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ABSTRACT

Marine Tactical Networks (MTNs) are essential for secure maritime operations, but are highly susceptible to
cyber threats. Traditional Intrusion Detection Systems (IDS) often struggle to adapt to the dynamic and
complex nature of MTNs. This paper introduces a Blockchain-Aided Intrusion Detection System (BAE-RL),
which integrates reinforcement learning (RL) and blockchain technology to improve threat detection and
security. The BAE-RL framework is unique in its use of multi-agent adversarial RL, where a defender agent
learns to detect attacks by interacting with a simulated attacker agent. This adversarial setup enhances the
system’ s ability to identify novel and evolving threats. Additionally, blockchain integration ensures the
integrity and immutability of detection data, preventing tampering and ensuring transparency. Experimental
results show that the proposed framework outperforms traditional IDS, achieving 80.16% and 95.9% accuracy
on the NSL-KDD and AWID datasets, respectively. The BAE-RL framework offers a robust, adaptive, and

secure solution for intrusion detection in MTNs.

Key Words : Blockchain, intrusion detection system (IDS), marine tactical network (MTN), Al, reinforcement
learning (RL), maritime applications, information security.

I. Introduction networks enable critical functions such as real-time
tracking, traffic management, and safety systems, sup-
The Marine Tactical Network (MTN) serves as the porting global maritime trade. Designed to overcome
backbone of modern maritime operations, integrating the unique challenges of marine environments includ-
satellite links, radio frequency communications, and ing vast operational distances and scattered land-
fiber optics to enable secure command, control, com- masses the MTN ensures real-time data transmission

munications, computers, and intelligence (C4I) sys- across naval vessels, aircraft, and terrestrial command

tems!'!. These networks are essential for facilitating
marine operations, interconnecting components such
as vessels, navigation systems, ports, shore-based fa-

cilities, and autonomous underwater vehicles. These

centers while maintaining interoperability and surviv-
ability™'). As shown in Table 1, this heterogeneous
network differs fundamentally from terrestrial systems
through its emphasis on adaptive topology and mul-
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Table 1. Comparison of Terrestrial Networks vs. Marine Tactical Networks (MTNs)

SL Aspect

Terrestrial Networks

Marine Tactical Networks (MTNs)

1 | Network Topology

Mostly stable, fixed infrastructure with
established links!"!

Highly dynamic, mobile, and decentral-
ized with rapidly changing topologies

2 | Communication Medium

Wired (fiber optics, copper) and wireless
(Wi-Fi, LTE, etc.)”

Satellite communication, RF, and fiber
optics in mobile and remote areas™

3 | Connectivity Stability

Generally stable, high bandwidth, and low
latency™

Unstable and intermittent connectivity,
especially in remote environments!

4 | Communication Range

Local or regional
infrastructure'®

scope, limited by

Global reach, supporting long-range and
cross-terrestrial communication!”

5 | Security Challenges

Targeted by general cyberattacks, insider
threats™

Vulnerable to cyber warfare, advanced
persistent threats, jamming'

6 | Data Availability

Reliable data
[10]

transfer, continuous

connection'

Frequent communication disruptions due
to mobility or physical interference'

7 | Intrusion Detection

Can rely on static IDS,
recognition, and signatures'!!

pattern

Must dynamically adapt to evolving
threats!'?!

8 | Scalability

Easy to scale with fixed infrastructures

Difficult to scale due to mobility, envi-

ronmental factors, and network hand-
[14]

[13]

overs

Controlled, usually

9 | Environment . [15]
geographic area

Extreme, harsh, and hostile environ-
ments, including seas, high altitudes,
and combat zones!'®!

a limited

10 | Use Cases

Corporate, residential, and urban settings

Military, defense, and critical infra-

structure protection in maritime oper-
18]

[17]

ations

ti-domain resilience.

The MTN’s C4I capabilities directly enable critical
naval functions, from encrypted weapon system coor-
dination to secure logistics management®'?. A prime
example is the U.S. Marine Corps’ Networking
On-the-Move (NOTM) system, which sustains satel-
lite connectivity for the Marine Air-Ground Task
Force during mobile operations, providing command-
ers with real-time situational awareness even in con-
tested environments!'>'>?*!1 Sych systems exemplify
the MTN’s role in maintaining secure communication
channels for tactical data exchange, including enemy
positioning updates and emergency support re-
quests''®'®*2 The 2017 Not-Petya malware attack on
Maersk’s shipping infrastructure caused $300 million
in losses by paralyzing 76 port terminals, demonstrat-
ing the cascading effects of maritime network breach-
es!B2], Similarly, Operation Cleaver’s 2013 infiltra-
tion of U.S. Navy networks revealed vulnerabilities

[26]

in military communication protocols™. These in-

cidents urges the need for secure threat management
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system that adapt to evolving threats while preserving
operational continuity in dynamic marine environ-
ments™”,

Furthermore, the distributed MTN network top-
ology comprising vessels, autonomous underwater ve-
hicles, and diverse communication channels requires
security solutions that operate autonomously during
connectivity lapses while preserving full threat visi-
bility across the infrastructure™®, Navigation systems,
operational technology, and safety mechanisms re-
quire continuous protection that adapts to evolving
threat vectors. Traditional security solutions often fail
to effectively detect emerging threats, such as ad-
vanced persistent threats (APTs) and zero-day attacks,
which can evade conventional detection methods™”.
These traditional systems primarily utilize sig-
nature-based detection methodologies, which prove
inadequate against APTs and zero-day vulnerabilities.
The main limitation of signature-based detection is
that it can only recognize known attack patterns, leav-

ing new threats unidentifiable. Furthermore, maritime
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intrusion detection system (IDS) implementations
generate excessive false positives while demonstrating
insufficient responsiveness to emerging threats™".
The pipeline is network-agnostic in principle, but
tuned for MTNs: reward shaping under delayed/inter-
mittent feedback, neighbor-aware observation for mar-
itime mobility, and a Jow-rate, tamper-evident ledger
suited to SATCOM scarcity. For UAV swarms (lower
RTT, tighter control loops, 3D mobility), porting
keeps the agents unchanged while retuning the ob-
servation window (shorter), block-cut interval A
(smaller), and consensus factor x to reflect the link
budget-preserving the ledger’s forensic role and the
adversarial training benefits. The MTN contrasts are

summarized earlier in Table 1.

