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ABSTRACT

Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of 

services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data 

collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from 

massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data 

is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end 

devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. 

But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. 

Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high 

computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the 

current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. 

We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes 

the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. 

It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various 

application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging 

deep learning within edge computing.
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딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 

DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰

Temesgen Seyoum Alemayehu†⋅조 위 덕††

요     약

오늘날 데이터 네트워크 AI (DNA) 기반 지능형 서비스 및 애플리케이션은 비즈니스의 삶의 질과 생산성을 향상시키는 새로운 차원의 서비스를 

제공하는 것이 현실이 되었다. 인공지능(AI)은 IoT 데이터(IoT 장치에서 수집한 데이터)의 가치를 높이며, 사물 인터넷(IoT)은 AI의 학습 및 지능 

기능을 촉진한다. 딥러닝을 사용하여 대량의 IoT 데이터에서 실시간으로 인사이트를 추출하려면 데이터가 생성되는 IoT 단말 장치에서의 처리 

능력이 필요하다. 그러나 딥러닝에는 IoT 최종 장치에서 사용할 수 없는 상당 수의 컴퓨팅 리소스가 필요하다. 이러한 문제는 처리를 위해 IoT 

최종 장치에서 클라우드 데이터 센터로 대량의 데이터를 전송함으로써 해결되었다. 그러나 IoT 빅 데이터를 클라우드로 전송하면 엄청나게 높은 

전송 지연과 주요 관심사인 개인 정보 보호 문제가 발생한다. 분산 컴퓨팅 노드가 IoT 최종 장치 가까이에 배치되는 엣지 컴퓨팅은 높은 계산 

및 짧은 지연 시간 요구 사항을 충족하고 사용자의 개인 정보를 보호하는 실행 가능한 솔루션이다. 본 논문에서는 엣지 컴퓨팅 내에서 딥러닝을 

활용하여 IoT 최종 장치에서 생성된 IoT 빅 데이터의 잠재력을 발휘하는 현재 상태에 대한 포괄적인 검토를 제공한다. 우리는 이것이 DNA 기반 

지능형 서비스 및 애플리케이션 개발에 기여할 것이라고 본다. 엣지 컴퓨팅 플랫폼의 여러 노드에서 딥러닝 모델의 다양한 분산 교육 및 추론 

아키텍처를 설명하고 엣지 컴퓨팅 환경과 네트워크 엣지에서 딥러닝이 유용할 수 있는 다양한 애플리케이션 도메인에서 딥러닝의 다양한 개인 

정보 보호 접근 방식을 제공한다. 마지막으로 엣지 컴퓨팅 내에서 딥러닝을 활용하는 열린 문제와 과제에 대해 설명한다.
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1. Introduction

The amount of data generated by Internet of things (IoT) 

devices grows as the number of connected IoT devices in-

creases at steady pace. In the year 2025, a new forecast 

from International Data Corporation (IDC) [1] approx-

imates that there will be 41.6 billion connected IoT devices 

that generate 79.4 zettabytes (ZB) of data. The IoT big da-

ta, generated daily by IoT end devices, put great demands 

on data processing to solve large-scale complex problems. 

Analyzing this massive IoT data intelligently will play a 

significant role for DNA-based intelligent services and 

applications. IoT, IoT big data and artificial intelligence 

(AI) are the three digital pillars of DNA-based intelligent 

services and applications. They improve the quality of life 

and productivity of industries as AI based analysis be-

comes critical to extract insights from IoT big data in real 

time [2]. Nowadays, deep learning as special case of AI 

is widely deployed to a variety of business sectors to im-

prove the quality of life and productivity of businesses. 

For instance, applications, such as automotive [3-5], smart 

cities [6-8], health care [9-11], computer vision and natu-

ral language processing [12, 13], etc., are primarily driven 

by the IoT big data, machine language algorithms, high- 

performance computation and storage facilities. 

While DNA has brought unforeseen opportunities for 

various applications, there are also several architectural 

and data deluge challenges while deploying DNA based 

intelligent applications in practice. On-device analyses of 

IoT big data on the device itself (locally) suffer from poor 

performance due to resource constraints. Extracting in-

sights from the IoT big data requires a significant amount 

of computation resources and storage facilities which may 

not be available at the IoT end devices. Such challenges 

have been addressed by transporting the data bulks from 

the IoT devices to the cloud datacenters for processing 

[14]. However, transferring IoT big data to the cloud incurs 

prohibitively high transmission delay and privacy prob-

lems which are a major concern [15]. The delay to access 

cloud services might not be short enough to satisfy the 

requirements of time-critical applications like coopera-

tive autonomous driving [5]. Applications, such as camera 

frames of an autonomous vehicle require real-time in-

ferences to detect and avoid obstacles. Sending private da-

ta to the cloud risks privacy issues which are critical to 

areas such as smart homes and cities. In addition to that, 

sending data from the IoT devices to the cloud introduces 

scalability problems. As the number of connected IoT de-

vices increases, the volume of data increases, and network 

access to the cloud can become a bottleneck due to band-

width constraints. 

