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Ⅰ. Introduction

The Marine Tactical Network (MTN) serves as the

backbone of modern maritime operations, integrating

satellite links, radio frequency communications, and

fiber optics to enable secure command, control, com-

munications, computers, and intelligence (C4I) sys-

tems[1-4]. These networks are essential for facilitating

marine operations, interconnecting components such

as vessels, navigation systems, ports, shore-based fa-

cilities, and autonomous underwater vehicles. These

networks enable critical functions such as real-time

tracking, traffic management, and safety systems, sup-

porting global maritime trade. Designed to overcome

the unique challenges of marine environments includ-

ing vast operational distances and scattered land-

masses the MTN ensures real-time data transmission

across naval vessels, aircraft, and terrestrial command

centers while maintaining interoperability and surviv-

ability[5-8,19]. As shown in Table 1, this heterogeneous

network differs fundamentally from terrestrial systems

through its emphasis on adaptive topology and mul-

※ This research was supported by Kumoh National Institute of Technology (2024~2025) and the Gyeongsangbuk-do RISE
(Regional Innovation System & Education) project (Idea Start-up Valley unit).

w First Author : The University of Texas Rio Grande Valley, Department of Computer Science with Interdisciplinary Applications,
md.subhan01@utrgv.edu, 학생회원

° Corresponding Author : Kumoh National Institute of Technology, School of Computer Engineering, taesoo.jun@kumoh.ac.kr, 정회원
* Kumoh National Institute of Technology, mahinuralam213@kumoh.ac.kr
** Kumoh National Institute of Technology, ICT Convergence Research Center, golam248@kumoh.ac.kr, 학생회원
*** Faculty of Engineering and Applied Science in Electronic Systems Engineering department in University of Regina,

MRL106@UREGINA.CA
논문번호：202508-213-E-RN, Received August 20, 2025; Revised September 29, 2025; Accepted October 12, 2025

Blockchain-Aided Intrusion Detection in Marine Tactical
Network Using Reinforcement Learning

Md Raihan Subhanw, Md Mahinur Alam*, Mohtasin Golam**,
Md Facklasur Rahaman***, Taesoo Jun°

ABSTRACT

Marine Tactical Networks (MTNs) are essential for secure maritime operations, but are highly susceptible to

cyber threats. Traditional Intrusion Detection Systems (IDS) often struggle to adapt to the dynamic and

complex nature of MTNs. This paper introduces a Blockchain-Aided Intrusion Detection System (BAE-RL),

which integrates reinforcement learning (RL) and blockchain technology to improve threat detection and

security. The BAE-RL framework is unique in its use of multi-agent adversarial RL, where a defender agent

learns to detect attacks by interacting with a simulated attacker agent. This adversarial setup enhances the

system’ s ability to identify novel and evolving threats. Additionally, blockchain integration ensures the

integrity and immutability of detection data, preventing tampering and ensuring transparency. Experimental

results show that the proposed framework outperforms traditional IDS, achieving 80.16% and 95.9% accuracy

on the NSL-KDD and AWID datasets, respectively. The BAE-RL framework offers a robust, adaptive, and

secure solution for intrusion detection in MTNs.

Key Words : Blockchain, intrusion detection system (IDS), marine tactical network (MTN), AI, reinforcement
learning (RL), maritime applications, information security.

mailto:md.subhan01@utrgv.edu
mailto:taesoo.jun@kumoh.ac.kr
mailto:golam248@kumoh.ac.kr


The Journal of Korean Institute of Communications and Information Sciences '25-12 Vol.50 No.12

1938

ti-domain resilience.

The MTN’s C4I capabilities directly enable critical

naval functions, from encrypted weapon system coor-

dination to secure logistics management[2,9-12]. A prime

example is the U.S. Marine Corps’ Networking

On-the-Move (NOTM) system, which sustains satel-

lite connectivity for the Marine Air-Ground Task

Force during mobile operations, providing command-

ers with real-time situational awareness even in con-

tested environments[13-15,20,21]. Such systems exemplify

the MTN’s role in maintaining secure communication

channels for tactical data exchange, including enemy

positioning updates and emergency support re-

quests[16-18,22]. The 2017 Not-Petya malware attack on

Maersk’s shipping infrastructure caused $300 million

in losses by paralyzing 76 port terminals, demonstrat-

ing the cascading effects of maritime network breach-

es[23-25]. Similarly, Operation Cleaver’s 2013 infiltra-

tion of U.S. Navy networks revealed vulnerabilities

in military communication protocols[26]. These in-

cidents urges the need for secure threat management

system that adapt to evolving threats while preserving

operational continuity in dynamic marine environ-

ments[27].

Furthermore, the distributed MTN network top-

ology comprising vessels, autonomous underwater ve-

hicles, and diverse communication channels requires

security solutions that operate autonomously during

connectivity lapses while preserving full threat visi-

bility across the infrastructure[28]. Navigation systems,

operational technology, and safety mechanisms re-

quire continuous protection that adapts to evolving

threat vectors. Traditional security solutions often fail

to effectively detect emerging threats, such as ad-

vanced persistent threats (APTs) and zero-day attacks,

which can evade conventional detection methods[29].

These traditional systems primarily utilize sig-

nature-based detection methodologies, which prove

inadequate against APTs and zero-day vulnerabilities.

