
쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터 205

1)1. Introduction

The process of designing a deep learning model

takes a lot of time. Therefore, it is very important to

accelerate the training process of the model. To mi-

nimize the training time of the deep learning model,

 ※본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터
지원사업의 연구결과로 수행되었음(IITP-2018-0-01405).

 ※이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평
가원의 지원을 받아 수행된 연구임(IITP-2019-0-01343).

 † 준 회 원 : 고려대학교 컴퓨터학과 석사
†† 종신회원 : 고려대학교 컴퓨터학과 교수

Manuscript Received : December 31, 2021
First Revision : February 25, 2022
Accepted : March 18, 2022

* Corresponding Author : Heonchang Yu(yuhc@korea.ac.kr)

distributed deep learning training that utilizes the

computing resources of multiple nodes is required [1].

Each of these nodes has a deep learning training

(DLT) job consisting of several tasks executed in

parallel.

This parallelism can be achieved with two kinds of

methods, model parallelism and data parallelism.

Model parallelism is a parallel processing method

where input data is loaded evenly in multiple nodes.

A large-scale training model is first divided and

loaded, which then performs the training. On the

other hand, data parallelism is a parallel processing

method where the training model is loaded evenly on

each node, large-scale input data is divided and

Dynamic Resource Adjustment Operator Based on Autoscaling

for Improving Distributed Training Job Performance on Kubernetes

Jinwon Jeong†
⋅Heonchang Yu††

ABSTRACT

One of the many tools used for distributed deep learning training is Kubeflow, which runs on Kubernetes, a container orchestration

tool. TensorFlow jobs can be managed using the existing operator provided by Kubeflow. However, when considering the distributed

deep learning training jobs based on the parameter server architecture, the scheduling policy used by the existing operator does not

consider the task affinity of the distributed training job and does not provide the ability to dynamically allocate or release resources.

This can lead to long job completion time and low resource utilization rate. Therefore, in this paper we proposes a new operator that

efficiently schedules distributed deep learning training jobs to minimize the job completion time and increase resource utilization rate.

We implemented the new operator by modifying the existing operator and conducted experiments to evaluate its performance. The

experiment results showed that our scheduling policy improved the average job completion time reduction rate of up to 84% and average

CPU utilization increase rate of up to 92%.

Keywords : Kubeflow, Kubernetes, Distributed Deep Learning Training, Resource Adjustment Operator

쿠버네티스에서 분산 학습 작업 성능 향상을 위한

오토스케일링 기반 동적 자원 조정 오퍼레이터

정 진 원†
⋅유 헌 창††

요 약

딥러닝 분산 학습에 사용되는 많은 도구 중 하나는 컨테이너 오케스트레이션 도구인 쿠버네티스에서 실행되는 큐브플로우이다. 그리고 큐브플로

우에서 기본적으로 제공하는 오퍼레이터를 사용하여 텐서플로우 학습 작업을 관리할 수 있다. 하지만 파라미터 서버 아키텍처 기반의 딥러닝 분산

학습 작업을 고려할 때 기존의 오퍼레이터가 사용하는 스케줄링 정책은 분산학습 작업의 태스크 친화도를 고려하지 않으며 자원을 동적으로 할당하거

나 해제하는 기능을 제공하지 않는다. 이는 작업의 완료 시간이 오래 걸리거나 낮은 자원 활용률로 이어질 수 있다. 따라서 본 논문에서는 작업의

완료 시간을 단축시키고 자원 활용률을 높이기 위해 딥러닝 분산 학습 작업을 효율적으로 스케줄링하는 새로운 오퍼레이터를 제안한다. 기존 오퍼레

이터를 수정하여 새로운 오퍼레이터를 구현하고 성능 평가를 위한 실험을 수행한 결과, 제안한 스케줄링 정책은 평균 작업 완료 시간 감소율을

최대 84%, 평균 CPU 활용 증가율을 최대 92%까지 향상시킬 수 있음을 보여준다.

키워드 : 큐브플로우, 쿠버네티스, 딥러닝 분산 학습, 자원 조정 오퍼레이터

KIPS Trans. Comp. and Comm. Sys.

Vol.11, No.7 pp.205~216

ISSN: 2287-5891 (Print), ISSN 2734-049X (Online)

https://doi.org/10.3745/KTCCS.2022.11.7.205

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

206 정보처리학회논문지/컴퓨터 및 통신 시스템 제11권 제7호(2022. 7)

loaded, and then training is performed. Some studies

[2-4] have achieved very high scalability efficiencies

using data parallelism approaches, indicating that the

communication overhead is not excessive. Nonetheless,

some data parallelism applications may experience

excessive communication overhead between devices,

which seriously hinders the scalability of large model

training [5]. An alternative to this is model parallelism,

which is mainly used when the model is too large to

fit in the memory of a single device, and data paral-

lelism cannot be used. In general, an effective way to

accelerate the training of large-scale deep learning

models is to use data parallelism [6]. The main rep-

resentative approach in data parallelism is the pa-

rameter server approach [7].