The various challenging issues, such as the high trans-

mission delay, privacy, and scalability problems in cloud 

computing have led to a new distributed computing archi-

tecture called edge computing [16,17]. In Edge computing, 

some parts of the computing tasks can be done coopera-

tively at the distributed edge devices or IoT devices rather 

than having everything computed in the cloud (see Fig. 

1). Detail research works on edge computing can be found 

in [18, 19]. Since the edge is closer to the IoT devices than 

the cloud, edge computing is a viable solution to resolve 

the latency, privacy, and scalability challenges to have 

high-performance AI for analyzing huge IoT data. Edge 

computing performs substantial computing close to the 

IoT devices to minimize data transmission and response 

time [20]. The edge computing’s proximity to IoT end de-

vices decreases the end-to-end latency and enables to 

provide real-time DNA-based intelligent services and ap-

plications. Edge computing addresses scalability issues as 

it enables a hierarchical architecture of IoT end devices, 

edge computing devices, and cloud data centers avoiding 

network bottlenecks at a central location. Edge computing 

also preserves the privacy of users as it avoids traversal 

of the public Internet and enables data to be analyzed by 

local trusted edge nodes close to the IoT end devices.

Fig. 1. Edge Computing vs Cloud Computing

The rest of the paper is organized as follows: Section 

2 presents deep learning and the three most widely applied 

DNN structures. Section 3 addresses the two main en-

hancements that enable deep learning to run in the edge 

computing platform. Section 4 presents the two main types 

of distributed DNN training: Data parallelism and Model 

parallelism. Section 5 provides the different privacy pre-

serving approaches of deep learning on the edge comput-

ing environment. Section 6 presents the various applica-

tion domains where deep learning on the network edge 

can be useful. Section 7 discusses open issues and chal-

lenges leveraging deep learning within edge computing 

and finally, Section 8 concludes the paper.
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2. Deep Learning

Deep learning is a subfield of the family of machine 

learning based on the structure and function of the brain 

called artificial neural networks (ANN) with representation 

learning. More details about deep learning can be found 

in [21, 22]. It is the most promising approach to resolve 

the problem of reliably extracting real-world IoT data 

from a complex environment that confuses the conven-

tional machine learning techniques [23]. ANN with multi-

ple layers between the input and output layers is called 

deep neural network (DNN) [22]. The three most widely 

applied DNN structures are Multilayer Perceptrons (MLPs), 

Convolution Neural Network (CNN), and Recurrent Neural 

Network (RNN) (See Fig. 2). Multilayer perceptron (MLPs) 

is a fully connected neural network of simple neurons 

called perceptron stacked in several layers to solve com-

plex computational problems from a massive volume of 

the dataset [24]. Each perceptron in the input layer sends 

outputs to all the perceptrons in the hidden layers and 

all perceptrons in the hidden layer send outputs to the 

output layer. MLPs are used for problems related to classi-

fication prediction where inputs are assigned a label. MLPs 

are also used for problems of regression prediction where 

a real-valued quantity is predicted from inputs. The con-

volutional neural networks (CNNs) are special cases of 

DNNs that involve the usage of the matrix multiplications 

with convolutional filter operations. CNNs are suitable for 

data that has a spatial relationship which is important 

when working with images. They are common in DNNs 

which are designed for image and video analysis [25,26]. 

Recurrent neural networks (RNNs) are designed especially 

for time series prediction [27, 26], which are characterized 

by having loops in their layer connections to keep state 

and enable predictions on sequential inputs. They are suit-

able to work with prediction problems related to sequences 

such as sequences of words in a sentence for natural lan-

guage processing or sequence of sounds in speech proc-

essing or recognition.

3. Deep Learning in the Edge Computing

IoT end devices are generating data that need to be ana-

lyzed in real time using deep learning. However, the train-

ing and inference of DNN require high computation re-

sources to run quickly which may not be available at the 

IoT end devices. Edge computing is relatively smaller stor-

age capability and limited power supply in edge devices 

as compared to the cloud datacenters. Due to this fact, 

deep learning in the edge computing has been enabled 

by two main improvements: The first one is to design an 

efficient deep learning model that reduce computational 

and memory space requirements to train the model with 

less time. The other one is to distribute the training and 

inference tasks of deep learning among the IoT end de-

vices, the edge data servers and the cloud datacenters for 

parallel processing to obtain better efficiency.