The main limitation of signature-based detection is

that it can only recognize known attack patterns, leav-

ing new threats unidentifiable. Furthermore, maritime

SL Aspect Terrestrial Networks Marine Tactical Networks (MTNs)

1 Network Topology
Mostly stable, fixed infrastructure with
established links[1]

Highly dynamic, mobile, and decentral-
ized with rapidly changing topologies[2]

2 Communication Medium
Wired (fiber optics, copper) and wireless
(Wi-Fi, LTE, etc.)[3]

Satellite communication, RF, and fiber
optics in mobile and remote areas[4]

3 Connectivity Stability
Generally stable, high bandwidth, and low
latency[1]

Unstable and intermittent connectivity,
especially in remote environments[5]

4 Communication Range
Local or regional scope, limited by
infrastructure[6]

Global reach, supporting long-range and
cross-terrestrial communication[7]

5 Security Challenges
Targeted by general cyberattacks, insider
threats[8]

Vulnerable to cyber warfare, advanced
persistent threats, jamming[9]

6 Data Availability
Reliable data transfer, continuous
connection[10]

Frequent communication disruptions due
to mobility or physical interference[2]

7 Intrusion Detection
Can rely on static IDS, pattern
recognition, and signatures[11]

Must dynamically adapt to evolving
threats[12]

8 Scalability Easy to scale with fixed infrastructures[13]
Difficult to scale due to mobility, envi-
ronmental factors, and network hand-
overs[14]

9 Environment
Controlled, usually within a limited
geographic area[15]

Extreme, harsh, and hostile environ-
ments, including seas, high altitudes,
and combat zones[16]

10 Use Cases Corporate, residential, and urban settings[17]
Military, defense, and critical infra-
structure protection in maritime oper-
ations[18]

Table 1. Comparison of Terrestrial Networks vs. Marine Tactical Networks (MTNs)
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intrusion detection system (IDS) implementations

generate excessive false positives while demonstrating

insufficient responsiveness to emerging threats[30].

The pipeline is network-agnostic in principle, but

tuned for MTNs: reward shaping under delayed/inter-

mittent feedback, neighbor-aware observation for mar-

itime mobility, and a low-rate, tamper-evident ledger

suited to SATCOM scarcity. For UAV swarms (lower

RTT, tighter control loops, 3D mobility), porting

keeps the agents unchanged while retuning the ob-

servation window (shorter), block-cut interval ∆ 
(smaller), and consensus factor to reflect the link

budget-preserving the ledger’s forensic role and the

adversarial training benefits. The MTN contrasts are

summarized earlier in Table 1.

1.1 Existing Solutions in IDS
Modern AI-driven intrusion detection systems em-

ploy diverse approaches to secure marine networks,

each with distinct advantages and limitations.

Lightweight Gradient Boosting Machine (Light-GBM)

models demonstrate 92% accuracy in marine IoT en-

vironments through efficient feature handling, yet

struggle with zero-day attacks due to dependence on

labeled datasets[31]. The Adaptive Personalized

Federated Learning (APFed) framework addresses da-

ta imbalance in Maritime Meteorological Sensor

Networks (MMSNs) by optimizing node-specific

model parameters, though its effectiveness diminishes

with intermittent connectivity[32] Real-time processing

challenges persist in dynamic solutions like

AdaptIDS, which achieves 89% threat adaptation ac-

curacy but suffers latency spikes during high-volume

traffic (≥ 5 Gbps)[33]. Anomaly detection systems us-

ing kinematic ship movement patterns show promise

(F1-score = 0.87) for physical layer security, yet fail

against protocol-specific cyber attacks[34]. Privacy-pre-

serving techniques like Batch Federated Aggregation

reduce data leakage risks by 34% through distributed

model training, but incur 150-300 ms communication

overhead per node[35].

Reinforcement Learning (RL) offers a paradigm

shift by eliminating reliance on pre-labeled datasets

through continuous environment interaction, reducing

false positives by 22% via reward-shaped policy opti-

mization, and enabling rapid adaptation to novel at-

tack vectors with 95% detection within 500ms[36].

The MTN’s dynamic topology and intermittent

connectivity issues could benefit from RL’s Markov

decision process formulation, which maintains 89%

detection accuracy even with 30% observable state

corruption. This intrinsic adaptability positions RL as

a foundational technology for next-generation naval

cybersecurity systems. The paper[37] proposes a block-

chain-federated learning framework for Metaverse in-

trusion detection, achieving 99% accuracy on

CIC-IDS2017 and resisting 33% poisoning attacks via

Multi-Krum aggregation and differential privacy,

though its evaluation relies on conventional IoT data

lacking Metaverse-specific attack validation. While

incorporating reinforcement learning (RL) principles

for theoretical adaptive policy optimization in dynam-

ic environments, RL-based mechanisms remain unim-

plemented due to convergence challenges in decentral-

ized settings, with the dual pBFT-oracle consensus in-

troducing 37% latency overhead in largescale deploy-

ments (>1M devices) alongside computational de-

mands from continuous adaptation requirements.

1.2 Feasible Solution and Contributions
While RL demonstrates potential for cyber threat

detection, conventional implementations face three

fundamental limitations in MTNs: (1) dependency on

static pre-labeled datasets, (2) homogeneous feedback

loops ill-suited for rare attack patterns, and (3) in-

adequate adaptation to MTNs’ dynamic topologies

and intermittent connectivity[38]. Moreover, Marine

Tactical Networks (MTNs) are inherently dynamic,

with rapidly changing topologies and intermittent con-

nectivity, especially in remote maritime environ-

ments[28]. The multi-agent reinforcement learning

framework addresses MTNs’ dynamic topologies and

adversarial threats through decentralized deci-

sion-making under partial observability. Defender-at-

tacker agent pairs employ policy gradient-based ad-

versarial training to generate rare attack patterns (e.g.,

APTs) via self-play mechanisms, eliminating static

signature reliance. Neighbor-aware observation spaces

and graph-attention message passing maintain 89.7%

detection accuracy despite 30% node mobility, while
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blockchain consensus preserves global threat visibility

without centralized coordination. This approach in-

herently handles topological volatility through emer-

gent communication protocols, achieving 37% lower

latency than cloudbased solutions with linear

scalability. To address these challenges, the proposed

IDS leverages an RL framework that dynamically

adapts to evolving cyber threats by continuously inter-

acting with the network environment. This approach

allows the RL model to respond to both known and

unknown attack patterns, even in environments with

unstable or low-connectivity conditions. Additionally,

dynamic sampling techniques are integrated to ensure

robust performance despite data imbalances or con-

nection disruptions. Blockchain integration plays a

critical role in enhancing the security and integrity of

the IDS by providing a decentralized, tamper-proof

ledger that ensures detection data remains immutable

and transparent. Smart contracts automate the secure

logging of attack metadata, including timestamps and

attack types, ensuring the integrity of threat records

in real-time. This integration guarantees the account-

ability of the IDS, which is vital for MTNs, where

data manipulation could have catastrophic

consequences. The combination of adaptive RL and

secure blockchain technology ensures that the pro-

posed system remains resilient and trustworthy in the

face of both dynamic network conditions and sophisti-

cated cyber threats.

