starting with the worker 

tasks of the runJob with the smallest weight. In lines 

4-8, if newJob and runJob have the same weight, but 

runJob first entered the waiting queue before newJob, 

worker tasks of this runJob are excluded from the 

scale-in test. The ps tasks and worker tasks of runJob 

selected as the scale-in test target will already be 

placed on different nodes in the cluster. In lines 

12-13, search the nodes to which rubJob's worker 

tasks belong. At this time, to prepare for the case 

where the ps task and the worker task belong to the 

same node, the node with the ps task is searched last. 

This is because the more the ps task and the worker 

task are on the same node, the less communication 

overhead between them. Also, ps tasks are excluded 

from the scale-in test. In lines 15-18, if the node to 

which rubJob's worker task belongs has idle resources 

to satisfy the minimum required resource of newJob, 

it returns a schedulable state and scale-in placement 

plan. And the scale-in function is terminated. In 

lines 19-23, if there are no idle resources in the 

node, one worker task of runJob is decreased within 

the threshold count. At this time, the number of 

worker tasks in runJob is guaranteed to maintain at 

least the minimum number of worker tasks. This is 

to prevent a certain degree of starvation by allowing 

the minimum worker tasks to train. As one worker 

task is decreased, the idle resources of the node 

increase. In line 24, update the scale-in placement 

plan of the worker task in the runJob. In line 32, if 

there are no nodes with sufficient idle resources, a 

state that scheduling is impossible is returned and 

the scale-in function is terminated. When scheduling 

of newJob is possible through scale-in, the scale-in 

placement plan is applied to the cluster.

The scale-out function is called when increasing 

the number of worker tasks of the TFJob being trained. 

When the worker tasks of each TFJobs in the cluster 

are being trained, if the number of worker tasks 

being trained is less than the maximum number of 

worker tasks, the scale-out function is called.

In line 3, runJobs are first sorted in descending 

order by the weight value. Then, the scale-out test is 

performed starting with the worker tasks of the 

runJob with the largest weight. And search all nodes 

that can accommodate the scale-out of worker tasks 

in runJob. In lines 7-8, if the idle resources of the 

node cannot satisfy the required resources of one 

worker task in runJob, the next node is searched. In 

lines 9-12, the scale-out test of the worker task in 

the runJob is performed on the node within the 

threshold count. At this time, the worker task cannot 

increase more than the maximum number of worker 

tasks specified in runJob. If there are idle resources 

of the node, one worker task is increased and the 

idle resources are decreased. In line 15, update the 

scale-out placement plan of the worker task in the 

runJob. In line 23, it returns whether scale-out of the 

worker tasks in runJob is possible and the scale-out 

placement plan and terminates the scale-out 

function. When scheduling of runJob is possible 

through scale-out, the scale-out placement plan is 

applied to the cluster.

Algorithm 3. Scale-Out
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4. Implementation

This chapter introduces the implementation of 

KOD2. Section 4.1 describes the task placement that 

occurs in the distributed deep learning training process, 

and section 4.2 describes the KOD2 structure that 

manages TFJob in a Kubernetes cluster.

4.1 Distributed Deep Learning Tasks Placement 

In a distributed computing environment, the main 

reason for slow operations in TensorFlow is the 

overhead of gRPC communication between ps tasks 

and worker tasks. To reduce this overhead, ps tasks 

and worker tasks should be placed using the fewest 

number of nodes. That is, the training speed can be 

improved by reducing the time required for parameter 

exchange between the worker task and the ps task. 

The Kubernetes default scheduler's FIFO-based random 

scheduling algorithm can incur significant communication 

and synchronization overhead. Therefore, KOD2 tries 

to place all TFJob's tasks on as few nodes as possible 

to minimize this overhead. The key point is to 

search for nodes with idle resources that can 

accommodate all tasks of TFJob. If all tasks of TFJob 

cannot be placed together on one node, it tries to 

place ps tasks and worker tasks together in order of 

nodes with the idlest resources. When it is decided 

on which node to place the tasks in KOD2, the node 

is specified in the nodeName field of the pod spec. 