In a parameter server architecture, DLT job is di-

vided into worker tasks that train the model and

parameter server tasks that maintain the globally

shared parameters. Each DLT job may have different

requirements for different resources. In other words,

while processing many DLT jobs in multiple time units,

the demand for resources will have high volatility. If

a job with high resource requirements is scheduled

first, other jobs cannot be scheduled at the same time,

which may decrease the overall resource utilization

of the cluster. This may lead to a situation where the

job completion time (JCT) of DLT jobs in each node

increases. Therefore, when considering the minimized

JCT for each DLT job in the cluster, a scheduling

strategy that considers dynamic resource allocation

and priorities is important.

One of the many tools used for distributed deep

learning training is Kubeflow, which runs on Kubernetes,

a container orchestration tool [8]. Kubeflow makes it

simple to deploy machine learning workflows on

Kubernetes. It also provides Kubernetes custom resources

to simplify complex distributed training and supports

various frameworks such as TensorFlow, PyTorch,

and MXNet. Therefore, it is relatively easy to perform

distributed deep learning training on Kubernetes

using Kubeflow. To run distributed training jobs using

TensorFlow, one of the most used deep learning

frameworks in Kubernetes, the Kubernetes custom

resource TFJob is used. And this TFJob is managed

through the existing operator called tf-operator [9].

However, in the process of parameter server-based

distributed deep learning training using tf-operator,

Kubernetes's default scheduling policy cannot dynamically

allocate or release cluster resources to jobs, so jobs

cannot be scheduled in consideration of priority. In

addition, since the task placement occurs without

considering the task affinity of the distributed training

job, communication overhead occurs and the JCT

may be delayed or suffer from low resource utilization.

Therefore, this paper proposes a new operator that

efficiently schedules distributed deep learning training

jobs by considering job priorities and task affinity to

minimize JCT and increase resource utilization.

The main contributions of the paper are summarized

as follows: 1) We propose and evaluate a resource

adjustment operator that extends from the existing

tf-operator of Kubernetes to increase resource utilization

and minimize the job completion time of distributed

training jobs. 2) We implemented a dynamic scaling

algorithm that considers the priority of distributed

training jobs based on weights. 3) We implemented a

policy to place tasks in consideration of the affinity

between worker tasks and parameter server tasks in

distributed training jobs.

The remainder of this paper is organized as fol-

lows. Section 2 introduces iterativeness of the training

process, parameter server architecture, and Kubernetes

default scheduler. Section 3 describes the scheduling

strategy designed for the proposed operator. Section 4

describes the proposed operator implementation. Section

5 presents results from deep learning experiments

with various models and batch sizes. Section 6 con-

cludes the paper.

2. Related Works

2.1 Iteration for Distributed Training

Deep learning model training is generally performed

iteratively due to the large size of the training data-

set. In general, the entire data set is divided into

equal-sized data chunks and assigned to each

worker. And each data chunk contains multiple mini-

batches divided into equal sizes. Here, the size of the

mini-batch is called the batch size.

Iteration means the number of repetitions of train-

ing using a given batch size. In each iteration, workers

perform training through forward propagation and back

propagation using a set batch size [10]. Forward prop-

agation refers to the process of sequentially calculating

and storing variables from the input layer to the output

layer of the training model. Backward propagation re-

fers to a process of sequentially calculating and storing

gradients of parameters from the output layer to the

input layer. In this case, hyperparameters such as

batch size and learning rate are values that a neural

network designer must determine in advance before

training, and often has a great influence on the train-

쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터 207

ing result. If the batch size is too large, the training

speed will be slowed because there is a large amount

to be processed at one time, and in some cases, it may

suffer from insufficient memory. On the contrary, if

the batch size is too small, that can also be a problem.

The reason is that the training is relatively unstable

because the parameters are updated frequently by ref-

erencing too few samples. Therefore, it is important to

set the appropriate batch size. And the learning rate

should be determined to be an appropriate value that

is neither too large nor too small to reach the local

minimum.

2.2 Parameter Server Architecture

In distributed deep learning training, the parameter

server architecture is mainly used for training by dis-

tributing the large computational load of deep learn-

ing training across multiple nodes [11]. In the parame-

ter server architecture, a distributed training job con-

sists of tasks with two roles: a parameter server (ps)

and a worker. As shown in Fig. 1, the overall training

is performed by the worker who trains the divided data

and the ps that sums up the training results of each

worker and manages them. Each worker has the same re-

plicated training model and receives some training data.

Since each worker's model trains using different data, it

consequently has different local parameters. Therefore,

there must be a global parameter that integrates these

local parameters. There are asynchronous and syn-

chronous training methods to create global parame-

ters by integrating local parameters of all workers.