1.1 Existing Solutions in IDS

Modern Al-driven intrusion detection systems em-
ploy diverse approaches to secure marine networks,
each with distinct advantages and limitations.
Lightweight Gradient Boosting Machine (Light-GBM)
models demonstrate 92% accuracy in marine IoT en-
vironments through efficient feature handling, yet
struggle with zero-day attacks due to dependence on
labeled datasets”®". The Adaptive Personalized
Federated Learning (APFed) framework addresses da-
ta imbalance in Maritime Meteorological Sensor
Networks (MMSNs) by optimizing node-specific
model parameters, though its effectiveness diminishes
with intermittent connectivity®™ Real-time processing
challenges persist in dynamic solutions like
AdaptIDS, which achieves 89% threat adaptation ac-
curacy but suffers latency spikes during high-volume
traffic (> 5 Gbps)™. Anomaly detection systems us-
ing kinematic ship movement patterns show promise
(F1-score = 0.87) for physical layer security, yet fail
against protocol-specific cyber attacks™. Privacy-pre-
serving techniques like Batch Federated Aggregation
reduce data leakage risks by 34% through distributed
model training, but incur 150-300 ms communication
overhead per node™!.

Reinforcement Learning (RL) offers a paradigm
shift by eliminating reliance on pre-labeled datasets
through continuous environment interaction, reducing

false positives by 22% via reward-shaped policy opti-

mization, and enabling rapid adaptation to novel at-
tack vectors with 95% detection within 500ms"®.
The MTN’s dynamic topology and intermittent
connectivity issues could benefit from RL’s Markov
decision process formulation, which maintains 89%
detection accuracy even with 30% observable state
corruption. This intrinsic adaptability positions RL as
a foundational technology for next-generation naval

71 proposes a block-

cybersecurity systems. The pape
chain-federated learning framework for Metaverse in-
trusion detection, achieving 99% accuracy on
CIC-IDS2017 and resisting 33% poisoning attacks via
Multi-Krum aggregation and differential privacy,
though its evaluation relies on conventional IoT data
lacking Metaverse-specific attack validation. While
incorporating reinforcement learning (RL) principles
for theoretical adaptive policy optimization in dynam-
ic environments, RL-based mechanisms remain unim-
plemented due to convergence challenges in decentral-
ized settings, with the dual pBFT-oracle consensus in-
troducing 37% latency overhead in largescale deploy-
ments (>1M devices) alongside computational de-

mands from continuous adaptation requirements.

1.2 Feasible Solution and Contributions

While RL demonstrates potential for cyber threat
detection, conventional implementations face three
fundamental limitations in MTNs: (1) dependency on
static pre-labeled datasets, (2) homogeneous feedback
loops ill-suited for rare attack patterns, and (3) in-
adequate adaptation to MTNs’ dynamic topologies

1331 Moreover, Marine

and intermittent connectivity
Tactical Networks (MTNs) are inherently dynamic,
with rapidly changing topologies and intermittent con-
nectivity, especially in remote maritime environ-

ments 281 .

The multi-agent reinforcement learning
framework addresses MTNs’ dynamic topologies and
adversarial threats through decentralized deci-
sion-making under partial observability. Defender-at-
tacker agent pairs employ policy gradient-based ad-
versarial training to generate rare attack patterns (e.g.,
APTs) via self-play mechanisms, eliminating static
signature reliance. Neighbor-aware observation spaces
and graph-attention message passing maintain 89.7%

detection accuracy despite 30% node mobility, while
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blockchain consensus preserves global threat visibility
without centralized coordination. This approach in-
herently handles topological volatility through emer-
gent communication protocols, achieving 37% lower
latency than cloudbased solutions with linear
scalability. To address these challenges, the proposed
IDS leverages an RL framework that dynamically
adapts to evolving cyber threats by continuously inter-
acting with the network environment. This approach
allows the RL model to respond to both known and
unknown attack patterns, even in environments with
unstable or low-connectivity conditions. Additionally,
dynamic sampling techniques are integrated to ensure
robust performance despite data imbalances or con-
nection disruptions. Blockchain integration plays a
critical role in enhancing the security and integrity of
the IDS by providing a decentralized, tamper-proof
ledger that ensures detection data remains immutable
and transparent. Smart contracts automate the secure
logging of attack metadata, including timestamps and
attack types, ensuring the integrity of threat records
in real-time. This integration guarantees the account-
ability of the IDS, which is vital for MTNs, where
data  manipulation could have catastrophic
consequences. The combination of adaptive RL and
secure blockchain technology ensures that the pro-
posed system remains resilient and trustworthy in the
face of both dynamic network conditions and sophisti-
cated cyber threats.

This paper proposed a blockchain-aided adversarial
environment reinforcement learning (BAE-RL) model
that incorporates an adversarial environment. In the
proposed model, the classifier encounters challenging
attack scenarios that are difficult for conventional RL
methods to detect due to their systematic interaction
with the environment. For critical scenarios involving
underrepresented attack types, the classifier is de-
signed to adapt and enhance its detection capabilities
to maximize rewards. By emphasizing these challeng-
ing instances, the proposed model surpasses traditional
RL approaches in terms of accuracy and robustness.
Furthermore, the integration of blockchain technology
with smart contracts ensures the immutability and
traceability of attack records by storing each attack
type and timestamp, thereby preventing any manipu-

1940

lation of the audit trail for future verification. This
proposed system model offers the following con-

tributions:

* This paper proposes an innovative blockchainaided
reinforcement learning (BAE-RL) model for robust
IDS in MTNs that integrates smart contracts for de-
centralized, tamper-proof data handling, achieving
performance accuracy (80.16% on NSL-KDD,
95.9% on AWID datasets) with a 12.4% average im-
provement over existing non-linear models. Through
optimized blockchain-RL integration, the system re-
duces prediction latency by 37% compared to con-
ventional approaches, demonstrating both computa-
tional efficiency and detection efficacy in maritime

environments.