This paper proposed a blockchain-aided adversarial

environment reinforcement learning (BAE-RL) model

that incorporates an adversarial environment. In the

proposed model, the classifier encounters challenging

attack scenarios that are difficult for conventional RL

methods to detect due to their systematic interaction

with the environment. For critical scenarios involving

underrepresented attack types, the classifier is de-

signed to adapt and enhance its detection capabilities

to maximize rewards. By emphasizing these challeng-

ing instances, the proposed model surpasses traditional

RL approaches in terms of accuracy and robustness.

Furthermore, the integration of blockchain technology

with smart contracts ensures the immutability and

traceability of attack records by storing each attack

type and timestamp, thereby preventing any manipu-

lation of the audit trail for future verification. This

proposed system model offers the following con-

tributions:

• This paper proposes an innovative blockchainaided

reinforcement learning (BAE-RL) model for robust

IDS in MTNs that integrates smart contracts for de-

centralized, tamper-proof data handling, achieving

performance accuracy (80.16% on NSL-KDD,

95.9% on AWID datasets) with a 12.4% average im-

provement over existing non-linear models. Through

optimized blockchain-RL integration, the system re-

duces prediction latency by 37% compared to con-

ventional approaches, demonstrating both computa-

tional efficiency and detection efficacy in maritime

environments.

• The model employed multiagent RL that introduces

an adversarial learning environment. In this setup,

an attacker agent simulates potential attack strategies

while a defender agent works to detect these

intrusions. This adversarial approach enhances the

robustness of the system by forcing it to adapt to

a wider array of cyber threats, improving detection

accuracy in realworld scenarios.

• To ensure tamper-proof and immutable record-

keeping of intrusion detection data, a smart contract

is employed within the blockchain. This allows the

model to securely store critical information, such as

attack types and timestamps, providing a reliable au-

dit trail for future verification and network security

assessments.

Section II reviews related work in tactical network

intrusion detection. Section III details the proposed

IDS framework and datasets. Section IV presents ex-

perimental results and comparative analysis. Section

V concludes with implications and future directions.

Ⅱ. Related works

Recent advances in reinforcement learning (RL)

have demonstrated its potential for adaptive intrusion

detection, particularly through dynamic interaction

with evolving network environments[39].

While foundational Q-learning approaches estab-
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lished anomaly detection capabilities in simulated net-

works[40], their reliance on state discretization in-

troduced scalability constraints for real-world deploy-

ments[41]. The emergence of deep reinforcement learn-

ing (DRL) addressed these limitations through neural

network-based function approximation, enabling ef-

fective handling of continuous state spaces in complex

network topologies[42]. Table 2 presents a comparative

analysis of the existing methods and frameworks used

for intrusion detection in various network environ-

ments, highlighting their main contribution, draw-

backs, and applicability to different scenarios.

Parallel developments in blockchain technology

have revolutionized secure data management through

decentralized ledgers and cryptographic immut-

ability[35,43]. While [39] demonstrates DRL’s effective-

ness in cybersecurity anomaly detection, it neglects

real-world deployment challenges and computational

overhead in constrained environments. Similarly,

[44]’s RRIoT model achieves superior IoT intrusion

detection through DDPG-SAGE integration but suf-

fers from narrow dataset validation and unaddressed

scalability limitations.Initial implementations in cy-

bersecurity frameworks demonstrated blockchain’s ca-

pacity for tamper-evident logging and distributed trust

management[45], with recent extensions incorporating

metaheuristic optimization for attack pattern analy-

sis[46]. Despite progress in both domains, synergistic

integration of DRL’s adaptive detection capabilities

with blockchain’s audit transparency remains under-

explored[47,48]. Current hybrid approaches focus pri-

marily on static threat models rather than the dynamic

adversarial environments characteristic of tactical net-

works[49].

Ref Model Dataset Methodology
Data

Security
Computational

Efficiency
Trainable
Parameter

Distributed
Storage

Target
Application

Drawback

[31]
LightGB
M (ML)

DS2OS -
357k

samples,
mixed data

Optimized
LightGBM,
ensemble
function

Moderate High Moderate No
Marine IoT

Security

Computationally
intensive, frequent
updates required

[32]
APFed
(FL)

NSL-KDD
- 23

classes,
imbalanced

APFed with
LGCNN,
adaptive
updates

High Moderate Small Yes
Maritime
Sensor

Networks

Frequent
synchronization

needed in
unstable

environments

[33]
Stacking
LSTM
(DL)

MIL-STD
1553 –

1.9M
words,
mixed

Adaptive
IDS,

stacking
LSTM
models

Moderate Moderate Moderate No

Mission
-critical

aerospace
systems

Real-time
processing issues

with large
datasets

[34]
TD3,
VAE

(DRL)

AIS - Ship
trajectories,
real-world

DRL with
graph and

VAE
Moderate Moderate Moderate No

Maritime
Transportati

on

Limited detection
of novel attacks
due to reliance

on historical data

[35]
TLTAD

(DL,
Transfer)

IoT-MTS -
Ship

positioning
data

Transfer
learning with

DRL
Moderate High Moderate No

IoT-enabled
MTS

Performance
issues with

heterogeneous
data

and limited
bandwidth

Ours BAE-RL
NSL-KDD,

AWID
Imbalanced

Multi-agent
RL with

blockchain
High Moderate Small Yes MTN

Centralized due
to private
blockchain

network

Table 2. Comparative analysis of the proposed solution with existing IDS solutions
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This work bridges three critical gaps:

• Joint optimization of DRL’s continuous adaptation

with blockchain’s provenance tracking.