3.1 Efficient Deep Learning Model for Reducing 

Computational and Memory Requirements

The full burden of training a DNN model is too intensive 

for a single resource constrained IoT end devices as it re-

quires abundant memory and high computational power 

to store the training data and to train the model, respec-

tively. Deploying DNN on IoT end devices such as mobile 

phones, vehicles, medical devices, drones or surveillance 

cameras, etc., remains a big challenge. To address the 

challenges, various lightweight models that require low 

processing power which can be deployed on IoT end de-

vices have been designed to operate efficiently on edge 

devices [28]. Model compression is one of the techniques 

of creating lightweight models that can allow resource 

hungry DNN model to run on tiny IoT end devices [29]. 

It reduces the processing and memory requirements of 

DNNs with minimal effect on the overall accuracy of the 

model. In the literature, various DNN model compression 

techniques including data quantization, pruning, knowl-

edge distillation, etc. have been proposed. 

1) Quantization

Quantization is one of the model compression techni-

que that satisfy the extreme memory and the higher proc-

essing power demands of DNN models at the expense of 

a minimal loss in accuracy [30, 31]. It reduces the com-

plexity of the number of bits (bitwidth) and arithmetic op-

erators to represent parameters and activations. Bitwidth 

that represent data determines the complexity of opera-

Fig. 2.  The Three Most Widely Applied DNN Structures [26]: 
(a) Multilayer Perceptron, (b) Convolutional Neural Networks, 

(c) Recurrent Neural Networks
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tors. Operators for floating-point arithmetic are more 

complex compared to integer arithmetic or fixed- point. 

The default 32-bit floating type variables that represent 

model weights have two main problems: The 32-bit float-

ing point format that represent each weight requires con-

siderable memory and makes the model very large. In ad-

dition to that the execution of the 32 float type variables 

is slow compared to the more compact 16-bit or 8-bit 

type variables that represent weights. To address such 

problems, quantization converts DNN parameters from 

32-bit floating point towards 16-bit or 8-bit models, even 

to 1-bit. It effectively compacts the model size and accel-

erate the training and inference actions. A model that use 

8-bit fixed-point data representations in [32] achieved an 

accuracy close to that obtained by the same model using 

32 bit floating-points.

2) Pruning

DNN Pruning is an elimination of connections (synapses) 

and or neurons that are not useful or redundant to the DNN 

to reduce computational and memory demands (See Fig. 

3) [33]. Several training techniques that apply pruning on 

the pre-trained network have been proposed in [34, 35]. 

Pruning improves performance and energy efficiency as 

it provides a smaller and faster network [36, 37].

Fig. 3. Synapsis and Neurons Before and After Pruning [33]

The study in [38] presents a pruning method that com-

presses commonly used deep learning structures, such as 

convolutional, and recurrent neural networks in IoT end 

devices for sensing applications. The pruned DNN model 

can directly use the existing deep learning libraries to be 

deployed on edge devices without further modification. 

An effective energy-aware pruning method that uses the 

energy consumption of the deep convolutional neural net-

work to guide the pruning process has been proposed in 

[39]. The proposed pruning method reduces the energy 

consumption of AlexNet and GoogLeNet, by 3.7× and 

1.6×, respectively, with less than 1% top-5 accuracy loss. 

3) Knowledge Distillation 

Knowledge distillation is one of model compression 

technique that provides smaller models (named as student) 

that solve the same task as the larger models (named as 

teacher) [40]. This technique involves creating a smaller 

DNN model that resembles the behavior of a large com-

plex model. The large complex model is first trained with 

large datasets. Then, output predictions produced from 

the larger one is transferred to a smaller DNN model at 

which functions learned from the large model is appro-

ximated. The authors in [41] developed a multi-teacher 

distillation framework for compressed video action recog-

nition based on convolutional neural networks. They 

showed how model is compressed by transferring a 

weighted average of multiple teachers’ knowledge to a sin-

gle student. The study in [42] proposed to only train the 

backbone of a student model to mimic the feature ex-

traction output of the teacher model. The authors argue 

that to first distil the backbone knowledge from teacher 

and then to fit the task-head with labeled data can im-

prove the generalization ability of knowledge distillation 

method.

3.2 Distributed Training and Inference Tasks of Deep 

Learning

The multilayer structure of deep learning is more suit-

able for edge computing. Specifically, when there are 

compute-intensive tasks like huge DNN, multiple distrib-

utive edge nodes, cloud datacenters and IoT end devices 

can work collaboratively to accomplish the task to meet 

the requirements of the intelligent system [43, 44]. For in-

stance, in the case of cloud-edge collaboration, models 

are usually trained on the cloud and then transferred to 

the edge for inference tasks. In such type of scenarios, 

we need to focus on the distributed DNN models over the 

cloud and edge edge to realize real-time DNA-based in-

telligent services and applications.