The asynchronous training is a training method

where each worker completes one iteration and then

proceeds with the next iteration independently without

waiting for other workers. Each worker synchronizes

new global parameters in the following way and pro-

ceeds with the next iteration. In the forward propa-

gation process of each worker, the model that re-

ceives the data outputs the predicted value using the

initialized weights (). Then, the loss function finds

the loss between the predicted value and the correct

answer. Loss is the penalty for a bad prediction. If

the model's prediction is perfect, the loss is zero. The

purpose of training the model is to find a set of

weights that minimizes this loss. Lastly, the gradient

() is calculated through an optimizer function

during the backward propagation process. Each

worker sends the computed gradient to ps. Then, ps

immediately applies the gradient received from a

specific worker to the global parameter along with

the learning rate (), and then synchronizes the new

global parameter () only to that worker. There-

fore, workers receive synchronized global parame-

ters that are not the same as each other and proceed

with the next iteration. That is, the asynchronous

training supports a fast-training speed because each

worker performs training independently. However, as

many ‘fast workers’ make significant progress in

training, the delayed gradients of ‘slow workers’ are

applied to global parameters, which has a limitation

of degrading training accuracy.

The synchronous training is a training method

where ‘fast workers’ complete one iteration and then

wait until the iteration of ‘slow workers’ is completed

without independently proceeding with the next

iteration. Each worker synchronizes new global para-

meters in the following way and proceeds with the

next iteration. Each worker sends the computed gra-

dient to ps. Then ps applies the gradients received from

all workers to the global parameters in turn, and then

synchronizes the new global parameters to all workers.

Therefore, workers receive the same synchronized

global parameters as each other and proceed with the

next iteration. That is, the synchronous training can

guarantee training accuracy as workers always receive

the same synchronized global parameters from ps.

However, there is a limitation in that the training

speed decreases due to the delay caused by ‘fast

workers’ waiting for ‘slow workers’ in each iteration.

Due to these limitations of the synchronous training, if

there many nodes, or if the jobs have different prior-

ities or functions, the asynchronous training that pre-

vents workers from waiting for each other may be a

better choice. Therefore, this paper focuses on train-

ing the model using an asynchronous training in the

parameter server architecture.

2.3 Kubernetes Scheduler

Kubernetes is a representative container orchestration Fig. 1. Parameter Server Architecture

208 정보처리학회논문지/컴퓨터 및 통신 시스템 제11권 제7호(2022. 7)

tool for automating the deployment, scaling, and

management of containerized applications. In Kubernetes,

all resource allocation decisions are handled in a

shared-state scheduling method, where all resource

allocation decisions are made in the scheduler without a

central resource allocator. One of the characteristics

of Kubernetes is that containers are not deployed

individually, but in units called a pod, which include

one or more application containers. The Kubernetes

scheduler is designed to create its own scheduling

components as desired or needed and use them

instead of the default scheduler [12]. That is, the pod

can be scheduled in the Kubernetes cluster using the

new scheduling policy. The scheduler monitors newly

created pods with no node placement decisions. For

every pod the scheduler finds, the scheduler is

responsible for finding the best node on which that

pod will run. All state information generated by

scheduling is processed while recording and sharing

the state in etcd, a data store. Fig. 2 shows the

Kubernetes scheduler processing procedure when a

new pod is assigned to a cluster.

1) When a user's pod creation request is submitted

to the API Server through a command such as

kubectl apply, the API Server stores the pod

information in etcd. API Server is a server that

provides APIs for users to access the cluster,

and at the same time, it is a server that interacts

with all components of Kubernetes.

2) In the pod spec, there is a nodeName field

indicating the node on which the pod is scheduled.

If the nodeName field is empty, the pod information

is stored in etcd in an empty state.

3) The scheduler maintains and manages a FIFO-

type pod queue to store pods that need to be

scheduled. The newly created pod will be wat-

ched by the scheduler and added to the pod

queue. After dequeuing a pod to schedule, the

scheduler detects that the nodeName field of

the pod is empty.

4) The scheduler finds the most suitable node for

the pod after going through two major scheduling

processes, predicates and priorities, based on

the configuration of the pod (e.g., by metrics

such as resource usage and affinity).

5) The scheduler writes the found node in the

nodeName field of the pod and then sends the

information to the API Server.

6) When the kubelet located in the node detects

that a new pod is scheduled on the node, the

local docker daemon is called to run the pod.

7) Update the status information of the pod to

etcd.

The Kubernetes default scheduler, including schedulers

such as YARN and Mesos used in Machine Learning

(ML) systems, has a disadvantage in that it only cares

about the number of resources allocated to each job

without knowing the characteristics of the training

job. In DLT jobs, there is no communication between

worker tasks and worker tasks only communicate

with the ps tasks. Therefore, the node placement of

ps tasks and worker tasks can greatly affect the

training speed [13]. That is, for faster training speed,

the ps tasks and worker tasks of the DLT job should

be scheduled on the same node. Also, the Kubernetes

default scheduler is not sensitive to the affinity

between ps tasks and worker tasks of DLT job during

the distributed training process. Then, the tasks are

scheduled in a random node in a FIFO manner

without considering task affinity. Each job is assigned

a fixed amount of resources based on the resource

requirements specified by the job owner. In this

case, cluster resources cannot be dynamically allocated

or released to the job, and the ps task can become a

bottleneck, slowing the job and reducing resource

utilization. Therefore, to efficiently schedule a DLT job,

a scheduling algorithm that considers the characteristics

and the size of the job is required.