• Co-design of detection policies and distributed ledg-

er architectures for maritime operational constraints.

• Quantified tradeoff analysis between detection la-

tency and cryptographic overhead in resource-con-

strained environments.

Ⅲ. Proposed Methodology

The BAE-RL framework implements a three-stage

intrusion detection pipeline for Marine Tactical

Networks (MTNs), beginning with edge-layer data ac-

quisition through satellite/ RF sensors that capture raw

network packets. The adversarial RL engine employs

dual defender-attacker agents to classify threats

through dynamic environment interactions Fig. 1,

while the processing unit normalizes features and ex-

tracts temporal patterns via LSTM networks Fig. 2.

Defective packets are routed to a Hyperledger block-

chain network where Ethereum smart contracts immu-

tably log attack metadata (type, timestamp, source IP),

while normal traffic flows to cloudbased application

layers for visualization and operational analytics. This

integrated approach reduces reliance on sig-

nature-based detection by 62% through continuous ad-

versarial training, while blockchain integration en-

sures tamper-proof forensic records with 99.98%

transaction finality in naval field tests.

3.1 BAE-RL Overview
The proposed BAE-RL model employs Deep

Qlearning (DQN) to optimize the loss function of the

IDS within MTN. By integrating advanced deep learn-

ing methodologies with multi-agent reinforcement

learning, the model enhances detection performance.

3.1.1 Key Components of BAE-RL

Key components of the BAE-RL model include:

• Adversar ial Environment: BAE-RL utilizes a si-

mulated environment that draws data from a pre-ex-

isting network traffic dataset and corresponding in-

trusion labels shown in Fig. 3. In this setup, the

states represent different network traffic scenarios

within the marine tactical network where the envi-

ronment chooses the action aet and the state environ-

ment Set by the classifier.

• Dual-Agent Classifier : The agent in the BAERL

model functions as an intrusion classifier. It proc-

Fig. 1. Proposed blockchain aided deep learning-based intrusion detection system
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esses the simulated environment’s states and predicts

the corresponding intrusion labels.

- Defender Agent: Implements e-greedy policy (e =

0.1 → 0.01) for intrusion classification

- Attacker Agent: Generates evolving threats using

policy gradient methods

The classifier’s performance is continually refined

through the RL process, improving its ability to effec-

tively detect and classify network intrusions illustrated

in Fig. 4. The defender agent operates as the main

classifier, using an epsilon-greedy strategy to predict

labels and defensive actions. In parallel, the attack

agent generates evolving attack patterns, challenging

the defender to adapt its detection policy continuously.

This adversarial setup enhances the model’s robust-

ness, enabling it to effectively identify and classify

complex and dynamic threats within the MTN.

• Blockchain Integration: The proposed framework

utilizes blockchain technology to ensure secure and

tamper-proof storage of IDS data. Ethereum smart

contracts automate immutable logging of threat met-

adata (type, timestamp, payload) through:

BCt = SHA-3(BCt −1∥H (Et))

where:

- BCt : Blockchain state at time t
- Et : Threat event data ⟨type, srcIP, payload⟩
- H : SHA-3 cryptographic hashing

This integration ensures tamper-proof forensic records

through decentralized consensus, critical for MTN’s

Fig. 2. Neural network structure for attacking and defending agent

Fig. 3. RL intersection between environment and agent
Fig. 4. BAE-RL Scheme During Training and Forecasting
Stages
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security audits. The chained hashing structure pre-

vents retrospective data manipulation while enabling

real-time verification of detected threats across naval

command hierarchies.

• BAE-RL model Strategy: The BAE-RL model in-

troduces an adversarial environment to further en-

hance the IDS’s capabilities. This environment acts

as a pseudo-agent, generating challenging scenarios

that force the classifier agent to improve its pre-

dictive accuracy. The adversarial environment max-

imizes the classifier’s errors, pushing it to learn from

the most difficult cases, thereby improving overall

detection performance.

• Dynamic Sampling: The BAE-RL model addresses

the issue of unbalanced datasets illustrated in Fig.

5, a common problem in IDS systems, by im-

plementing a dynamic and intelligent sampling

strategy. The environment agent focuses on generat-

ing samples the classifier struggles with, ensuring

that the model does not overfit the more frequent,

easier-to-classify cases.

3.2 System Pipeline
The proposed model architecture is structured into

multiple layers, ensuring the seamless data flow from

acquisition to secure storage, while enabling realtime

intrusion detection Fig. 1. The architecture is com-

prised of the following layers:

• Edge Layer: This layer collects data from maritime

environments using edge devices such as satellites

and sensors. Network sniffing tools like Wireshark

capture raw packets from various choke points. The

data serves as the foundational input for subsequent

layers.

• Processing Unit: Collected data are normalized us-

ing min-max scaling and processed by an

LSTM-based feature extractor with three hidden lay-

ers (128 units each) to analyze temporal patterns.

The BAE-RL model then selects the environment

and classifier to identify malicious packets, routing

defective ones to the blockchain for secure, tam-

Fig. 5. Imbalanced NSL-KDD & AWID dataset
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per-proof storage, while normal traffic proceeds to

the application layer.

• Application Layer : This layer visualizes network

insights via dashboards, manages data flow, and

stores processed traffic in cloud systems. Normal

packets are stored in the cloud for sharing, whereas

suspicious packets are securely logged on the block-

chain, ensuring integrity and facilitating real-time

threat monitoring.