Numerous frameworks have been provided reliable 

and efficient solutions for optimizing edge computing 

implementations. The authors in [45] designed a frame-

work called ‘In-Edge AI’ to intelligently utilize the collab-

oration of end devices and edge nodes to exchange the 

learning parameters for a better training and inference 

of the models, They integrate deep reinforcement learn-

ing techniques and federated learning framework with 

mobile edge systems to optimize mobile edge computing, 

caching and reduce the unnecessary system communica-

tion load. The study in [46] presented an architecture that 
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is based on a distributed edge and cloud paradigm. It 

provides a balance between the benefits and cost of data 

processing at the edge versus at the cloud centric 

computing. The flexible framework proposed in [47] 

combines deep learning in IoT and flexible edge comput-

ing architecture using multiple agents to significantly im-

prove performance of the system. The proposed model 

optimizes the task assignment between the edge and 

cloud layers. The authors in [48] introduces deep learning 

for IoTs into the edge computing environment and pro-

vides the deep learning layer service to manage the task 

at the edge computing to improve the performance of 

the IoT deep learning applications. There are different 

architectures and methods to speed up deep learning 

training and inference on the edge. 

DNN Architectures of edge computing

Training Architectures Inference Architectures

Centralized
Decentralized

Hybrid

Edge based
Device based

Edge-Device based
Edge-Cloud based

Device-Edge-Cloud based

Table 1. Training and Inference Architectures of Deep 
Learning on the Edge

1) Training Architectures of DNN

The three main training architecture modes of DNN are: 

Centralized, Decentralized, and Hybrid. 

a) Centralized Training Architecture

In the centralized training architecture mode, the DNN 

model is trained in the cloud datacenter after gathering 

data from IoT end devices [22,49]. The IoT end devices 

include smart phones, raspberry pi, medical devices, 

smart cars or surveillance cameras, etc. First, the training 

data originated from distributed IoT end devices is sent 

to the cloud data center. Then, the cloud datacenter per-

forms the DNN training using these IoT data (See Fig. 4). 

After the DNN model is trained, it may be deployed back 

on the IoT end devices for serving the user. One of the 

drawbacks of centralized training architecture is that the 

data originated on the IoT end devices may be sensitive 

to send it to the cloud datacenter. The other drawback is 

transferring massive IoT big data may be costly and slow, 

especially if the deep learning model needs to be updated 

frequently.

Fig. 4. Centralized Training Architecture

b) Decentralized Training Architecture

In the decentralized training architecture mode, each 

IoT end device trains its own DNN model locally with their 

own local data keeping the data on the device themselves 

(See Fig. 5). This allows to preserve private information 

locally as it eliminates copying of data to the cloud 

datacenter. The global DNN model can be obtained by 

sharing local training improvements [22, 49]. To do that, 

IoT end devices in the network communicate with each 

other to exchange the local model updates with distributed 

edge training methodologies, such as federated learning 

and large batch training.

Fig. 5. Decentralized Training Architecture

c) Hybrid Training Architecture

The hybrid training architecture mode combines both 

the centralized and decentralized training architectures 

[22, 49]. The DNN model is trained on either a cloud data-

center or by edge servers receiving decentralized updates 

from each IoT devices (See Fig. 6). This architecture is 

also known as Cloud-Edge-Device training due to the in-

volved roles of end device, edge devices and cloud 

datacenters.
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Fig. 6. Hybrid Training Architecture

2) Inference Architectures of DNN

Inference refers to the process of using a trained DNN 

model to provide the best possible accuracy. It requires 

a pre-trained DNN model to infer a result. When a new 

IoT raw data is given as input to the trained DNN model, 

it outputs a prediction based on accuracy of the trained 

DNN model. As IoT end devices are compute and memo-

ry-constrained, they cannot fully execute the DNN model. 

One possible solution is to distribute the DNN model 

across the three layers of edge computing. An architecture 

of the DNN model inference is crucial to have high-quality 

deep learning service in edge computing. Several major 

edge centric inference architectures are defined in the lit-

erature [29, 49-51]. For instance, in [49], the major edge 

centric inference modes are classified into four modes, 

namely edge-based, device-based, edge-device and edge- 

cloud. 

a) Edge-based Mode

In this approach, the IoT end device receives the input 

data then send them to the edge server for inference com-

putation (See Fig. 7). After inference is performed by the 

DNN model in the edge server, the prediction results will 

be returned to the IoT end device. In the Edge-based 

mode, it is easy implement the application on different 

mobile platforms as the DNN model is on the edge server, 

but the main disadvantage is that the inference perform-

ance depends on network bandwidth between the device 

and the edge server.

b) Device-based Mode

In this approach, the IoT end device acquires the DNN 

model from the edge server and accomplishes the in-

ference locally in the IoT end device (See Fig. 8). The IoT 

end device does not communicate with the edge server 

during the process of Inference. So, the inference is reli-

able, but the IoT device requires huge resources such as 

CPU, GPU, RAM. 

Fig. 7. Edge-based Inference Mode

Fig. 8. Device-based Inference Mode

c) In Edge-Device Mode

In this mode, the IoT end device partitioned the DNN 

model into multiple layers and execute the first specific 

layers of the DNN model and send the intermediate data 

to the edge server where the remaining layers of the DNN 

model are executed (See Fig. 9). Then the edge server 

sends the prediction results to the IoT end device. 