The model employed multiagent RL that introduces
an adversarial learning environment. In this setup,
an attacker agent simulates potential attack strategies
while a defender agent works to detect these
intrusions. This adversarial approach enhances the
robustness of the system by forcing it to adapt to
a wider array of cyber threats, improving detection

accuracy in realworld scenarios.

To ensure tamper-proof and immutable record-
keeping of intrusion detection data, a smart contract
is employed within the blockchain. This allows the
model to securely store critical information, such as
attack types and timestamps, providing a reliable au-
dit trail for future verification and network security

assessments.

Section II reviews related work in tactical network
intrusion detection. Section III details the proposed
IDS framework and datasets. Section IV presents ex-
perimental results and comparative analysis. Section

V concludes with implications and future directions.

II. Related works

Recent advances in reinforcement learning (RL)
have demonstrated its potential for adaptive intrusion
detection, particularly through dynamic interaction
with evolving network environments””,

While foundational Q-learning approaches estab-
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Table 2. Comparative analysis of the proposed solution with existing IDS solutions

Ref | Model Dataset | Methodology Data.l ComPu.tatlonal Trainable | Distributed Ta.rget. Drawback
Security Efficiency |Parameter| Storage |Application
DS§20S - | Optimized Computationally
LightGB k LightGBM Marine IoT
[31] ightG 357 ightGBM, Moderate Moderate No arme. N intensive, frequent
M (ML) | samples, ensemble Security .
. . updates required
mixed data| function
NSL-KDD | APFed with Maritime synfljregxlllle;ttion
APFed - 23 LGCNN . .
[32] N L High Moderate Small Yes Sensor needed in
(FL) classes, adaptive
. Networks unstable
imbalanced updates .
environments
MIL-STD Adaptive . .
Stacking | 1553 - IDS, 1—\2[;15:110(:3 rocisesailr;tmil:sues
[33]| LSTM 1.9M stacking Moderate Moderate Moderate No Aerospace p with lga roe
(L) | words, LSTM SP 8
. systems datasets
mixed models
Limit tecti
TD3, |AIS - Ship| DRL with Maritime o}mﬁsdefiﬁchf
[34]| VAE |trajectories,| graph and | Moderate Moderate | Moderate No Transportati v .
due to reliance
(DRL) | real-world VAE on L.
on historical data
Performance
TLTAD IOT'Sl\}ﬁTS | Transfer IoT-enabled h‘iS‘r’es I‘:”th
[35]1| (DL, L. p. learning with| Moderate Moderate No O -enasie clerogeneous
positioning MTS data
Transfer) DRL ..
data and limited
bandwidth
Centralized
NSL-KDD, | Multi-agent e't‘o” ivat:“e
Ours| BAE-RL| AWID RL with High Moderate Small Yes MTN pr .
. blockchain
Imbalanced| blockchain
network

lished anomaly detection capabilities in simulated net-
works?, their reliance on state discretization in-
troduced scalability constraints for real-world deploy-
ments™!). The emergence of deep reinforcement learn-
ing (DRL) addressed these limitations through neural
network-based function approximation, enabling ef-
fective handling of continuous state spaces in complex
network topologies'*?. Table 2 presents a comparative
analysis of the existing methods and frameworks used
for intrusion detection in various network environ-
ments, highlighting their main contribution, draw-
backs, and applicability to different scenarios.
Parallel developments in blockchain technology
have revolutionized secure data management through
decentralized ledgers and cryptographic immut-
ability[35’43]. While [39] demonstrates DRL’s effective-

ness in cybersecurity anomaly detection, it neglects

real-world deployment challenges and computational
overhead in constrained environments. Similarly,
[44]’s RRIOT model achieves superior IoT intrusion
detection through DDPG-SAGE integration but suf-
fers from narrow dataset validation and unaddressed
scalability limitations.Initial implementations in cy-
bersecurity frameworks demonstrated blockchain’s ca-
pacity for tamper-evident logging and distributed trust

45

management -, with recent extensions incorporating

metaheuristic optimization for attack pattern analy-
sis*!. Despite progress in both domains, synergistic
integration of DRL’s adaptive detection capabilities
with blockchain’s audit transparency remains under-

d¥#81 Current hybrid approaches focus pri-

explore
marily on static threat models rather than the dynamic
adversarial environments characteristic of tactical net-

works!*.
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Fig. 1. Proposed blockchain aided deep learning-based intrusion detection system

This work bridges three critical gaps:

* Joint optimization of DRL’s continuous adaptation
with blockchain’s provenance tracking.

* Co-design of detection policies and distributed ledg-
er architectures for maritime operational constraints.

* Quantified tradeoff analysis between detection la-
tency and cryptographic overhead in resource-con-

strained environments.
. Proposed Methodology

The BAE-RL framework implements a three-stage
intrusion detection pipeline for Marine Tactical
Networks (MTNs), beginning with edge-layer data ac-
quisition through satellite/ RF sensors that capture raw
network packets. The adversarial RL engine employs
dual defender-attacker agents to classify threats
through dynamic environment interactions Fig. 1,
while the processing unit normalizes features and ex-
tracts temporal patterns via LSTM networks Fig. 2.
Defective packets are routed to a Hyperledger block-
chain network where Ethereum smart contracts immu-
tably log attack metadata (type, timestamp, source IP),
while normal traffic flows to cloudbased application
layers for visualization and operational analytics. This
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integrated approach reduces reliance on sig-
nature-based detection by 62% through continuous ad-
versarial training, while blockchain integration en-
sures tamper-proof forensic records with 99.98%

transaction finality in naval field tests.

3.1 BAE-RL Overview

The proposed BAE-RL model employs Deep
Qlearning (DQN) to optimize the loss function of the
IDS within MTN. By integrating advanced deep learn-
ing methodologies with multi-agent reinforcement

learning, the model enhances detection performance.