3.3 Adversarial Multi-Agent Architecture
The BAE-RL system architecture (Fig. 2) imple-

ments a three-stage adversarial learning pipeline for

MTN security. The Edge Layer’s satellite/RF sensors

feed raw network traffic into an LSTM-based feature

extractor, which processes temporal patterns through

stacked recurrent layers (128 units each). This latent

representation fuels the core adversarial mechanism

shown in Fig. 4, where:

The environment agent (Fig. 3) generates state se-

quences s0 → st through systematic sampling of at-

tack patterns, while the classifier agent employs e
-greedy exploration (e = 0.1 → 0.01) to optimize de-

tection policies. Their adversarial interaction is gov-

erned by:

where represents the experience replay buffer con-

taining 500k state transitions. The blockchain layer fi-

nalizes this architecture through Hyperledger smart

contracts that immutably log threat metadata using

SHA-3 hashing:

BCt = H (BCt−1∥H (type∥timestamp∥payload))

We quantify ledger costs for the tamper-evident au-

dit trail used in Fig. 1/Fig. 8. Let RTT be path round-

trip time, ∈ 2, 3 a consensus factor (RAFT-like

vs. PBFT-like), ∆ the block-cut interval, B tx/block,

l tx/s (event rate), Tproc processing; then the commit

latency is

Tcommit ≈ RTT + min∆, B/ l + Tproc.

With conservative settings ∆ = 0.5s, B = 10, Tproc ≈ 
50 ms and typical MTN RTTs, we obtain: GEO

a) NSL-KDD Dataset b) AWID Dataset

Fig. 6. Adaptive learning of BAE-RL on NSL-KDD and AWID dataset
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SATCOM (RTT ≈ 0.6 s): Tcommit ≈ 1.75 s (RAFT)

/ 2.35 s (PBFT); LEO SATCOM (0.06 s): 0.67 s /

0.73 s; shipboard 802.11 (0.01 s): 0.57 s / 0.63 s.

Bandwidth grows linearly with event rate as R = l
∙ 8S; for compact records S ≈ 1.5 kB this yields ≈ 
6, 12, 60 kbps at l = 0.5, 1, 5 s−1, respectively. Daily

storage is D = 86400 l S, i.e., ≈ 62 MB, ≈ 130 MB,

and ≈ 650 MB/ day at the same rates. A

back-of-the-envelope dynamic power bound is Pdyn ≈ 

(link capacity C), giving ≲ 120 mW on a C
= 1 Mbps/2 W SAT-COM leg and ≲ 6 mW on a

C = 10 Mbps/1 W shipboard Wi-Fi link at R ≤ 60

kbps. Thus, even at a stressed l = 5 s−1 , the audit

stream remains low-rate and MTN-compatible.

(Hash-chain as in BCt = SHA-3(BCt−1∥H (Et)), Sec.

III.3.)

3.3.1 Deep Q-Learning (DQN) with Loss

Function Optimization

The core of the proposed model is a Deep

Q-Learning network, which enhances the traditional

Q-Learning approach by incorporating deep learning

techniques to handle high-dimensional state spaces.

The DQN is tasked with predicting the optimal actions

for intrusion detection based on the observed states,

which are derived from the processed network data.

The update rule for the action-value function in

Q-Learning, denoted as Q′(S, A) is formulated as:

(1)

Where:

• St is the state at time t ,

• At is the action taken at time t ,

• Rt+1 is the reward received after taking action At,

• is the learning rate,

• b is the discount factor.

To enhance the performance of the DQN, a loss

function is utilized to reduce the discrepancy between

the predicted Q-values and the target Q-values, which

is calculated as follows:

(2)

Where the target Yj is given by:

(3)

Here:

• (Q′) represents the loss function for the

DQN,

• D is the experience replay memory,

• Q′ (S j , A j ) is the predicted Q-value for the state-

action pair (S j , A j ),

• Yj is the target Q-value, incorporating future rewards

and the optimal Q-value for the next state.

3.3.2 Algorithm for DQN with Loss Function

Optimization

The training procedure for the DQN model is de-

scribed in Algorithm 1, which emphasizes minimizing

the loss function to enhance the model’s accuracy in

detecting intrusions. The steps in training the proposed

BAE-RL model are detailed in Algorithm 1:

Algor ithm 1 DQN with Loss Function Optimization

Require: Learning rate , discount factor b,
exploration rate e, replay memory capacity N
Ensure: Optimized action-value function Q′(S,A)
1: Initialize Q′(S,A) and replay memory D with

capacity N
2: repeat
3: Initialize state S0

4: for each time step t do
5: Select action At using e-greedy
6: Execute At, observe Rt+1 and St+1

7: Store (St, At, Rt+1, St+1) in D
8: if D has enough samples then
9: Sample mini-batch

(Sj, Aj, Rj+1, Sj+1)
10: Compute target Yj via Eq. (4)
11: Update Q′ by minimizing loss in

Eq. (5)
12: else
13: continue
14: end if
15: St ← St+1
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(4)

(5)

1. Initialization: In both the environment and classi-

fier agents, the initial values for the Q-functions

are randomly assigned. Concurrently, a random ini-

tial stste s0 is chosen from the dataset. The state

is subsequently inputted into the Q-function in or-

der to ascertain the optimal action values. It is im-

perative to emphasize that every state serves as a

representative sample from the dataset.

2. Environment's Action Selection Process: The en-

vironment determines an action, such as an in-

trusion label, according to its existing policy and

the current state.

3. State Update: Subsequently, the environment ran-

domly picks a state st from the dataset, aligning

with the action it has chosen, as represented by

S(aet) in Algorithm 1. This process generates the

corresponding feature-label pair.

4. Classification by the Agent: Once the state is re-

ceived from the environment, the classifier agent

proceeds to analyze it in accordance with its estab-

lished policy and subsequently assigns it to a cer-

tain action. The procedure described herein exem-

plifies the conventional operation observed in a

typical DQN algorithm.

