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ABSTRACT

Due to the increased public interest in respiratory diseases following the outbreak of COVID-19, various
artificial intelligence (AI)-based disease detection studies have been actively conducted. Al-based disease
detection classification by analyzing lung sounds measured through stethoscopes. Conventional Al-based
detection schemes typically rely on resource-rich servers to achieve high accuracy and fast inference times.
Utilizing servers requires transmitting information such as lung sounds over a network, which raises concerns
about personal data privacy. To address this issue, on-device Al—where the AI model runs locally on the
device—has been gaining attention. On-device AI collects and processes data internally, thereby minimizing
privacy concerns. Although various deep learning models can be deployed for on-device Al, performance
degradation due to limited computing resources necessitates careful model selection. This study analyzes and
evaluates the disease classification and detection performance of models executed on both server and on-device
environments. Experimental results show that deep learning models have lower performance when operated

on-device compared to when operated on a server.

¥ E Qe | BN 2AF 877 APREE 913 v 3 3Ee] d417)% 71HHRS-2024-00399373) AHUoR
SaE Rk
First Author : Korea Electronics Technology Institute, parkjh@keti.re.kr, %31

°  Corresponding Author : Korea Electronics Technology Institute, hkhong @keti.re.kr, %3]

T3 1 202507-179-D-RU, Received July 29, 2025; Revised September 12, 2014; Accepted September 23, 2025

1974


mailto:parkjh@keti.re.kr

i 2rukel s AlE $1% e 2 A v T

I.M &

337 A3E A AAF R 7 E]F A3 5 3
o, COVID-19 vﬁﬂoﬂ ufel A AAH LR e
7R, 557 Akl vigk 3ol Zkl=
IS HFT A AL dAEHA ?é% EAom pi
3],7] gl Aw] Bes
S8l HedE 01*&5} °4:r’**’] 71 = ek

v ZF-55 o4’k Al 7k Hled mde or]e
do]EJZ5E]  mel-spectrograms,  Mel-Frequenc
Cepstral Coefficients (MFCC) 53} 22 54 &
slo} <12} lolel Ak el ke o
dlo|e]9] xpdA Bl Ao g =23l A&
QAo o YT HelEe), 2k ol2li
Slelid male e elasoh Eia A alzeb
g sheh Ao elzmeld B8] 919 Tkl
U A SELE MmN So) Qgeplo) ek
SAIRE Fxte] o S5 NN E BE] vE
AZE B3 vlole] $A1e AR NS FAE S
4 Sick

ARET A A3kl Qs exiute]~ A7k
Tk glr). 2xrlo| s AL 717] WlellA] dlojelE
TRk A2|gic) webA delel7) 7)7] ol A
SR et o] el s AR RS A7} skt
o} 2ol o ds] 2rjute] s AlE WHeld 2Es
71714 E2A17171 $1%F 2ge] B ash, =2 A
< $8l AAdg md Addle] g3t

E m=rellA] 2rinte] AIE 917 Held w4
o5 wlagkt ¥ gy = ResNet50,
MobileNetV2, InceptionV2, 12|31 Stacked & AH&-3}
P A A 99 o SFS AN A
mae xﬂx%g].;;_ 7b 817o]] ko] wele HAslale
# Ich e S )
A TES 52 s

l° fo

4

21 "l it 25 2 27
A 55 HellA =& Aes 2] S8tk
gk e 7k A o] A=l SIcl* ) Basui= vl
I35 F5olA MFCCE FE310 vl 717 3871
A3ke B339l Bardous ]2 mkaleA] 127
2] MFECC AFE Akslar o]23l Aol 6719 &

7;]];4 Exl S 'l'ﬁ‘ 031;]]7] 1:1:5—]_ /\.rﬂ i‘:/ell /l]71—§]_

oA 24 o]l el EAS =313 CNN (Convolu—
tional Neural Network) 7|8} 28 x-83}o] =
F Ag=E 23tk
Petmezas<- CNNZ} Long Short-Term Memory