If a node is explicitly specified in the nodeName 

field in advance, it can be scheduled to that node 

without having to undergo a separate scheduling 

process in the Kubernetes default scheduler.

4.2 Operator for Preemptive Scheduling

The master node manages the records of all objects 

in the cluster and stores the state desired by the user 

in etcd. Sync loop is performed in the operator to 

manage the state of the object through the records. 

Sync loop means that whenever there is a change in 

the internal state of the cluster, it is detected and if 

the user's desired state does not match the current 

state, it operates to match it. That is, the main task 

of KOD2 is to match the desired state and current state 

of the Object (TFJob). This reconcile process is per-

formed by the reconciler. Fig. 6 shows the internal op-

erating structure of KOD2.

If an object creation request is received from the 

user, the Kubernetes API server stores the object in-

formation in etcd and delivers the object event to 

KOD2. In KOD2, there are Kubernetes cache and work 

queue. The cache serves to reduce the load on the API 

server by caching the information retrieved from the 

API server. And the informer exists inside the cache. 

Informer is responsible for monitoring objects to be 

managed by KOD2 and receiving object creation, 

change, and deletion events. Only the object name and 

namespace information, which are the object event in-

formation received by the informer, are extracted and 

enqueued in the work queue. In the work queue, there 

are keys containing the name and namespace infor-

mation of each object. Reconciler uses the Kubernetes 

client to perform reconcile. The client's object write 

request is delivered directly to the API server, but the 

client's object read request is delivered to the cache, 

not the API server. This is to read data from the cache 

that exists inside KOD2 to prevent overload of API 

Server. Reconciler dequeues the name and namespace 

information of each object stored in the work queue. 

Then, the reconcile process of each object is per-

formed using the client. In this process, scaling and 

placement of each object are determined using 

Algorithm1. The reconciler discards the object in-

formation in the case of an object that has succeeded 

in reconciling. However, in the case of an object that 

the reconciler has failed to reconcile, the name and 

namespace information of the object is requeued. 

After a specific time has passed, the reconciler tries 

to reconcile again by dequeueing the object in-

formation that has failed. If object reconciliation fails 

again, it is requeued and this process is repeated until 

reconciliation succeeds.

5. Evaluation

This chapter shows the performance evaluation of 

the proposed operator (KOD2) compared to the 

existing operator (tf-operator) in a real environment. 

Section 5.1 describes the experimental procedure 

and section 5.2 describes the experimental results.

Fig. 6. KOD2 Architecture
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5.1 Experimental Procedure 

For the experiment, we built a small cluster of 

Kubernetes version 1.20.5 and Kubeflow version 1.0.0 

consisting of 1 master node and 3 worker nodes as 

shown in Table 2. Each node is equipped with a 

10-cores CPU (Intel Core i9-10900K), 32 GB of RAM, 

and 1 GTX 3090 GPU with 24 GB of device memory. 

We deployed tf-operator and KOD2 in a Kubernetes 

cluster to schedule each training job. The TFJob used 

in the experiment performed the task of training the 

CIFAR-10 dataset using four CNN models, CNN-rand 

[17], VGG-16 [18], ResNet-50 [19], and ResNext-110 

[20]. Training job configuration is shown in Table 3. 

TFJob consists of one ps task and several worker tasks, 

and the worker task can be scaled-in or scale- out 

based on the calculated weight. Also, the resource re-

quirements of each worker task are different. One 

TFJob among 10 TFJobs was submitted to the cluster 

every 30 seconds, and average JCT and resource uti-

lization were measured and compared when using 

KOD2 and using tf-operator. JCT means the elapsed 

time from when the TFJob enters the waiting queue 

until it enters the finished queue. Since TFJobs are en-

tered in units of time, if there are not enough resources 

in the cluster, the worker tasks of TFJobs with smaller 

weight can be preempted after comparing their weight 

with each other.