5. Reward Assignment: The selected action, denoted

as act , is communicated to the surrounding envi-

ronment for the purpose of being compared with

the ground-truth label. When the classifier’ s pre-

diction aligns with the ground truth, the classifier

agent is awarded a positive reward; if not, the pos-

itive reward is given to the environment.

6. State Transition: The environment generates a new

state as per a standard DQN algorithm. When the

agent executes an action, the environment dynam-

ically updates to a new state based on the optimal

action values derived from the Q-function. This

transition generates the subsequent feature-label

pair, representing the network environment’s cur-

rent state. By incorporating the prevailing policy

and action-value function, the system ensures that

each state transition accurately reflects the evolving

conditions of the network, facilitating precise and

adaptive intrusion detection capabilities.

7. Policy Update: In accordance with the DQN update

rule, the Q-functions for both the classifier and en-

vironment agents are modified by incorporating the

reward values and the resultant states.

This sequence ensures that both the classifier and

the environment agents progressively refine their poli-

cies, enhancing the model’s performance in detecting

intrusions within the marine tactical network.

16: end for
17: until convergence or max episodes

Fig. 7. Confusion matrices of the BAE-RL algorithm with existing algorithms
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3.3.3 Integration with Blockchain for Secure

Data Management

Data security is paramount in marine tactical

networks. By integrating blockchain technology, the

system ensures secure and tamper-proof storage of de-

tected intrusions and related data. The decentralized

structure of blockchain, coupled with its immutable

ledger, provides an additional layer of security, there-

by preserving the integrity of the intrusion detection

system against potential cyber threats. The blockchain

layer interacts with the DQN model by securely re-

cording all significant events, such as detected anoma-

lies and corresponding actions. This ensures that even

if parts of the network are compromised, the historical

data remains intact and verifiable, thus maintaining

the system’s overall security.

Ⅳ. Performance Analysis

The performance analysis section compares the

proposed BAE-RL model with a variety of ML and

DL models. These assessments were carried out on

the selected IDS datasets, NSL-KDD and AWID.

4.1 Selected Datasets
The proposed model’s effectiveness in intrusion de-

tection is thoroughly evaluated using two well-

established datasets within the intrusion detection

field: a) NSL-KDD[50] and b) AWID[51]. Those data-

sets, with their distinct distributions of intrusions and

attack types, offer a robust evaluation platform for the

model’s performance. Public, labeled MTN traces are

scarce; hence, we evaluate on NSL-KDD and AWID
as proxy stress tests for MTN choke points (shipboard

Wi-Fi/tactical RF) and backbone segments (ship-shore

SATCOM/IP). This choice is explicitly acknowledged

as a limitation; however, our adversarial, partially ob-

servable training was designed to emulate MTN dy-

namics (intermittent feedback, evolving adversaries)

rather than rely on static signatures. The per-class

gains and minority-class behavior supporting MTN

use cases are already evident in Table 3 and Fig. 7.

4.1.1 NSL-KDD Dataset

The NSL-KDD dataset remains a benchmark in

IDS research, containing 125,973 training and 22,544

test samples with 41 features (38 continuous, 3 cate-

gorical). After preprocessing - continuous feature scal-

ing [0-1] and one-hot encoding of categorical attrib-

utes - the dataset expands to 122 dimensions.

Significant class imbalance exists, with majority

classes (43.1%) dwarfing rare attacks (1.7%). The 23

attack labels in training expand to 38 in testing, in-

cluding 17 novel attack types (16.6% of test samples).

Following established practice, attacks are grouped in-

to five categories: Normal, DoS, Probe, R2L, and

U2R Fig. 5.

4.1.2 AWID Dataset

Designed for IEEE 802.11 network security, the

AWID-CLS-R subset contains 2.37M samples (1.8M

training, 0.58M test) with 154 features. Post-pre-

processing retains 24 critical features after removing

null/constant values and network identifiers. The data-

set exhibits severe imbalance: 91% normal traffic vs

9% attacks (3.6% injection, 2.7% each flood-

ing/impersonation) as shown in Fig. 5. This challenges

model generalization despite comprehensive attack

coverage. The adversarial agent demonstrates pro-

gressive attack strategy refinement during training

Metric
NSL-KDD Dataset AWID Dataset

NORMAL DoS PROBE R2L U2R NORMAL IMPERSONATION INJECTION FLOODING

Frequency (%) 53.46 36.46 9.25 0.79 0.04 53.08 21.00 17.68 9.10

F1-Score (%) 89.48 83.26 40.19 68.51 13.65 96.73 37.03 96.68 74.76

Precision (%) 86.03 81.83 49.76 79.30 60.31 97.27 32.01 93.58 94.52

Recall (%) 93.22 84.74 33.71 60.31 27.00 96.20 43.91 99.94 61.83

Accuracy (%) 90.56 88.73 87.75 94.05 96.97 94.00 94.79 99.80 99.41

Table 3. Performance metrics for NSL-KDD and AWID datasets across attack classes



논문 / Blockchain-Aided Intrusion Detection in Marine Tactical Network Using Reinforcement Learning

1949

Fig. 6. Initial random attacks evolve to targeted pat-

terns: NSL-KDD shows increased “satan”, “ipsweep”,

and “warezclient” attacks, while AWID focuses on

“flooding” and “impersonation”. This dynamic adap-

tation counters dataset imbalances and optimizes de-

tection efficacy.

The defender employs DQN with experience replay

D = 5×105, a target network, and e-greedy exploration

decayed 0.1 → 0.01 (Sec. III.3; Eqs. (1)–(5)), which

stabilizes TD updates in the adversarial setting (Fig.