Edge-device mode is more reliable and flexible than the 

edge-based and the device-based modes. However, the 

IoT end device in this mode requires large amount of re-

sources as the first specific layers of the DNN model is 

computationally intensive.
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Fig. 9. Edge-device Inference Mode

d) The Edge-Cloud Mode 

In this mode, the IoT end device is responsible for gath-

ering input data. Parts of the first specific layers of the 

DNN model are executed in the edge server, and inter-

mediate results are sent to the cloud datacenter (See Fig. 

10). Then, the remaining layers of the DNN model are exe-

cuted in the cloud datacenter. This mode is suitable for 

the case that the IoT end device is highly resource 

constrained. 

Fig. 10. Edge-cloud Inference Mode

e) The Device-Edge-Cloud Mode 

Additional inference modes other than the ‘Major 

edge-centric inference modes’ can be considered to carry 

out complex DNN model inference tasks. For instance, the 

‘cloud-edge-device’ inference mode can be assumed to 

increase reliability and flexibility by efficiently consider-

ing the heterogeneous resources across IoT end devices, 

edge servers and cloud datacenters. In cloud-edge-device 

mode, the IoT end device first partitions the DNN model 

into multiple layers based on the current system environ-

mental factors such as device resource, network band-

width, and edge server workload. It then executes the DNN 

model up to a specific layer and send the intermediate 

data to the edge server. Then, the edge server executes 

the next portion of layers and send the intermediate data 

to the cloud datacenter. Finally, the cloud data center

Fig. 11. Cloud-edge-device Inference Mode

executes the remain layers and send the prediction results 

to the IoT end device (See Fig. 11). 

4. Distributed Training for Deep Learning

As DNN grows in complexity and datasets increase in 

size, the required processing and memory demands of 

deep learning increases, and a cluster of devices with 

high-performance that work together is required. 

Therefore, distributed, and parallel algorithms are vital for 

DNN to considerably reduce training times and make it 

suitable for real-time DNA-based intelligent services and 

applications. Distributed heterogeneous nodes work in 

parallel to speed up the DNN training due to the increased 

computational requirements of training DNN models and 

massive training datasets [52,53]. The training is carried 

out in multiple distributed nodes that are equipped with 

multiple CPUs or GPUs. The workload of compute and 

time-intensive tasks to train the DNN is split up and shared 

among multiple computer nodes. There are two main 

types of distributed DNN training: Data parallelism and 

Model parallelism [54]

4.1 Data Parallelism

In data parallelism based distributed DNN training, an 

identical replica of the DNN model is loaded in each work-

er station (node). The training data is split into non-over-

lapping partitions, where the number of partitions is equal 

to the total number of available nodes. Then, each worker 

node processes a subset of the training data. Data parallel-

ism is more suitable when training data is too large to 

be stored on a single node or faster training is a require-

ment to provide real-time DNA-based intelligent services 

and applications. Data parallelism requires updates of pa-

rameters of the model as data is distributed on multiple 

worker nodes. Hence, the parameters of the model among 

nodes need to be synchronized at the end of an iteration 

in the parameter server (See Fig. 12). Data parallelism is 
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Fig. 12.  Data Parallelism

efficient for compute intensive DNN models that have only 

a few parameters, such as the convolutional neural 

networks. But it does not scale well for DNN models that 

have large number of parameters as synchronization of 

the parameters becomes the bottleneck [55].

4.2 Model Parallelism

In model parallelism based distributed DNN training, 

the DNN model is segmented into disjoint subsets of a neu-

ral network that can run concurrently across multiple 

dedicated worker nodes (See Fig. 13) [56]. Each worker 

node runs on the same replica of the training data and 

eliminates parameter synchronization among worker 

nodes. But model parallelism requires data transfers be-

tween operations and prohibits parallelism within an 

operation. Model parallelism is more suitable if the model 

is too big to be fit into a single worker node. The main 

advantage of model parallelism is the low memory demand 

expected from each worker node as the model is split into 

disjoint subsets of the DNN across multiple worker nodes. 

Its disadvantage is the heavy communication that is need-

ed among worker nodes and synchronization delays. In 

the model parallelism approach, worker nodes only need 

to synchronize the shared parameters, usually once for 

each forward or backward-propagation step. 

Fig. 13. Model Parallelism

4.3 Pipeline Parallelism

This approach is a combination of data and model 

parallelism. It is an improvement to model parallelism, 

where several mini batches are loaded into the system at 

once to effectively use resources parallelly [88]. First, the 

DNN training model is split into partitions and each parti-

tion is loaded to every worker node. The training data is 

also split into mini batches. Then, each worker node in 

the forward pass compute the output signal for a set of 

mini batches and immediately transmit them to the sub-

sequent worker nodes. Similarly, worker nodes in the 

backpropagation pass compute the gradients for their 

model partition for multiple mini batches and immediately 

propagate them to the preceding worker nodes. Compared 

to pure model parallelism, pipeline parallelism sig-

nificantly increases the utilization of worker nodes. This 

is because in the case of pure model parallelism only one 

batch is processed at a time.