(LST™M) ol 7&?‘{}?‘# slo|HE| = olF|HXE AljFs}
el o] 7]H& CNN-S- AH&3}o] Short-Time Fourier
Transform (STFT) spectrogram‘ﬂ]/ﬂ EAE =g o
+ LSTM ®5= Addslo] ARk 4548 T?‘L}S}l *
F= 33}, Lit Residual 5% ol
S T8 ¥ 388 B AdeS

7185 Akl 15e] 7 54 & ¢
3l 7P Q-factor wavelet transform¥} 4% STFTS
Z43l0] 7 3F50 EAE TR i ¢ ol

l
0;‘%7} ﬁ‘yﬂz lE} AH 7|4to] =
= A% AHDONN)-S tiFE dlo]efellx] B3kt 5
Bl-& skl ol 53] &3le|ck 12y} 7] DNN
Rl omb o2 §E7Ql 2E-S fl8) A4t 3k
ol AW 373& ol ojzfgl 8 ARk qls
B4l l=Zep} Akl A]9=) o] wlarw) AlgkEl 3
Z3ellx] Au)2 Allgel] digk Aligte] ik wgk V==
£ 53t dlolele] AH A Re] EA WAy 4~
stk ol2gt IS s ] Sl o= EofellA] 24
Hlo]2~ Al 7]s0] Q=51 glek 2rinje] 2~ Al= 4l
oel& 771, i 717] me ke o8 Al F3
%l dHic] = Aldlollx] Al S22 dae]ES A Al
= A ofrightt el A2E 53 94 A
o|Esh= 710 FEhe= 7k Al 2, 2ot
o]z A= A 8, SE dlole] xok 293 A&
A, 5k Sl ARl QA 5 o8] 7] o3 e AlE-
g},

2rjujo] s A= tiujo] el 24 AATE 25
31| wstoll AY &gA4o] Fo3lch FEs A
W FgellA dubq o R A= el A A
(GPU)&= ¥4 3t=so] 71572 753k RE st
AHe] gzt ol2|gt gHAIE s $lsl A
A AA(NPUY7L 2uule] 2~ ATE 93 A1AY A
77| 2 Sk 9o NPUE <171e] weflx] o
e ol FxA 0 2 AAEglon, ke ks A
o reg Algsl] ARE Gfxor gt ol
e 2 paled $la= s A 3)=e] GPUMT} A
sz} AR Ao 71 FdH AR (CPU) o) 2t
ol w2 EgAJo] =t 2urfuje]x AT E8lo] A<

—

M X
N

P 4

1975



The Journal of Korean Institute of Communications and Information Sciences "25-12 Vol.50 No.12

Moz sojlel wje), x| lujololA oA g

]l a5 F2-5 A1) $18] NPU 7]F 2cjulo]
2 AL 77 AL gk

m A %
31 24 7d
a3 12 Heyd 2d 7(_-)] :fl‘/‘j

o] A5 H7hE SR
S woifErh ¥ EF-S 7k s 2wl
918} ICBHI 2017 2 KAUH dl|o]E{AlE& k%s}aiv}.
ICBHI 2017 HloJe]Al2- 920 7)j9] ]S Hlo|e]E £
galar glow, or]ee] Holi= 10Zel4 9027 74

o] oh;]J“l o] dloe]Alel] 3+ Awle] THE= 3§
7AFRA, A A7 e, 713
A, AZIRAS, Ied, 27 E E23Ri:
KAUH tlo]E]Al2 308712 dlo]EjAlo R o]Fox]
glow, oT]e Aol kel 3022 T4l GIv,
KAUH dlole] Aol ekl Ane] =7 /(A4
M H Jﬂeﬂ 7] —r};q 05 vm— A]-?- ,q] /14 (] 7~ u}x%,q]
Aol Eg=e] sl