3.1.1 Key Components of BAE-RL
Key components of the BAE-RL model include:

* Adversarial Environment: BAE-RL utilizes a si-
mulated environment that draws data from a pre-ex-
isting network traffic dataset and corresponding in-
trusion labels shown in Fig. 3. In this setup, the
states represent different network traffic scenarios
within the marine tactical network where the envi-
ronment chooses the action aer and the state environ-
ment Set by the classifier.

* Dual-Agent Classifier: The agent in the BAERL

model functions as an intrusion classifier. It proc-
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Fig. 2. Neural network structure for attacking and defending agent

esses the simulated environment’s states and predicts

the corresponding intrusion labels.

- Defender Agent: Implements e-greedy policy (¢ =
0.1 — 0.01) for intrusion classification

- Attacker Agent: Generates evolving threats using
policy gradient methods

The classifier’s performance is continually refined
through the RL process, improving its ability to effec-
tively detect and classify network intrusions illustrated
in Fig. 4. The defender agent operates as the main
classifier, using an epsilon-greedy strategy to predict
labels and defensive actions. In parallel, the attack
agent generates evolving attack patterns, challenging
the defender to adapt its detection policy continuously.
This adversarial setup enhances the model’s robust-

St
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Cal -ge
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re, -
Agent
¢ A
L 4 v
1
1 | 59‘
o L.
T — >
» Training Environment
) Dataset |«
I""\_ aet
st+1
1 Agent

BRL Environment

Fig. 3. RL intersection between environment and agent

ness, enabling it to effectively identify and classify
complex and dynamic threats within the MTN.

* Blockchain Integration: The proposed framework
utilizes blockchain technology to ensure secure and
tamper-proof storage of IDS data. Ethereum smart
contracts automate immutable logging of threat met-

adata (type, timestamp, payload) through:
BC, = SHA-3(BC, -, | H (E))

where:
- BGC; : Blockchain state at time ¢
- E, : Threat event data < type, srcIP, payload
- H : SHA-3 cryptographic hashing

This integration ensures tamper-proof forensic records

through decentralized consensus, critical for MTN’s

-
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Fig. 4. BAE-RL Scheme During Training and Forecasting
Stages
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security audits. The chained hashing structure pre-
vents retrospective data manipulation while enabling
real-time verification of detected threats across naval

command hierarchies.

* BAE-RL model Strategy: The BAE-RL model in-
troduces an adversarial environment to further en-
hance the IDS’s capabilities. This environment acts
as a pseudo-agent, generating challenging scenarios
that force the classifier agent to improve its pre-
dictive accuracy. The adversarial environment max-
imizes the classifier’s errors, pushing it to learn from
the most difficult cases, thereby improving overall
detection performance.

* Dynamic Sampling: The BAE-RL model addresses
the issue of unbalanced datasets illustrated in Fig.
5, a common problem in IDS systems, by im-
plementing a dynamic and intelligent sampling
strategy. The environment agent focuses on generat-
ing samples the classifier struggles with, ensuring
that the model does not overfit the more frequent,

600,000
400,000
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100,000
80,000
60,000
20,000

10,000

(=}

[=1

)
o

-
=]

w

Normal Probe
NSL-KDD

Correct estimated @ False negative False positive

Fig. 5. Imbalanced NSL-KDD & AWID dataset
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easier-to-classify cases.

3.2 System Pipeline

The proposed model architecture is structured into
multiple layers, ensuring the seamless data flow from
acquisition to secure storage, while enabling realtime
intrusion detection Fig. 1. The architecture is com-

prised of the following layers:

* Edge Layer: This layer collects data from maritime
environments using edge devices such as satellites
and sensors. Network sniffing tools like Wireshark
capture raw packets from various choke points. The
data serves as the foundational input for subsequent
layers.

* Processing Unit: Collected data are normalized us-
ing min-max scaling and processed by an
LSTM-based feature extractor with three hidden lay-
ers (128 units each) to analyze temporal patterns.
The BAE-RL model then selects the environment
and classifier to identify malicious packets, routing

defective ones to the blockchain for secure, tam-

2,000
1,000
200
100
1

normal flooding injection
AWID

impersonation



=1 / Blockchain-Aided Intrusion Detection in Marine Tactical Network Using Reinforcement Learning

s

“mww«\wxa\ G

wo HOOB W

#

#
kY

&
Ed

e e \y&m

E]
& I

spnd G feme BA WR
EEa

- E
AT T ~ kS ¥ S
-

%

Www»“\::‘.. et

a) NSL-KDD Dataset

#

I

i

3

#

-
P A

axnd ?A)SM mmwm

% k]
W

#

“ o

>
Nefwee% i

#

W

b) AWID Dataset

Fig. 6. Adaptive learning of BAE-RL on NSL-KDD and AWID dataset

per-proof storage, while normal traffic proceeds to
the application layer.

* Application Layer: This layer visualizes network
insights via dashboards, manages data flow, and
stores processed traffic in cloud systems. Normal
packets are stored in the cloud for sharing, whereas
suspicious packets are securely logged on the block-
chain, ensuring integrity and facilitating real-time
threat monitoring.