3. Proposed Scheduling Strategy

This chapter describes operator design with a

scheduling strategy that minimizes JCT for concurrent

DLT jobs and achieves high cluster resource utilization.

The distributed training architecture of this paper is

constructed based on Kubernetes. Kubeflow has an

operator (tf-operator) that makes it easy to manage

Fig. 2. Kubernetes Scheduling Lifecycle

쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터 209

DLT jobs, and Kubeflow uses Kubernetes default

scheduler. When creating a new DLT job, the existing

Kubeflow scheduling policy schedules each task on a

random node with sufficient resources. It works well for

most workloads, but not for ML workloads. Therefore,

there is a need for a scheduler to help schedule ML

workloads more efficiently.

Session 3.1 describes the overall cluster structure for

the proposed operator, Session 3.2 describes the pre-

emptive scheduling algorithm, and Session 3.3 de-

scribes the autoscaling algorithm that occurs during the

scheduling process. The proposed scheduling algo-

rithm provides better scheduling performance than the

existing ones by combining resource allocation and task

placement.

3.1 Overall Architecture

Kubernetes is a highly extensible open-source plat-

form with a well-defined API structure. In addition to

built- in resources (e.g., pods) provided by Kubernetes,

resources required by users can be defined and used

internally. Therefore, if a user defines a custom re-

source directly inside the Kubernetes system, it can be

used with basic Kubernetes commands such as Kubectl.

And it is possible to create and use custom controllers

to manage those resources. The controller is a core

concept of Kubernetes and is implemented as a soft-

ware loop that runs continuously on the Kubernetes

master node [14]. The controller then compares the ob-

ject's current state with the desired state defined and

reconciles if necessary. Objects are well-known re-

sources such as Pod, Service, Namespace, or Volume.

The pattern of using custom resources and custom

controllers together is called the operator pattern

and allows users to maintain the desired state for

custom resources. The operator pattern refers to a

system derived from the concept of an operator in

the real world. When managing their custom resources,

the operator can define and handle how each resource

should operate, how it should be distributed, and

how to respond to problems by using the application

domain. In other words, the operator acts as a custom

controller for custom resources.

TFJob is a Kubernetes custom resource that enables

distributed training jobs using TensorFlow on Kubeflow.

That is, TFJob is designed to run distributed training

jobs on Kubernetes. TFJob consists of several ps

tasks and worker tasks, each deployed on a different

node within the Kubernetes cluster. Each task is

implemented on a container (e.g., pod) in the nodes.

This paper will show that KOD2 (Kubernetes Operator

for Distributed Deep learning training job), a new

operator that replaces the tf-operator that previously

managed TFJob, provides better scheduling performance.

The overall architecture of KOD2 running on Ku-

bernetes is shown in Fig. 3. Just like running con-

tainerized applications, KOD2 runs outside the mas-

ter node. When a TFJob where resource specs of ps

tasks and worker tasks are defined is submitted to

Kubernetes in the form of a YAML (YAML Ain't Markup

Language) file, the API Server on the master node

stores the pod allocation request status information

in etcd. KOD2 recognizes that the TFJob has been

created through the watch API, compares the current

state with the desired state, and, if different, takes

an action to reconcile to the desired state. In this

process, efficient scaling of ps tasks and worker

tasks and node placement decisions are made in

units of pods. The operation of the internal structure

of KOD2 is dealt with in section 4.2. Then, after ku-

belet creates a pod, the information that the pod is

assigned to a specific node and is running is stored

in etcd through the API server.

3.2 Priority Preemptive Scheduling

The core of KOD2 is a scheduling algorithm that

minimizes JCT and increases resource utilization of

the cluster. To achieve this goal, a preemptive sche-

duling algorithm is needed [15]. Although SJF (Shor-

test Job First) and SRTF (Shortest Remaining Time

First), which are representative preemptive schedu-

ling algorithms, are known to minimize JCT, there is

a premise that the remaining time of a job needs to

be known. In DLT jobs, it is not possible to accura-

tely predict the remaining training time.

However, considering the two main factors that

affect the training speed of a DLT job, the training

time is somewhat predictable. As shown in Fig. 4

(experiment on four deep learning models when batch

Fig. 3. Overall Architecture

210 정보처리학회논문지/컴퓨터 및 통신 시스템 제11권 제7호(2022. 7)

size is 256), in the parameter server architecture, when

there is no bottleneck in the ps task, the training speed

tends to be faster as the number of worker tasks

increases. Also, in a cluster with limited resources, if

one DLT job consumes too many resources, it may

become a bottleneck, which may affect the training speed

of other DLT jobs. If jobs that require fewer resources

are scheduled first, the overall average JCT can be

decreased. Since TFJob can specify the number of ps

tasks and worker tasks and resource requirements, it

can estimate which TFJob's JCT will be shorter by

comparing the specs of TFJob.

Therefore, a heuristic priority-based preemption

scheduling algorithm that gives a higher priority to a

TFJob that is expected to take a shorter time can be

considered. When several TFJobs enter the cluster

with limited resources, applying this scheduling al-

gorithm can lead to the effect of minimizing the

average JCT and efficient utilization of resources.