B el AR RAEe 11710 A BRE
Salgi), A BRE Sals)] 916 AR o Aol S
TR LHE 5% A 0R vt oflE S0, 2%
o AolE 7Hle erjee] B4 52 Aol9] er]e
N v 229] Aol WeiRlek o]gAl v o
He IR 43 tlele] 2 S 91
71& elelol A7k 2R, 914 A=
S, AR A2, aEa B 2AYEE E%H tloe]
= Fsksick s delele oo dHlolHelA
mel-spectrogram, MFCC, 78] chroma$ &3}
F=% dlolE & 128x216 =7]9] 2D o|vIX| 2 Wisks}
3, 2D e|uAlE Aol ARgsisich AW 2
NVDIA GeForce RTX 40900114 =ul-& Ala)a}o] o
w, 2Tuje]2= Raspberry Pi 5914 Hailo 8 79k

Loli /}3]'

Model Creation  Model Optimization
P

Data Model
Augmentation Quantization

¥ ) 4
Feature Model
Extraction Optimization

4

Train Model
(pt)

L g
e R i X =l Lo !

Fig. 1. Environment  configuration  for  performance
analysis of deep learning model.
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Table 1. Disease classification performance based on
server environment.

Model Accuracy | Fl-score | Precision | Recall
ResNet50 80.59% 0.798 0.801 0.759
MobileNetV2| 55.43% 0.495 0.541 0.798
InceptionV2 | 55.48% 0.427 0.493 0.41

Stacked 50.16% 0.243 0.267 0.224

EfficientNet | 60.44% 0.552 0.576 0.535
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Ta b| . erformance result of model size and inference
time.

Model Parameter | Model size |Inference time
ResNet50 2353 M 90 MB 18.5 ms
MobileNetV2 224 M 8.75 MB 11.2 ms
InceptionV2 5.98M 22.8 MB 12.8 ms
Stacked 0.36 K 14 MB 9.9 ms
EfficientNet 2.45M 9.55 MB 35 ms
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Fig. 2. Confusion matrix of deep learning model based on server environment.

1971



The Journal of Korean Institute of Communications and Information Sciences "25-12 Vol.50 No.12

# 3. GPU 3HdolA 7 71"d8] p-value
Table 3. P-value of each scheme in GPU environment.

Model P-value

ResNet50 1.80x107°

MobileNetV2 1.69%x10°
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Table 4. Disease classification performance based on
ONNX format.

Model Accuracy | Fl-score | Precision | Recall

ResNet50 80.42% 0.781 0.788 0.78

MobileNetV2| 55.24% 0.484 0.522 0.397

InceptionV2 | 54.36% 0.415 0.477 0.392

Stacked 50.02% 0.228 0.256 0.204

EfficientNet | 60.26% 0.534 0.562 0.523

E 5. erujel~ 2y 7k Hed mdle] AW BF A
Table 5. Disease classification performance based on

on-device environment.

Model Accuracy | Fl-score | Precision | Recall
ResNet50 89.41% 0.89 0.88 0.87
MobileNetV2| 71.89% 0.66 0.73 0.66
InceptionV2 | 47.74% 0.42 0.41 0.36
Stacked 55.95% 0.28 0.24 0.32
EfficientNet 40.63% 0.273 0.45 0.265

E 6. 2uulo|zod Bl Z7] 9 8 &% A As)
Table 6. Performance result of model size and inference
time in on-device

Model Model size Inference time
ResNet50 37.6 MB 245.9 ms
MobileNetV2 3.8 MB 169.77 ms
InceptionV2 6.47 MB 150.27 ms
Stacked 835 KB 257.74 ms
EfficientNet 3.85 MB 166.84 ms
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Fig. 3. Confusion matrix of deep learning model based on on-device environment.
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Table 7. P-value of each scheme in NPU environment.

Model P-value
ResNet50 0.04
MobileNetV2 3.11x10%
InceptionV2 0
Stacked 1.65%1077
EfficientNet 0
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