3.3 Adversarial Multi-Agent Architecture

The BAE-RL system architecture (Fig. 2) imple-
ments a three-stage adversarial learning pipeline for
MTN security. The Edge Layer’s satellite/RF sensors
feed raw network traffic into an LSTM-based feature
extractor, which processes temporal patterns through
stacked recurrent layers (128 units each). This latent
representation fuels the core adversarial mechanism
shown in Fig. 4, where:

Defender Agent: O(sr.ar) < O(se,ar) +Nres
+ymax, Q(s;11,a))|
Attacker Agent: mg(als) o< exp(8T ¢ (s.a))

The environment agent (Fig. 3) generates state se-

quences s — s, through systematic sampling of at-

tack patterns, while the classifier agent employs €
-greedy exploration (¢ = 0.1 — 0.01) to optimize de-
tection policies. Their adversarial interaction is gov-
erned by:

& =Eqgllog Qg (als) +2/|6]|*]

where % represents the experience replay buffer con-
taining 500k state transitions. The blockchain layer fi-
nalizes this architecture through Hyperledger smart
contracts that immutably log threat metadata using
SHA-3 hashing:

BC, = H (BC1 | H (type |l timestamp || payload))

We quantify ledger costs for the tamper-evident au-
dit trail used in Fig. 1/Fig. 8. Let RTT be path round-
trip time, ¥ & 2, 3 a consensus factor (RAFT-like
vs. PBFT-like), A the block-cut interval, B tx/block,
A tx/s (event rate), i processing; then the commit

latency is
Toommit = k& RTT + minA, B/A + 7;:'roc-

With conservative settings A = 0.5s, B = 10, Tproc
50 ms and typical MTN RTTs, we obtain: GEO
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SATCOM (RTT = 0.6 s): Tcommit ~ 1.75 s (RAFT)
] 2.35 s (PBFT); LEO SATCOM (0.06 s): 0.67 s /
0.73 s; shipboard 802.11 (0.01 s): 0.57 s / 0.63 s.
Bandwidth grows linearly with event rate as R = A
-85, for compact records S~ 1.5 kB this yields =
6, 12, 60 kbps at A = 0.5, 1, 557, respectively. Daily
storage is D = 86400 A S ie., = 62 MB, ~ 130 MB,
and = 650 MB/ day at the same rates. A
back-of-the-envelope dynamic power bound is Pay, =
Hl'acc; (link capacity O), giving < 120 mW on a C
= 1 Mbps/2 W SAT-COM leg and < 6 mW on a
C = 10 Mbps/1 W shipboard Wi-Fi link at R < 60
kbps. Thus, even at a stressed A = 5 s—1 , the audit
stream remains low-rate and  MTN_compaible-
(Hash-chain as in BC; = SHA-3(BC || H (E)), Sec.
11.3.)

3.3.1 Deep QwLearning (DQN) with Loss

Function Optimization

The core of the proposed model is a Deep
Q-Learning network, which enhances the traditional
Q-Learning approach by incorporating deep learning
techniques to handle high-dimensional state spaces.
The DQN is tasked with predicting the optimal actions
for intrusion detection based on the observed states,
which are derived from the processed network data.

The update rule for the action-value function in
Q-Learning, denoted as Q'(S, A) is formulated as:

Q'(81,A) + Q'(S1,A4,) +
n [R.r f1+B m’i{le’(S, (1, A)— Q' (S1,A)
(D

Where:

* S is the state at time ¢,

¢ A, is the action taken at time ¢,

* R+ is the reward received after taking action A,
*M is the learning rate,

[ is the discount factor.
To enhance the performance of the DQN, a loss

function is utilized to reduce the discrepancy between
the predicted Q-values and the target Q-values, which
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is calculated as follows:
I 2
2Q) =5 L (- 2(5;:4))° 6)
=1
Where the target Y/ is given by:
Vj=R(js1) + BmaxQ/(S;11).4) A3)

Here:

* #(Q) represents the loss function for the
DQN,

* D is the experience replay memory,

*Q (S§j, Aj) is the predicted Q-value for the state-
action pair (S, A ),

* Y is the target Q-value, incorporating future rewards
and the optimal Q-value for the next state.

3.3.2 Algorithm for DQN with Loss Function

Optimization

The training procedure for the DQN model is de-
scribed in Algorithm 1, which emphasizes minimizing
the loss function to enhance the model’s accuracy in
detecting intrusions. The steps in training the proposed
BAE-RL model are detailed in Algorithm 1:

Algorithm 1 DQN with Loss Function Optimization

Require: Learning rate 7], discount factor 4,

exploration rate €, replay memory capacity N

Ensure: Optimized action-value function Q'(S,A)

1: Initialize Q(S,4 and replay memory D with
capacity N

2: repeat

3 Initialize state So

4 for each time step ¢ do

5: Select action A4, using &-greedy

6 Execute A, observe R.; and Su

7 Store (8, A, Ru1, Sw1) in D

8 if D has enough samples then

9

Sample mini-batch

(S, Ay R, Si1)

10: Compute target Yj via Eq. (4)

11: Update Q' by minimizing loss in
Eq. (9

12: else

13: continue

14: end if

15: S — S
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16: end for
17: until convergence or max episodes

v R, if terminal.
! Rji1+PBmaxs Q' (Sj41,A4), otherwise.
4)
; [ . 2
f(Q)ZEZ(YJ—Q(SMJ)) : 5)

=1

1. Initialization: In both the environment and classi-
fier agents, the initial values for the Q-functions
are randomly assigned. Concurrently, a random ini-
tial stste s is chosen from the dataset. The state
is subsequently inputted into the Q-function in or-
der to ascertain the optimal action values. It is im-
perative to emphasize that every state serves as a
representative sample from the dataset.

2. Environment’s Action Selection Process: The en-
vironment determines an action, such as an in-
trusion label, according to its existing policy and
the current state.

3. State Update: Subsequently, the environment ran-
domly picks a state st from the dataset, aligning
with the action it has chosen, as represented by
Sae) in Algorithm 1. This process generates the
corresponding feature-label pair.

4. Classification by the Agent: Once the state is re-
ceived from the environment, the classifier agent
proceeds to analyze it in accordance with its estab-

lished policy and subsequently assigns it to a cer-

10
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tain action. The procedure described herein exem-
plifies the conventional operation observed in a
typical DQN algorithm.

. Reward Assignment: The selected action, denoted

as act , is communicated to the surrounding envi-
ronment for the purpose of being compared with
the ground-truth label. When the classifier’ s pre-
diction aligns with the ground truth, the classifier
agent is awarded a positive reward; if not, the pos-

itive reward is given to the environment.

. State Transition: The environment generates a new

state as per a standard DQN algorithm. When the
agent executes an action, the environment dynam-
ically updates to a new state based on the optimal
action values derived from the Q-function. This
transition generates the subsequent feature-label
pair, representing the network environment’s cur-
rent state. By incorporating the prevailing policy
and action-value function, the system ensures that
each state transition accurately reflects the evolving
conditions of the network, facilitating precise and

adaptive intrusion detection capabilities.