5.2 Experimental Results

Fig. 7 shows the comparison of average JCT values 

of 10 TFJobs measured by each operator according 

to model and batch size. The tf-operator uses the 

Kubernetes default scheduler, so the tasks are placed 

on random nodes without considering task affinity. 

In addition, even if there are insufficient resources 

in the cluster since tasks are continuously scheduled 

by the FIFO scheduling algorithm, these tasks fall into 

a state of continuously requesting resources. For this 

reason, the JCT of TFJob is slowed down, and some 

tasks fall into a deadlock state and are terminated 

without completion. On the other hand, KOD2 per-

formed in a stable state because it scheduled tasks 

only when there were sufficient resources and per-

formed efficient scaling and placement. Therefore, as 

shown in Fig. 7, the average JCT is relatively faster 

for all models when using KOD2 than tf-operator. 

Among them, when the batch size of Fig. 7(b) is 128, 

the time reduction rate is 84%, showing the highest 

performance.

Fig. 8 shows the average CPU utilization of 3 worker 

nodes according to the model when the batch size is 

64. CPU utilization was measured using Prometheus 

[21] and Grafana [22]. Since the TFJob enters every 30 

seconds, the initial average CPU utilization may be 

small because the job is performed on only one of the 

three nodes. After that, the CPU utilization of the three 

nodes increases as the TFJob continues to enter.

When using tf-operator, since tasks are scheduled 

even when there are insufficient resources in the clus-

ter, some tasks fall into a deadlock state, indicating 

that each node cannot utilize resources properly. In 

the case of Fig. 8(b), (c) and (d), there is a section show-

Kubernetes Version v1.20.5

Kubeflow Version v1.0.0

OS Ubuntu 18.04

CPU Cores 10

CPU Type i9-10900K

Memory 32GB

GPU Type GTX 3090

Device Memory 24GB

Num of Master Node 1

Num of Worker Node 3

Table 2. Cluster Configuration

Model
CNN-rand, VGG-16,

ResNet-50, ResNext-110

Network Type CNN

Application Domain Image Cassification

Dataset CIFAR-10

Dataset Size 60,000

Batch Size 8, 16, 32, 64, 128

Learning Rate 0.01

Table 3. Training Job Configuration

Fig. 7. Average Job Completion Time
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ing the CPU utilization rate increases rapidly, unlike 

the rest of the cases. In this case, it seems that due 

to some TFJob that is terminated without completion, 

idle resources are created and the utilization has in-

creased rapidly. However, this utilization cannot be 

maintained for a long time and it can be seen that the 

utilization is lowered again. And in the case of each 

model, the entire work was finished after about 30 mi-

nutes to over an hour in addition to the time shown 

in the Figure. On the other hand, when using KOD2, 

Fig. 8(b) shows the average CPU utilization increase 

rate of up to 92%. In other words, the result of KOD2 

shows that each node utilizes resources better than the 

case of tf-operator for each model.

 

6. Conclusion

KOD2 is an operator proposed to manage TFJob 

more efficiently than existing operator in Kubernetes 

Cluster. Existing operator use scheduling policy that 

cannot allocate resources dynamically and do not 

consider the task affinity of the training jobs, which 

can result in longer job completion time and lower 

resource utilization. In KOD2, a weight-based preemption 

scheduling algorithm was applied by reflecting the 

job priority. A high priority is given to a TFJob that is 

heuristically predicted that the job will be completed 

faster based on resource usage and the number of 

worker tasks. If there are not enough resources in 

the cluster, but the priority of the waiting TFJob is higher 

than that of the running TFJob, task preemption occurs 

through auto-scaling. In addition, the task placement of 

the training job in consideration of task affinity was 

also made. As a result, when using KOD2 through an 

experiment, it showed the effect of minimizing the 

average JCT and leading to a higher resource 

utilization than before.
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