5. Privacy Preserving Deep Learning in the 

Edge Computing

All efforts to enhance the performance of DNA-based 

intelligent services and applications in edge computing 

should be built with privacy in mind. IoT end devices 

would generate a massive volume of IoT data such as user 

location data, health, or records of activities at the net-

work edge. The traverse of such data from the IoT end 

devices to the edge servers may contain sensitive in-

formation that may lead to privacy concerns. The training 

with distributed devices raises a privacy issue as there is 

a share of sensitive information associated with private 

data. 

To realize DNA-based intelligent services and applica-

tions on IoT big data in distributed edge computing, heter-

ogeneous IoT end devices and edge servers are required 

to work cooperatively. In that case, training or inference 

tasks might be sent to unfamiliar devices for further 

processing. Therefore, decentralized trust is required to 

have trustworthy deep learning in edge computing that 

are processed by different entities. Lightweight and dis-

tributed security designs are critical to ensure user au-

thentication, access control and data integrity, and mutual 

platform verification for deep learning in edge computing. 

In addition to that, it is necessary to innovate secure rout-

ing schemes and trust network topologies for edge com-

puting to deliver quality smart services as there is a case 

of coexistence of trusted edge nodes with malicious ones. 
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There are different approaches, such as cryptographic 

and/ or adding of noise to training data/ transmitting gra-

dients, transmitted only partial data, etc., to improve pri-

vacy:

5.1 Cryptography Techniques

If the data is not encrypted, there could be risk of pri-

vacy leakage and attacks from malicious users. Some 

works such as [57, 58] suggest encryption of data to protect 

privacy. However, the encrypted data need to be de-

crypted before the execution of training or inference 

tasks. This process requires additional computation 

overhead. To cope with this problem, future efforts could 

pay more attention to cognitive homomorphic encryption 

method [59], as this encryption method allows direct com-

putation on ciphertexts and generate encrypted results. 

After decryption, the result is the same as the result ach-

ieved by computation on the unencrypted data. The au-

thors in [60] propose multi-key privacy preserving deep 

learning based on a hybrid structure by combining the 

double decryption mechanism [61] and fully homomorphic 

encryption [62] to avoid the interaction among multiple 

data owners. . Suggested work in [89] proposes a CryptoNN 

framework that trains a neural network using encrypted 

data without communication protocol overheads. The 

CryptoNN scheme simply computes permitted functions 

over sensitive data encrypted by distributed data owners. 

It only acquires computed results instead of the plaintext. 

The framework supports predictive analysis in privacy- 

preserving way.

5.2 Adding Noise to the Training Data

While it is prevalent to outsource training of deep learn-

ing models in the edge computing, protecting the privacy 

of sensitive training data and preventing information leak-

age to untrusted edge nodes is very essential. The authors 

in [63] propose a privacy preserving through data obfusca-

tion to preserve the privacy of training data in machine 

learning applications. The obfuscate function that they in-

troduced is applied to the training data before training. 

The obfuscate function adds random noise to existing data 

to hide sensitive information from untrusted third parties.

5.3 Adding Noise to the Transmitted Gradients 

One of the approaches to protect privacy in relation 

with training a DNN is to add noise to the transmitted 

gradients [64, 65]. Based on the authors in [64], some gra-

dients above a certain given threshold are selected to be 

uploaded to the central server, and noise is added to each 

of the uploaded gradient to train the model accurately 

while reducing information leakages from the training 

updates. A similar problem studied in [65] modified the 

gradient by clipping, averaging, and adding noise to it be-

fore uploading to the central server.

5.4 Transmitting only Partial Data

This is achieved by splitting the DNN model across the 

IoT end device, the edge devices and cloud datacenters. 

For instance, the author in [66] design a cloud-based 

framework that partitions the DNN model across the end 

devices and cloud datacenters. A lightweight privacy-pre-

serving mechanism that consists of an arbitrary data nulli-

fication and addition of random noise is introduced to 

guarantee privacy. Data transformation is performed on 

the end device, while the training and inference tasks rely 

on the cloud datacenter. In the study presented in [67], 

model partitioning is combined with differential privacy 

to enable the privacy preserving edge-based training of 

DNN models. The DNN model is split between the end 

devices and the edge server in a way that both data and 

parameters are protected. The initial layers of the DNN 

model are computed on the end device and are mixed 

with noise before they are being uploaded to the edge 

server to obfuscate the training data and preserve privacy 

from untrusted edge servers.