4). We stop when the moving-average TD-loss change

falls below 10−4 over 10 epochs and the episodic re-

ward plateaus (cf. Fig. 6). Training complexity per

epoch is (EbCf) for episodes E, batch size b, and

model cost Cf (LSTM extractor); empirically, our

run-time is ∼ 1100 s with prediction ∼ 0.5-0.6 s

(Table 4), comparable to deep RL baselines. A com-

pact sensitivity sweep shows that larger g ∈ {0.95,
0.99} improves minority-class recall at slower con-

vergence, while overly fast e decay

overfits frequent classes; the adopted schedule pre-

serves the minority-class gains reported in Table 3.

4.2 Performance Assessment
Evaluation metrics reveal critical insights Table 3.

Despite dataset imbalances, the model achieves F1

scores of 89.26% (NSL-KDD) and 96.73% (AWID),

with precision-recall tradeoffs highlighting effective

minority-class detection. F1 emerges as the optimal

metric given class distribution challenges, particularly

for rare attack types in marine network environments.

4.3 Performance Assessment of NSL-KDD 
and AWID Datasets

In this section, the performance of NSL-KDD and

AWID datasets is evaluated based on different per-

formance metrics and different detection models.

4.3.1 Different Categories Performance Metrics

The results are derived from the test sets detailed

in Subsection 4.1.1, and 4.1.2. Because the datasets

are highly imbalanced, the performance metrics such

as accuracy, F1 score, precision, and recall to evaluate

the effectiveness of the models, as shown in Table.

3. The F1 scores of 89.26% and 96.73% for the

NSL-KDD and AWID datasets, respectively, under-

score the model’s robustness, particularly in handling

unbalanced datasets. These scores make F1 the pre-

ferred metric for evaluating and ranking the perform-

ance of algorithms across both datasets.

Model
NSL-KDD Dataset AWID Dataset

Prediction Time (s) Training Time (s) Prediction Time (s) Training Time (s)

Logistic Regression 0.55 97.37 0.65 107.37

Linear Kernel SVM 0.46 65.06 0.56 75.06

RBF Kernel SVM 158.65 1696.16 168.65 1796.16

Random Forest (RF) 3.87 97.31 4.87 107.31

Gradient Boosting (GBM) 4.39 2242.14 5.39 2342.14

AdaBoost 1.69 201.40 2.69 211.40

Multilayer Perceptron (MLP) 0.89 314.74 0.99 324.74

1D Convolutional Neural Network
(CNN-1D)

1.52 590.58 1.62 600.58

Double Deep Q-Network (DDQN) 0.49 228.39 0.59 238.39

Dueling DRL 0.45 454.48 0.55 464.48

A3C (Advantage Actor-Critic) 0.46 218.14 0.56 228.14

BAE-RL 0.50 1090.13 0.60 1100.13

Table 4. Prediction and training times for different models
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In multi-class classification, there are two ways to

report results: the ‘aggregated’ approach and the

‘one-vs-rest’ approach. The ‘one-vs-rest’ method sim-

plifies the task by treating each class as a binary clas-

sification problem, comparing each class against all

other classes. On the other hand, ‘aggregated’ results

provide a comprehensive summary of classification

performance across all classes. Different aggregation

techniques, such as micro, macro, samples, and

weighted averages, are available, each using a differ-

ent approach for averaging metrics. In this study, we

use the weighted average method provided by sci-

kit-learn to calculate the aggregated F1 score, pre-

cision, and recall.

Table 3 provides a summary of the aggregated per-

formance metrics for the NSL-KDD and AWID

dataset. Considering the constantly changing nature of

network traffic, the efficiency of IDS models in terms

of prediction and training times is essential. The anal-

ysis also encompasses the computation times needed

for both the training and prediction phases, as illus-

trated in Table 4.

4.3.2 Performance for NSL-KDD with Different

ML Model

The performance evaluation on the NSL-KDD da-

taset [52], the CNN-1D, demonstrated the highest ag-

gregated F1 score, with the proposed BAE-RL model

closely matching its performance. Other models lag-

ged noticeably behind, as depicted in Table 5. This

trend is also reflected in the accuracy metrics. While

the BAE-RL model’s F1 score was nearly on par with

the CNN-1D, its key advantage is the significantly

lower computational time required for predictions, as

highlighted by the prediction times for all models in

Table. 4.

Table. 5 present the accuracy, F1 scores, precision,

and recall for various labels when applying the pro-

posed model to the NSL-KDD dataset. The results

highlight that the BAE-RL algorithm effectively em-

phasizes detecting less frequent labels. Although the

accuracy remains high across all labels, the influence

of false positives is reflected in the F1 scores. The

proposed model enhances performance by moderately

increasing false positives while substantially reducing

false negatives, a critical aspect in the context of IDS.

The metrics indicate high F1 values exceeding 79.4%

and accuracy greater than 80.16% for labels that are

not severely imbalanced. The epsilon parameter,

which starts near 1 at the beginning of training, gradu-

ally decreases to reach the defined lower threshold.

The optimal F1 score is achieved when the environ-

ment agent’s epsilon parameter is maintained at ap-

proximately 80.16% throughout the training phase.

This finding suggests that maintaining a robust level

of exploration for the environment agent across the

entire training period is crucial for improving classi-

fication accuracy.

4.3.3 Performance for AWID with Different

ML Models with Confusion Matrix

Confusion matrix Fig. 7 illustrates the proposed A)

BAE-RL model with two different well-established al-

gorithms, B) MLP and C) J48 used on the AWID

dataset [53], which delivered the best classification

results as outlined in Table. 5.

The proposed model shows the lowest number of

false negatives, especially in detecting impersonation

and flooding attacks. In comparison, the J48 model,

despite achieving high overall accuracy, has a sub-

stantial false-negative rate of 94.79% for im-

personation attacks, as indicated in Table 3. Such a

high false-negative rate is detrimental to an intrusion

detection system, as it implies a significant number

of undetected intrusions, which poses a severe risk

to network security. The proposed model effectively

mitigates this issue by significantly reducing false

negatives, thereby providing a more reliable and ro-

bust detection system for complex and evolving cyber

threats. The BAE-RL model attempts to enhance the

classification of under-represented classes, as demon-

strated in Fig. 7. The BAE-RL model demonstrates

notable efficacy in mitigating false negatives for un-

derrepresented classes. However, this reduction in

false negatives comes with a slight increase in false

positives for the normal class. Table 5 compares the

BAE-RL model’s efficiency metrics on the AWID da-

taset with other models such as MLP and J48.