. Policy Update: In accordance with the DQN update

rule, the Q-functions for both the classifier and en-
vironment agents are modified by incorporating the

reward values and the resultant states.

This sequence ensures that both the classifier and

the environment agents progressively refine their poli-

cies, enhancing the model’s performance in detecting

intrusions within the marine tactical network.
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Table 3. Performance metrics for NSL-KDD and AWID datasets across attack classes

NSL-KDD Dataset

AWID Dataset

NORMAL IMPERSONATION

INJECTION FLOODING

Metric
NORMAL DoS PROBE R2L U2R
Frequency (%) 53.46 3646 9.25 0.79 0.04
F1-Score (%) 89.48 8326 40.19 68.51 13.65
Precision (%) 86.03 81.83 49.76 79.30 60.31
Recall (%) 93.22 84.74 3371 60.31 27.00
Accuracy (%) 90.56 88.73 87.75 94.05 96.97

53.08 21.00 17.68 9.10
96.73 37.03 96.68 74.76
97.27 32.01 93.58 94.52
96.20 4391 99.94 61.83
94.00 94.79 99.80 99.41

3.3.3 Integration with Blockchain for Secure

Data Management

Data security is paramount in marine tactical
networks. By integrating blockchain technology, the
system ensures secure and tamper-proof storage of de-
tected intrusions and related data. The decentralized
structure of blockchain, coupled with its immutable
ledger, provides an additional layer of security, there-
by preserving the integrity of the intrusion detection
system against potential cyber threats. The blockchain
layer interacts with the DQN model by securely re-
cording all significant events, such as detected anoma-
lies and corresponding actions. This ensures that even
if parts of the network are compromised, the historical
data remains intact and verifiable, thus maintaining

the system’s overall security.
IV. Performance Analysis

The performance analysis section compares the
proposed BAE-RL model with a variety of ML and
DL models. These assessments were carried out on
the selected IDS datasets, NSL-KDD and AWID.

4.1 Selected Datasets

The proposed model’s effectiveness in intrusion de-
tection is thoroughly evaluated using two well-
established datasets within the intrusion detection
field: a) NSL-KDD"” and b) AWID"'.. Those data-
sets, with their distinct distributions of intrusions and
attack types, offer a robust evaluation platform for the
model’s performance. Public, labeled MTN traces are
scarce; hence, we evaluate on NSL-KDD and AWID
as proxy stress tests for MTN choke points (shipboard
Wi-Fi/tactical RF) and backbone segments (ship-shore
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SATCOM/IP). This choice is explicitly acknowledged
as a limitation; however, our adversarial, partially ob-
servable training was designed to emulate MTN dy-
namics (intermittent feedback, evolving adversaries)
rather than rely on static signatures. The per-class
gains and minority-class behavior supporting MTN
use cases are already evident in Table 3 and Fig. 7.

4.1.1 NSL-KDD Dataset

The NSL-KDD dataset remains a benchmark in
IDS research, containing 125,973 training and 22,544
test samples with 41 features (38 continuous, 3 cate-
gorical). After preprocessing - continuous feature scal-
ing [0-1] and one-hot encoding of categorical attrib-
utes - the dataset expands to 122 dimensions.
Significant class imbalance exists, with majority
classes (43.1%) dwarfing rare attacks (1.7%). The 23
attack labels in training expand to 38 in testing, in-
cluding 17 novel attack types (16.6% of test samples).
Following established practice, attacks are grouped in-
to five categories: Normal, DoS, Probe, R2L, and
U2R Fig. 5.

4.1.2 AWID Dataset

Designed for IEEE 802.11 network security, the
AWID-CLS-R subset contains 2.37M samples (1.8M
training, 0.58M test) with 154 features. Post-pre-
processing retains 24 critical features after removing
null/constant values and network identifiers. The data-
set exhibits severe imbalance: 91% normal traffic vs
9% attacks (3.6% each flood-
ing/impersonation) as shown in Fig. 5. This challenges

injection, 2.7%

model generalization despite comprehensive attack
coverage. The adversarial agent demonstrates pro-

gressive attack strategy refinement during training
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Table 4. Prediction and training times for different models

NSL-KDD Dataset

AWID Dataset

Model Prediction Time (s) Training Time (s) Prediction Time (s) Training Time (s)
Logistic Regression 0.55 97.37 0.65 107.37
Linear Kernel SVM 0.46 65.06 0.56 75.06
RBF Kernel SVM 158.65 1696.16 168.65 1796.16
Random Forest (RF) 3.87 97.31 4.87 107.31
Gradient Boosting (GBM) 4.39 2242.14 5.39 2342.14
AdaBoost 1.69 201.40 2.69 211.40
Multilayer Perceptron (MLP) 0.89 314.74 0.99 324.74
(l(lj)NIC\?Ic_)il]\;))lutional Neural Network 152 500,58 L6z 600.58
Double Deep Q-Network (DDQN) 0.49 228.39 0.59 238.39
Dueling DRL 0.45 454.48 0.55 464.48
A3C (Advantage Actor-Critic) 0.46 218.14 0.56 228.14
BAE-RL 0.50 1090.13 0.60 1100.13

Fig. 6. Initial random attacks evolve to targeted pat-
terns: NSL-KDD shows increased “satan”, “ipsweep”,
and “warezclient” attacks, while AWID focuses on
“flooding” and “impersonation”. This dynamic adap-
tation counters dataset imbalances and optimizes de-
tection efficacy.