6. Applications of Deep Learning in the Edge 

Computing

Deep learning requires high computational resources 

which may not be available at the IoT end devices. Edge 

computing, where distributed computing devices are 

placed near to the IoT end devices, is a possible solution 

to meet the high computational resources and low latency 

requirements of deep learning. Therefore, moving deep 

learning into edge computing helps to unleash the poten-

tials of IoT big data to satisfy the ever-expanding de-

mands of various DNA-based intelligent services and 

applications. In this section, we conduct an overview of 

research works on the different application domains 

where deep learning on the network edge platform can 

be useful.
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6.1 Adding Natural Language Processing (NLP)

Deep learning requires high computational resources 

which may not be available at the IoT end devices. Edge 

computing, where distributed computing devices are 

placed near to the IoT end devices, is a possible solution 

to meet the high computational resources and low latency 

requirements of deep learning. Therefore, moving deep 

learning into edge computing helps to unleash the poten-

tials of IoT big data to satisfy the ever-expanding demands 

of various DNA-based intelligent services and applica-

tions. In this section, we conduct an overview of research 

works on the different application domains where deep 

learning on the network edge platform can be useful.

6.2 Image and Video

Deep learning has seen astonishing success for complex 

tasks such as object detection [73] and image classification 

[74] problems that can be used for image and video 

analysis. For instance, camera frames of an autonomous 

vehicle require real-time inferences to detect and avoid 

obstacles. The delay to access cloud services might not 

be short enough to satisfy the requirements of time-crit-

ical applications like cooperative autonomous driving [5]. 

A viable approach is to move applications of deep learn-

ing, such as camera frames of an autonomous vehicle, sur-

veillance videos, etc., towards the network edge to satisfy 

the latency requirements. Some studies also integrate edge 

and cloud computing to guarantee high accuracy with low 

latency considering the computational limitations of edge 

platforms [75, 76].

6.3 Smart City 

Smart cities use IoT big data generated from IoT end 

devices and DNN to extract insights to efficiently manage 

city resources and services, such as monitoring traffic and 

transportation systems, water supply networks, crime de-

tection , power plants, and many aspects of livings across 

the city [77-79]. In traffic flow management, data collected 

from different roads can be analyzed with deep learning 

to predict traffic flows, road closures and suggest alter-

native roads [80, 81]. Considering the resource limitations 

of IoT end devices, edge computing is a viable solution 

for the computation intensive DNA based smart city 

applications. For instance, the integration of edge com-

puting and deep learning enables a city to provide efficient 

energy management in smart cities [82]. 

6.4 Smart Healthcare

DNA-based Healthcare is progressively leveraging IoT for 

delivering smart healthcare to speed up health diagnostics 

and reveal critical conditions by using deep learning. IoT 

health related data can be captured from IoT devices, such 

as wearable, ingestible and embedded sensors, etc., and 

processed by using deep Learning based approaches. Edge 

computing is a promising solution that pushes computing 

intensive tasks, such as healthcare services from the IoT 

end devices to the network edge platform [83]. For instance, 

the study in [84] integrates deep learning and edge comput-

ing devices to provide a real-life application of heart dis-

ease analysis by training neural networks on popular data-

sets Edge-cognitive-computing-based smart-healthcare 

system addresses emergency situations of patients and to 

provide personalized healthcare services for special users 

[85]. Information extracted from an image the help of DNN 

helps to detect different types of cancers, such as, skin can-

cer [86] and breast cancer [87]. 

7. Open Issues and Challenges

Although the convergence of deep learning and edge 

computing has opened many opportunities, there are also 

some challenges which constrained its enhancement. The 

following section addresses some of the open issues and 

challenges.

7.1 Trade-offs Among the Various Performance Indicators 

of the Training and Inferring Architectures 

For DNA-based intelligent services with a specific mis-

sion, there is usually a series of deep learning model can-

didates in the edge computing that can accomplish the 

mission of the DNA-based intelligent services depending 

on training and inferring architectures of deep learning 

and various performance indicators. However, it is diffi-

cult for developers to choose an appropriate model for 

DNA-based intelligent services as the standard perform-

ance indicators fail to reflect the runtime performance of 

training and inference models of the edge intelligence. For 

instance, to better assess a distributed training method, 

the performance indicators, such as training loss, con-

vergence, privacy, communication cost, latency, and en-

ergy efficiency can be utilized. Likewise, the key perform-

ance indicators such as latency, accuracy, energy, and 

communication overhead can be considered to evaluate 
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the service quality of the DNA-based intelligent services 

inference model. Therefore, to choose the best and appro-

priate deep learning model that can be used with edge 

computing, it is necessary to explore the trade-offs among 

the various performance indicators of the training and in-

ferring architectures of deep learning.