Algorithm 1 is a pseudocode for the preemptive

scheduling algorithm applied to KOD2. Each TFJob

has information on the minimum and maximum

required number of worker tasks that perform deep

learning training.

In lines 1-4, when TFJobs (newJobs) with different

specs enters the cluster, it is first placed in the

waiting queue. After that, the weight value (′) is

calculated based on the minimum required resources

of the newJob. The minimum required resources

refer to resources calculated by normalizing based

on the number of minimal worker tasks, CPU, and

memory required resources. In general, the more the

number of worker tasks, the faster the training speed

tends to be (see Fig. 4), and the fewer resources

required, the more resources can be used by other

tasks. That is, favoring TFJobs that need less resources

Table 1. Notation of Algorithm

Fig. 4. Relationship between Training Time

and Number of Workers

Algorithm 1. Preemptive Scheduling

쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터 211

has smaller opportunity cost since more resources are

available for other TFJobs [16].

Therefore, ′ is calculated through a heuristic

method proportion to the minimum number of

worker tasks and inverse proportion to the sum of

required CPU and memory resources. At this time, to

normalize the weight value to be actually applied to

a value between 0 and 1, the weight value () is

defined as Equation (1) in the form of a sigmoid

function for ′.

 




  ′


(1)

The larger the weight, the higher the priority of

the TFJob, and the worker tasks of other TFJobs with

relatively low priority can be preempted through

scaling. In lines 5-17, it is determined whether a

newJob with the largest weight in the current waiting

queue will be placed first in the running queue. If

the weight is greater than or equal to the TFJob with

the largest weight in the running queue and there

are resources more than the minimum required

resources in the cluster, the newJob is placed in the

running queue. If the cluster lacks resources, the

scale-in function is called to preempt worker tasks

of TFJobs (runJobs) running in the running queue.

If scale-in is possible, the placement status of

worker tasks in the cluster is updated and the newJob

is placed in the running queue thanks to the decreased

worker tasks in other runJobs. In lines 27-29, if the

waiting time is longer than STARVELIMIT for newJobs

that are not placed in the running queue because the

weight is small, the weight value is updated so that

they can be scheduled first in the waiting queue. In

lines 31-36, if the number of worker tasks being

trained in runJob is less than the maximum number

of worker tasks, the scale-out function is called to

increase the number.

If scale-out is possible, the placement status of

worker tasks in the cluster is updated and the

number of worker tasks in the runJob is increased. In

lines 37-40, when the worker task is trained as much

as the maximum number of worker tasks, the runJob

ends and enters the finished queue. As TFJob enters

the cluster and is scheduled, worker tasks can have

four states as shown in Fig. 5.

① RUNNING: When a new TFJob enters the cluster,

if there are enough resources available, it is

immediately enqueued in the running queue.

② WAITING: If the available resources are not enough,

it waits in the waiting queue, and when the

priority condition is met, worker tasks in the

running queue are preempted and can be

enqueued in the running queue.

③ STARVING: If the waiting time is longer than the

threshold, the weight of the TFJob is updated.

④ COMPLETED: When all training is completed, the

TFJob is enqueued in the finished queue.

3.3 Dynamic Auto Scaling

To accelerate job completion and make the most

of the cluster's resources, the number of tasks in

TFJob is dynamically adjusted using auto-scaling. There

Fig. 5. State transition diagram of a TFJob

Algorithm 2. Scale-In

212 정보처리학회논문지/컴퓨터 및 통신 시스템 제11권 제7호(2022. 7)

are maximum and minimum values for the number

of tasks in the auto-scaling setting. The scale-in, scale-

out algorithm that applies the scaling plan to the

cluster when the corresponding condition is satisfied

by performing the scaling test will be described.

The scale-in function is called when decreasing

the number of worker tasks of the TFJob being

trained. When the worker tasks of each TFJobs in the

cluster are being trained, there will be the TFJob

with the largest weight among them. At this time, when

a TFJob (newJob) with the same weight or greater

weight comes in, the scale-in function is called if the

cluster has insufficient resources.

In line 3, running TFJobs (runJobs) are first sorted

in ascending order by the weight value. Then, the

scale-in test is performed starting with the worker

tasks of the runJob with the smallest weight. In lines

4-8, if newJob and runJob have the same weight, but

runJob first entered the waiting queue before newJob,

worker tasks of this runJob are excluded from the

scale-in test. The ps tasks and worker tasks of runJob

selected as the scale-in test target will already be

placed on different nodes in the cluster. In lines

12-13, search the nodes to which rubJob's worker

tasks belong. At this time, to prepare for the case

where the ps task and the worker task belong to the

same node, the node with the ps task is searched last.