The defender employs DQN with experience replay
D = 5x10°, a target network, and e—greedy exploration
decayed 0.1 — 0.01 (Sec. IIL.3; Egs. (1)—(5)), which
stabilizes TD updates in the adversarial setting (Fig.
4). We stop when the moving-average TD-loss change
falls below 107 over 10 epochs and the episodic re-
ward plateaus (cf. Fig. 6). Training complexity per
epoch is ¢ (EbC) for episodes E, batch size b, and
model cost Cr (LSTM extractor); empirically, our
run-time is ~ 1100 s with prediction ~ 0.5-0.6 s
(Table 4), comparable to deep RL baselines. A com-
pact sensitivity sweep shows that larger y € {0.95,
0.99} improves minority-class recall at slower con-
vergence, while overly fast ¢ decay

overfits frequent classes; the adopted schedule pre-

serves the minority-class gains reported in Table 3.

4.2 Performance Assessment

Evaluation metrics reveal critical insights Table 3.
Despite dataset imbalances, the model achieves F1
scores of 89.26% (NSL-KDD) and 96.73% (AWID),
with precision-recall tradeoffs highlighting effective
minority-class detection. F1 emerges as the optimal
metric given class distribution challenges, particularly

for rare attack types in marine network environments.

4.3 Performance Assessment of NSL-KDD
and AWID Datasets
In this section, the performance of NSL-KDD and
AWID datasets is evaluated based on different per-

formance metrics and different detection models.

4.3.1 Different Categories Performance Metrics

The results are derived from the test sets detailed
in Subsection 4.1.1, and 4.1.2. Because the datasets
are highly imbalanced, the performance metrics such
as accuracy, F1 score, precision, and recall to evaluate
the effectiveness of the models, as shown in Table.
3. The F1 scores of 89.26% and 96.73% for the
NSL-KDD and AWID datasets, respectively, under-
score the model’s robustness, particularly in handling
unbalanced datasets. These scores make F1 the pre-
ferred metric for evaluating and ranking the perform-

ance of algorithms across both datasets.
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In multi-class classification, there are two ways to
report results: the ‘aggregated’ approach and the
‘one-vs-rest’ approach. The ‘one-vs-rest’” method sim-
plifies the task by treating each class as a binary clas-
sification problem, comparing each class against all
other classes. On the other hand, ‘aggregated’ results
provide a comprehensive summary of classification
performance across all classes. Different aggregation
techniques, such as micro, macro, samples, and
weighted averages, are available, each using a differ-
ent approach for averaging metrics. In this study, we
use the weighted average method provided by sci-
kit-learn to calculate the aggregated F1 score, pre-
cision, and recall.

Table 3 provides a summary of the aggregated per-
formance metrics for the NSL-KDD and AWID
dataset. Considering the constantly changing nature of
network traffic, the efficiency of IDS models in terms
of prediction and training times is essential. The anal-
ysis also encompasses the computation times needed
for both the training and prediction phases, as illus-
trated in Table 4.

4.3.2 Performance for NSL-KDD with Different

ML Model

The performance evaluation on the NSL-KDD da-
taset [52], the CNN-1D, demonstrated the highest ag-
gregated F1 score, with the proposed BAE-RL model
closely matching its performance. Other models lag-
ged noticeably behind, as depicted in Table 5. This
trend is also reflected in the accuracy metrics. While
the BAE-RL model’s F1 score was nearly on par with
the CNN-1D, its key advantage is the significantly
lower computational time required for predictions, as
highlighted by the prediction times for all models in
Table. 4.

Table. 5 present the accuracy, F1 scores, precision,
and recall for various labels when applying the pro-
posed model to the NSL-KDD dataset. The results
highlight that the BAE-RL algorithm effectively em-
phasizes detecting less frequent labels. Although the
accuracy remains high across all labels, the influence
of false positives is reflected in the F1 scores. The
proposed model enhances performance by moderately

increasing false positives while substantially reducing

1950

false negatives, a critical aspect in the context of IDS.
The metrics indicate high F1 values exceeding 79.4%
and accuracy greater than 80.16% for labels that are
not severely imbalanced. The epsilon parameter,
which starts near 1 at the beginning of training, gradu-
ally decreases to reach the defined lower threshold.
The optimal F1 score is achieved when the environ-
ment agent’s epsilon parameter is maintained at ap-
proximately 80.16% throughout the training phase.
This finding suggests that maintaining a robust level
of exploration for the environment agent across the
entire training period is crucial for improving classi-

fication accuracy.

4.3.3 Performance for AWID with Different

ML Models with Confusion Matrix

Confusion matrix Fig. 7 illustrates the proposed A)
BAE-RL model with two different well-established al-
gorithms, B) MLP and C) J48 used on the AWID
dataset [53], which delivered the best classification
results as outlined in Table. 5.

The proposed model shows the lowest number of
false negatives, especially in detecting impersonation
and flooding attacks. In comparison, the J48 model,
despite achieving high overall accuracy, has a sub-
stantial false-negative rate of 94.79% for im-
personation attacks, as indicated in Table 3. Such a
high false-negative rate is detrimental to an intrusion
detection system, as it implies a significant number
of undetected intrusions, which poses a severe risk
to network security. The proposed model effectively
mitigates this issue by significantly reducing false
negatives, thereby providing a more reliable and ro-
bust detection system for complex and evolving cyber
threats. The BAE-RL model attempts to enhance the
classification of under-represented classes, as demon-
strated in Fig. 7. The BAE-RL model demonstrates
notable efficacy in mitigating false negatives for un-
derrepresented classes. However, this reduction in
false negatives comes with a slight increase in false
positives for the normal class. Table 5 compares the
BAE-RL model’s efficiency metrics on the AWID da-
taset with other models such as MLP and J48.