7.2 Design of Computation-aware Networking 

Technologies for Efficient Communication

Training the DNN model across distributed nodes of the 

edge computing platform is data intensive and incurs com-

munication overhead as raw data or intermediate data is 

transferred across the computing nodes. The communica-

tion overhead increases the training latency and bandwidth 

consumption. Therefore, advanced computation- aware 

network technologies are required to efficiently share raw 

data or intermediate data (computation results) of deep 

learning applications across the distributed edge nodes of 

edge computing platform. The emerging 5G communica-

tion technology together with advanced techniques such 

as Software-Defined Network (SDN) and Network Function 

Virtualization (NFV) could bring new possibilities towards 

a feasible solution to efficiently share computation results 

of deep learning across the distributed nodes of edge com-

puting platform. The SDN and NFV allow flexible control 

over the network resources and support on demand inter-

connections across the various edge nodes for training and 

inferencing of computation intensive DNN models. Despite 

of the preliminary foundation of feasible network sol-

utions, there is still a long way to go to address the commu-

nication overhead and to realize DNA-based intelligent 

services and applications in the edge computing platform.

7.3 System Integration, Verification, and Testing of 

DNA-based Intelligent Applications

To decide whether a DNN model applies to a given 

DNA-based intelligent application on the network edge, 

performing system integration among the IoT big data anal-

ysis and distributed nodes in the edge computing platform 

is vital. On one hand, the integration of IoT big data that 

put great demands to solve large-scale complex problems 

comes with its share of challenges. The underlying hetero-

geneity in individual data, and the large size of datasets 

lead to compute intensive analysis. Lack of studies in priori-

tizing the diverse set of tools makes heterogeneous IoT big 

data integration and analysis a challenging task. An in-

tegrative analysis of heterogeneous IoT big data that aims 

to ease the interoperability of multiple datasets is required. 

Hence, a framework that can help in a seamless analysis 

of heterogeneous IoT big data needs to be established. On 

the other hand, distributed edge computing is a relative 

concept that refers to computing, storage, and network re-

sources between data sources and cloud computing center 

paths. The network edge resources mainly include terminals 

such as computers, Wi-Fi access points, cellular network 

base stations routers, and other infrastructure. These re-

sources are numerous, independent, and scattered around 

users. It is required to integrate these independent and de-

centralized resources to provide computing, storage, and 

network services for DNA-based intelligent applications on 

the network edge. Leveraging deep learning within edge 

computing should meet the key requirements of industry 

digitization in agile connection, low data latency for efficient 

and real-time DNA-based intelligent services and applica-

tions, security and privacy protection. In this context, ver-

ification and test need to be carried out based on the key 

requirements. The obtained results must be analyzed and 

compared to the expected results of DNA-based intelligent 

services and applications. Verification strategies that include 

verification scope and verification techniques need to be 

established. verification scope can be identified by listing 

as many characteristics as possible. For instance, it may in-

clude latency threshold for efficient and real-time smart 

services, security, and privacy protection etc. Verification 

techniques can include inspection, analysis, simulation, 

peer-review, testing, etc., to perform verification actions ac-

cording to a given constraints. Integration testing of a com-

ponent and module testing of a system (as a whole) helps 

to verify whether the smart system works as expected or not.

8. Conclusion

In this paper, we conducted a thorough review of the 

current state of leveraging deep learning in edge comput-

ing to facilitate computation-intensive DNA-based in-

telligent services in resource-constrained IoT environments. 

Edge computing, where distributed computing devices are 

placed near to the IoT end devices, is a possible solution 

to unleash the potential of IoT big data generated from 

IoT end devices. We first introduce the basic concepts to 

highlight the key advantage of running deep learning at 

the network edge platform. Specifically, we present the 
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three most widely applied DNN structures: MLPs, CNN, and 

RNNs, and provide the two main improvements that speed-

up deep learning in the edge computing platform. The first 

enhancement is to design an efficient deep learning model 

that reduces computational and memory space require-

ments to train the model with less time. The second one 

is to distribute the training and inference tasks of deep 

learning among the IoT end devices, the edge data servers, 

and the cloud datacenters for parallel processing to obtain 

better efficiency. The two main types of distributed DNN 

training - Data parallelism and Model parallelism - are also 

presented as distributed and parallel algorithms are vital 

for DNN to considerably reduce training times and make 

it suitable for DNA-based intelligent services and 

applications. We then provide the different privacy-pre-

serving approaches, such as cryptographic and adding 

noise techniques, of deep learning on the edge computing 

environment to protect sensitive information that may lead 

to privacy concerns. Then, various application domains, 

such as NLP, Image and video, smart city, and smart health-

care, where deep learning on the network edge platform 

can be useful are also presented. Finally, we highlight open 

issues and challenges leveraging deep learning within the 

edge computing environment. We believe that this over-

view enables to understand the recent trends and oppor-

tunities of the various approaches that speed up the ex-

ecution of training and inference of deep learning across 

distributed nodes of the edge computing environment. 
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