This is because the more the ps task and the worker

task are on the same node, the less communication

overhead between them. Also, ps tasks are excluded

from the scale-in test. In lines 15-18, if the node to

which rubJob's worker task belongs has idle resources

to satisfy the minimum required resource of newJob,

it returns a schedulable state and scale-in placement

plan. And the scale-in function is terminated. In

lines 19-23, if there are no idle resources in the

node, one worker task of runJob is decreased within

the threshold count. At this time, the number of

worker tasks in runJob is guaranteed to maintain at

least the minimum number of worker tasks. This is

to prevent a certain degree of starvation by allowing

the minimum worker tasks to train. As one worker

task is decreased, the idle resources of the node

increase. In line 24, update the scale-in placement

plan of the worker task in the runJob. In line 32, if

there are no nodes with sufficient idle resources, a

state that scheduling is impossible is returned and

the scale-in function is terminated. When scheduling

of newJob is possible through scale-in, the scale-in

placement plan is applied to the cluster.

The scale-out function is called when increasing

the number of worker tasks of the TFJob being trained.

When the worker tasks of each TFJobs in the cluster

are being trained, if the number of worker tasks

being trained is less than the maximum number of

worker tasks, the scale-out function is called.

In line 3, runJobs are first sorted in descending

order by the weight value. Then, the scale-out test is

performed starting with the worker tasks of the

runJob with the largest weight. And search all nodes

that can accommodate the scale-out of worker tasks

in runJob. In lines 7-8, if the idle resources of the

node cannot satisfy the required resources of one

worker task in runJob, the next node is searched. In

lines 9-12, the scale-out test of the worker task in

the runJob is performed on the node within the

threshold count. At this time, the worker task cannot

increase more than the maximum number of worker

tasks specified in runJob. If there are idle resources

of the node, one worker task is increased and the

idle resources are decreased. In line 15, update the

scale-out placement plan of the worker task in the

runJob. In line 23, it returns whether scale-out of the

worker tasks in runJob is possible and the scale-out

placement plan and terminates the scale-out

function. When scheduling of runJob is possible

through scale-out, the scale-out placement plan is

applied to the cluster.

Algorithm 3. Scale-Out

쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터 213

4. Implementation

This chapter introduces the implementation of

KOD2. Section 4.1 describes the task placement that

occurs in the distributed deep learning training process,

and section 4.2 describes the KOD2 structure that

manages TFJob in a Kubernetes cluster.

4.1 Distributed Deep Learning Tasks Placement

In a distributed computing environment, the main

reason for slow operations in TensorFlow is the

overhead of gRPC communication between ps tasks

and worker tasks. To reduce this overhead, ps tasks

and worker tasks should be placed using the fewest

number of nodes. That is, the training speed can be

improved by reducing the time required for parameter

exchange between the worker task and the ps task.

The Kubernetes default scheduler's FIFO-based random

scheduling algorithm can incur significant communication

and synchronization overhead. Therefore, KOD2 tries

to place all TFJob's tasks on as few nodes as possible

to minimize this overhead. The key point is to

search for nodes with idle resources that can

accommodate all tasks of TFJob. If all tasks of TFJob

cannot be placed together on one node, it tries to

place ps tasks and worker tasks together in order of

nodes with the idlest resources. When it is decided

on which node to place the tasks in KOD2, the node

is specified in the nodeName field of the pod spec.

If a node is explicitly specified in the nodeName

field in advance, it can be scheduled to that node

without having to undergo a separate scheduling

process in the Kubernetes default scheduler.

4.2 Operator for Preemptive Scheduling

The master node manages the records of all objects

in the cluster and stores the state desired by the user

in etcd. Sync loop is performed in the operator to

manage the state of the object through the records.

Sync loop means that whenever there is a change in

the internal state of the cluster, it is detected and if

the user's desired state does not match the current

state, it operates to match it. That is, the main task

of KOD2 is to match the desired state and current state

of the Object (TFJob). This reconcile process is per-

formed by the reconciler. Fig. 6 shows the internal op-

erating structure of KOD2.

If an object creation request is received from the

user, the Kubernetes API server stores the object in-

formation in etcd and delivers the object event to

KOD2. In KOD2, there are Kubernetes cache and work

queue. The cache serves to reduce the load on the API

server by caching the information retrieved from the

API server. And the informer exists inside the cache.

Informer is responsible for monitoring objects to be

managed by KOD2 and receiving object creation,

change, and deletion events. Only the object name and

namespace information, which are the object event in-

formation received by the informer, are extracted and

enqueued in the work queue. In the work queue, there

are keys containing the name and namespace infor-

mation of each object. Reconciler uses the Kubernetes

client to perform reconcile. The client's object write

request is delivered directly to the API server, but the

client's object read request is delivered to the cache,

not the API server. This is to read data from the cache

that exists inside KOD2 to prevent overload of API

Server. Reconciler dequeues the name and namespace

information of each object stored in the work queue.

Then, the reconcile process of each object is per-

formed using the client. In this process, scaling and

placement of each object are determined using

Algorithm1. The reconciler discards the object in-

formation in the case of an object that has succeeded

in reconciling. However, in the case of an object that

the reconciler has failed to reconcile, the name and

namespace information of the object is requeued.

After a specific time has passed, the reconciler tries

to reconcile again by dequeueing the object in-

formation that has failed. If object reconciliation fails

again, it is requeued and this process is repeated until

reconciliation succeeds.