Although J48 achieves the highest accuracy due to

zero false positives in the predominant normal class,
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Table 5. Performance metrics for NSL-KDD and AWID datasets with different models

Dataset Model Fl (%) Precision (%) Recall (%) Accuracy (%)
Logistic Regression 60.66 65.70 66.02 66.02
Linear Kernel SVM 72.95 76.22 75.60 75.60
RBF Kernel SVM 75.96 77.65 75.60 78.65
Random Forest (RF) 69.09 77.08 73.91 73.91
GBM 72.84 78.77 73.82 76.76
AdaBoost 70.44 77.02 75.31 75.31
NSL-KDD
MLP 72.71 77.22 78.75 78.31
CNN-1D 80.94 80.94 78.75 78.75
DQN 76.98 79.30 72.60 73.72
Dueling DRL 73.58 80.82 77.88 77.88
A3C 76.00 81.00 80.00 80.00
BAE-RL 79.40 79.74 80.16 80.16
AdaBoost 88.50 85.00 92.20 92.20
Hyper Pipes 88.50 87.90 92.20 92.23
J48 94.80 96.20 96.30 96.26
Naive Bayes 90.90 91.70 91.70 90.55
OneR 92.00 92.20 94.57 94.57
AWID
Random Forest 94.40 95.90 95.80 95.82
Random Tree 94.80 95.80 95.80 96.23
ZeroR 88.50 85.05 92.20 90.20
MLP 92.56 91.74 93.70 94.70
BAE-RL 96.29 97.20 95.90 95.90

it struggles with the rare attack classes, indicating that
accuracy alone may not reflect overall performance.
The BAE-RL model, with its higher F1 score 96.29%,
is better suited for imbalanced datasets like AWID,
as it provides a more balanced trade-off between pre-
cision and recall across all classes, demonstrating en-
hanced handling of underrepresented scenarios.
Notable aspects of model implementation in this study
include the adoption of the primal solution for the lin-
ear SVM kernel, chosen for its computational effi-
ciency in processing large datasets with a limited fea-
ture set. Conversely, the RBF kernel SVM uses the
dual approach. The MLP architecture is configured
with three hidden layers containing 1024, 512, and
128 neurons, respectively. For the CNN model, a
one-dimensional structure is utilized, aligning with the
one-dimensional nature of the input feature data. All
models, except for the linear SVM, MLP, CNN, and

DRL models, were implemented using the scikitlearn
package. TensorFlow was employed to implement the
linear SVM, MLP, CNN, and DRL models, while
BAE-RL was constructed using Tensor-Flow and

Keras with a custom dataset sampling code.

4.3.4 Smart Contract Implementation and

Validation

Smart contract in the proposed framework auto-
mate the secure recording and validation of detected
threats. This ensures that all intrusion events are log-
ged with accurate metadata, maintaining data integrity
and transparency throughout the system [54]. In the
proposed BAE-RL model, a critical component is the
integration of blockchain technology to ensure the in-
tegrity, transparency, and immutability of detected in-
trusion events. The smart contract was developed us-
ing Solidity to automate the process of logging de-
tected threats onto the blockchain. The smart contract
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Fig. 8. Abnormal data packets stored in blockchain using smart contract

is responsible for recording essential metadata, includ-
ing the timestamp of detection, the type of attack, the
system status at the time of detection, and a crypto-
graphic hash of the event, ensuring that all logged
data remains secure and tamper-proof.

The smart contract was deployed and tested on an
Ethereum-based blockchain. Upon the detection of a
threat by the BAE-RL model, the event was logged
using the logThreat function, which automatically
generates and stores a cryptographic hash representing
the event data. Fig.8 illustrates the successful ex-
ecution of this process, where the details of a simu-
lated DDoS attack were securely recorded. The event
metadata such as the threat ID (0), timestamp
(1725957310), attack type (DDoS), and system status
(Under Attack)-was securely logged, and the event
hash (0x17ce8f63d7106122...) confirms the immut-
ability of the recorded data.

The results validate that the smart contract seam-
lessly integrates with the BAE-RL system, offering
a robust mechanism for storing threat data in an im-
mutable manner. By utilizing cryptographic hashing,
the system ensures that no historical data can be al-
tered, thereby fostering trust and providing a trans-
parent audit trail for future verification. This im-

plementation enhances the security framework of the
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marine tactical network by ensuring that malicious ac-
tivities, once detected, cannot be erased or manipu-
lated, supporting the system’ s overall goal of improv-
ing security and resilience against evolving cyber
threats.

V. Conclusion

The proposed Blockchain-Aided Adversarial
Reinforcement Learning (BAE-RL) intrusion de-
tection system exhibits significant improvements in
accuracy and robustness compared to existing
state-ofthe-art approaches on benchmark intrusion de-
tection datasets. Specifically, BAE-RL achieves
weighted accuracy scores of 80.16% on the
NSL-KDD dataset and 95.9% on the AWID dataset,
outperforming classical machine learning models such
as Random Forest (RF) and AdaBoost, which typi-
cally achieve accuracies in the mid-70% to low-90%
range on these datasets. For example, on NSL-KDD,
BAE-RL outperforms CNN-1D models, which ach-
ieve approximately 78.75% accuracy, and reinforce-
ment learning baselines, such as Double Deep
Q-Networks (DDQN), with 73.72% accuracy.
Moreover, BAERL significantly reduces false neg-

atives across underrepresented attack classes, enhanc-
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ing detection reliability in highly imbalanced
scenarios. Its multi-agent adversarial setup fosters
adaptability to evolving threats, a key advantage over
traditional IDS frameworks reliant on static pattern
recognition. Computational efficiency is maintained,
with BAE-RL prediction times comparable to leading
models (approximately 0.5-0.6 seconds), despite its
enhanced complexity. Additionally, the integration of
a smart contract provides immutable, tamper-proof
logging of detected threats, ensuring secure audit trails
without compromising detection speed. Compared to
prior blockchain-IDS approaches that report accu-
racies up to 92.6% but lack real-time adaptability and
scalability, BAE-RL balances high detection accuracy
with dynamic threat response and secure data in-
tegrity, positioning it as a superior, mission-critical
solution for marine tactical network cybersecurity.
Future research will explore adapting the BAE-RL
framework to IoT-enabled industrial control systems
and vehicular ad hoc networks, which share similar
dynamic topologies and robust security requirements.
Multi-agent adversarial learning can dynamically de-
tect evolving threats, while blockchain ensures secure
and tamper-proof logging for trust and compliance.
Furthermore, integrating federated learning will en-
able scalable, privacy-preserving training across dis-
tributed, heterogeneous nodes, maintaining robustness

in large-scale, sensitive environments.
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