5. Evaluation

This chapter shows the performance evaluation of

the proposed operator (KOD2) compared to the

existing operator (tf-operator) in a real environment.

Section 5.1 describes the experimental procedure

and section 5.2 describes the experimental results.

Fig. 6. KOD2 Architecture

214 정보처리학회논문지/컴퓨터 및 통신 시스템 제11권 제7호(2022. 7)

5.1 Experimental Procedure

For the experiment, we built a small cluster of

Kubernetes version 1.20.5 and Kubeflow version 1.0.0

consisting of 1 master node and 3 worker nodes as

shown in Table 2. Each node is equipped with a

10-cores CPU (Intel Core i9-10900K), 32 GB of RAM,

and 1 GTX 3090 GPU with 24 GB of device memory.

We deployed tf-operator and KOD2 in a Kubernetes

cluster to schedule each training job. The TFJob used

in the experiment performed the task of training the

CIFAR-10 dataset using four CNN models, CNN-rand

[17], VGG-16 [18], ResNet-50 [19], and ResNext-110

[20]. Training job configuration is shown in Table 3.

TFJob consists of one ps task and several worker tasks,

and the worker task can be scaled-in or scale- out

based on the calculated weight. Also, the resource re-

quirements of each worker task are different. One

TFJob among 10 TFJobs was submitted to the cluster

every 30 seconds, and average JCT and resource uti-

lization were measured and compared when using

KOD2 and using tf-operator. JCT means the elapsed

time from when the TFJob enters the waiting queue

until it enters the finished queue. Since TFJobs are en-

tered in units of time, if there are not enough resources

in the cluster, the worker tasks of TFJobs with smaller

weight can be preempted after comparing their weight

with each other.

5.2 Experimental Results

Fig. 7 shows the comparison of average JCT values

of 10 TFJobs measured by each operator according

to model and batch size. The tf-operator uses the

Kubernetes default scheduler, so the tasks are placed

on random nodes without considering task affinity.

In addition, even if there are insufficient resources

in the cluster since tasks are continuously scheduled

by the FIFO scheduling algorithm, these tasks fall into

a state of continuously requesting resources. For this

reason, the JCT of TFJob is slowed down, and some

tasks fall into a deadlock state and are terminated

without completion. On the other hand, KOD2 per-

formed in a stable state because it scheduled tasks

only when there were sufficient resources and per-

formed efficient scaling and placement. Therefore, as

shown in Fig. 7, the average JCT is relatively faster

for all models when using KOD2 than tf-operator.

Among them, when the batch size of Fig. 7(b) is 128,

the time reduction rate is 84%, showing the highest

performance.

Fig. 8 shows the average CPU utilization of 3 worker

nodes according to the model when the batch size is

64. CPU utilization was measured using Prometheus

[21] and Grafana [22]. Since the TFJob enters every 30

seconds, the initial average CPU utilization may be

small because the job is performed on only one of the

three nodes. After that, the CPU utilization of the three

nodes increases as the TFJob continues to enter.

When using tf-operator, since tasks are scheduled

even when there are insufficient resources in the clus-

ter, some tasks fall into a deadlock state, indicating

that each node cannot utilize resources properly. In

the case of Fig. 8(b), (c) and (d), there is a section show-

Kubernetes Version v1.20.5

Kubeflow Version v1.0.0

OS Ubuntu 18.04

CPU Cores 10

CPU Type i9-10900K

Memory 32GB

GPU Type GTX 3090

Device Memory 24GB

Num of Master Node 1

Num of Worker Node 3

Table 2. Cluster Configuration

Model
CNN-rand, VGG-16,

ResNet-50, ResNext-110

Network Type CNN

Application Domain Image Cassification

Dataset CIFAR-10

Dataset Size 60,000

Batch Size 8, 16, 32, 64, 128

Learning Rate 0.01

Table 3. Training Job Configuration

Fig. 7. Average Job Completion Time

쿠버네티스에서 분산 학습 작업 성능 향상을 위한 오토스케일링 기반 동적 자원 조정 오퍼레이터 215

ing the CPU utilization rate increases rapidly, unlike

the rest of the cases. In this case, it seems that due

to some TFJob that is terminated without completion,

idle resources are created and the utilization has in-

creased rapidly. However, this utilization cannot be

maintained for a long time and it can be seen that the

utilization is lowered again. And in the case of each

model, the entire work was finished after about 30 mi-

nutes to over an hour in addition to the time shown

in the Figure. On the other hand, when using KOD2,

Fig. 8(b) shows the average CPU utilization increase

rate of up to 92%. In other words, the result of KOD2

shows that each node utilizes resources better than the

case of tf-operator for each model.

6. Conclusion

KOD2 is an operator proposed to manage TFJob

more efficiently than existing operator in Kubernetes

Cluster. Existing operator use scheduling policy that

cannot allocate resources dynamically and do not

consider the task affinity of the training jobs, which

can result in longer job completion time and lower

resource utilization. In KOD2, a weight-based preemption

scheduling algorithm was applied by reflecting the

job priority. A high priority is given to a TFJob that is

heuristically predicted that the job will be completed

faster based on resource usage and the number of

worker tasks. If there are not enough resources in

the cluster, but the priority of the waiting TFJob is higher

than that of the running TFJob, task preemption occurs

through auto-scaling. In addition, the task placement of

the training job in consideration of task affinity was

also made. As a result, when using KOD2 through an

experiment, it showed the effect of minimizing the

average JCT and leading to a higher resource

utilization than before.

References

[1] T. Ben-Nun and T. Hoefler, “Demystifying parallel and

distributed deep learning: An in-depth concurrency

analysis,” In ACM Computing Surveys (CSUR), Vol.52, No.4,

pp.1-43, 2019.

[2] P. Goyal, et al., “Accurate, large minibatch sgd: Training

imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[3] X. Jia, et al., “Highly scalable deep learning training system

with mixed-precision: Training imagenet in four minutes,”

arXiv preprint arXiv:1807.11205, 2018.

[4] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image

classification at supercomputer scale,” arXiv preprint arXiv:

1811.06992, 2018.

[5] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou,

“Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients,” arXiv preprint

arXiv:1606.06160, 2016.

[6] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig,

and G. E. Dahl. “Measuring the effects of data parallelism

on neural network training,” arXiv:1811.03600, 2018.

[7] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D.G. Andersen, and

A. J. Smola. “Parameter server for distributed machine

learning,” In Big Learning NIPS Workshop, 2013.

[8] Kubeflow 2021, accessed 1 September 2021 [Internet],

https://www. kubeflow.org.

[9] TensorFlow Operator 2021, accessed 1 September 2021

[Internet], https://www.kubeflow.org/docs/components/trai

ning/tftraining/#installing-tensorflow-operator.

[10] S. Li, et al., “Pytorch distributed: Experiences on accelerating

data parallel training,” arXiv preprint arXiv: 2006.15704,

2020.

[11] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P.

Xing, “Geeps: Scalable deep learning on distributed gpus with

a gpu-specialized parameter server,” In Proceedings of the

Eleventh European Conference on Computer Systems, 2016.

[12] Kubernetes 2021, accessed 1 September 2021 [Internet],

https:// kubernetes.io/docs/concepts/scheduling-eviction/k

ube-scheduler.

[13] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. “Optimus:

An efficient dynamic resource scheduler for deep learning

clusters,” In Proceedings of ACM EuroSys, 2018.

[14] Operator 2021, accessed 1 September 2021 [Internet],

https://cloud. redhat.com/learn/topics/operators.

Fig. 8. Average CPU Utilization

216 정보처리학회논문지/컴퓨터 및 통신 시스템 제11권 제7호(2022. 7)

[15] J. Gu, “Tiresias: A GPU cluster manager for distributed deep

learning,” In Proceedings of USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), 2019.

[16] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and

A. Akella. “Multi-resource packing for cluster schedulers,”

In ACM SIGCOMM Computer Communication Review,

Vol.44, No.4, pp.455-466, 2014.

[17] Y. Chen, “Convolutional neural network for sentence classi-

fication,” MS thesis, University of Waterloo, 2015.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” arXiv preprint

arXiv:1409.1556, 2014.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2016.

[20] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated

residual transformations for deep neural networks,” In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017.

[21] Prometheus 2021, accessed 1 September 2021 [Internet],

https://prometheus.io.

[22] Grafana 2021, accessed 1 September 2021 [Internet],

https://grafana.com

[23] J. Geng, D. Li, and S. Wang. “Accelerating distributed machine

learning by smart parameter server,” In Proceedings of 3rd

Asia-Pacific Workshop Networking, 2019.

[24] E. Gebremeskel, “Analysis and comparison of distributed

training techniques for deep neural networks in a dynamic

environment,” 2018.

[25] W. Xiao, “Gandiva: Introspective cluster scheduling for deep

learning,” In 13th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI 18), 2018.

[26] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling

in distributed machine learning clusters,” In IEEE INFOCOM

2018-IEEE Conference on Computer Communications, 2018.

[27] M. Khalil-Hani and S. Liew, “A-sdlm: an asynchronous sto-

chastic learning algorithm for fast distributed learning,” In

13th Australasian Symposium on Parallel and Distributed

Computing, 2015.

Jinwon Jeong

https://orcid.org/0000-0002-6882-6074

e-mail : jin4812@korea.ac.kr

He received a M.S. degree in computer

science and engineering from Korea

University, Seoul, Korea, in 2022. His

research interests include cloud com-

puting, distributed computing, distributed deep learning.

Heonchang Yu

https://orcid.org/0000-0003-2216-595X

e-mail : yuhc@korea.ac.kr

He received the B.S., M.S., and Ph.D.

degrees in computer science and en-

gineering from Korea University, Seoul,

Korea, in 1989, 1991, and 1994, re-

spectively. He has been a Professor of computer science

and engineering with Korea University since 1998. From

January 2015 to December 2020, he was the Vice President

of Korea Information Processing Society, Korea. His re-

search interests include cloud computing, virtualization,

and distributed computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