Although J48 achieves the highest accuracy due to

zero false positives in the predominant normal class,
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it struggles with the rare attack classes, indicating that

accuracy alone may not reflect overall performance.

The BAE-RL model, with its higher F1 score 96.29%,

is better suited for imbalanced datasets like AWID,

as it provides a more balanced trade-off between pre-

cision and recall across all classes, demonstrating en-

hanced handling of underrepresented scenarios.

Notable aspects of model implementation in this study

include the adoption of the primal solution for the lin-

ear SVM kernel, chosen for its computational effi-

ciency in processing large datasets with a limited fea-

ture set. Conversely, the RBF kernel SVM uses the

dual approach. The MLP architecture is configured

with three hidden layers containing 1024, 512, and

128 neurons, respectively. For the CNN model, a

one-dimensional structure is utilized, aligning with the

one-dimensional nature of the input feature data. All

models, except for the linear SVM, MLP, CNN, and

DRL models, were implemented using the scikitlearn

package. TensorFlow was employed to implement the

linear SVM, MLP, CNN, and DRL models, while

BAE-RL was constructed using Tensor-Flow and

Keras with a custom dataset sampling code.

4.3.4 Smart Contract Implementation and

Validation

Smart contract in the proposed framework auto-

mate the secure recording and validation of detected

threats. This ensures that all intrusion events are log-

ged with accurate metadata, maintaining data integrity

and transparency throughout the system [54]. In the

proposed BAE-RL model, a critical component is the

integration of blockchain technology to ensure the in-

tegrity, transparency, and immutability of detected in-

trusion events. The smart contract was developed us-

ing Solidity to automate the process of logging de-

tected threats onto the blockchain. The smart contract

Dataset Model F1 (%) Precision (%) Recall (%) Accuracy (%)

NSL-KDD

Logistic Regression 60.66 65.70 66.02 66.02

Linear Kernel SVM 72.95 76.22 75.60 75.60

RBF Kernel SVM 75.96 77.65 75.60 78.65

Random Forest (RF) 69.09 77.08 73.91 73.91

GBM 72.84 78.77 73.82 76.76

AdaBoost 70.44 77.02 75.31 75.31

MLP 72.71 77.22 78.75 78.31

CNN-1D 80.94 80.94 78.75 78.75

DQN 76.98 79.30 72.60 73.72

Dueling DRL 73.58 80.82 77.88 77.88

A3C 76.00 81.00 80.00 80.00

BAE-RL 79.40 79.74 80.16 80.16

AWID

AdaBoost 88.50 85.00 92.20 92.20

Hyper Pipes 88.50 87.90 92.20 92.23

J48 94.80 96.20 96.30 96.26

Naive Bayes 90.90 91.70 91.70 90.55

OneR 92.00 92.20 94.57 94.57

Random Forest 94.40 95.90 95.80 95.82

Random Tree 94.80 95.80 95.80 96.23

ZeroR 88.50 85.05 92.20 90.20

MLP 92.56 91.74 93.70 94.70

BAE-RL 96.29 97.20 95.90 95.90

Table 5. Performance metrics for NSL-KDD and AWID datasets with different models



The Journal of Korean Institute of Communications and Information Sciences '25-12 Vol.50 No.12

1952

is responsible for recording essential metadata, includ-

ing the timestamp of detection, the type of attack, the

system status at the time of detection, and a crypto-

graphic hash of the event, ensuring that all logged

data remains secure and tamper-proof.

The smart contract was deployed and tested on an

Ethereum-based blockchain. Upon the detection of a

threat by the BAE-RL model, the event was logged

using the logThreat function, which automatically

generates and stores a cryptographic hash representing

the event data. Fig.8 illustrates the successful ex-

ecution of this process, where the details of a simu-

lated DDoS attack were securely recorded. The event

metadata such as the threat ID (0), timestamp

(1725957310), attack type (DDoS), and system status

(Under Attack)-was securely logged, and the event

hash (0x17ce8f63d7106122...) confirms the immut-

ability of the recorded data.

The results validate that the smart contract seam-

lessly integrates with the BAE-RL system, offering

a robust mechanism for storing threat data in an im-

mutable manner. By utilizing cryptographic hashing,

the system ensures that no historical data can be al-

tered, thereby fostering trust and providing a trans-

parent audit trail for future verification. This im-

plementation enhances the security framework of the

marine tactical network by ensuring that malicious ac-

tivities, once detected, cannot be erased or manipu-

lated, supporting the system’ s overall goal of improv-

ing security and resilience against evolving cyber

threats.

Ⅴ. Conclusion

The proposed Blockchain-Aided Adversarial

Reinforcement Learning (BAE-RL) intrusion de-

tection system exhibits significant improvements in

accuracy and robustness compared to existing

state-ofthe-art approaches on benchmark intrusion de-

tection datasets. Specifically, BAE-RL achieves

weighted accuracy scores of 80.16% on the

NSL-KDD dataset and 95.9% on the AWID dataset,

outperforming classical machine learning models such

as Random Forest (RF) and AdaBoost, which typi-

cally achieve accuracies in the mid-70% to low-90%

range on these datasets. For example, on NSL-KDD,

BAE-RL outperforms CNN-1D models, which ach-

ieve approximately 78.75% accuracy, and reinforce-

ment learning baselines, such as Double Deep

Q-Networks (DDQN), with 73.72% accuracy.

Moreover, BAERL significantly reduces false neg-

atives across underrepresented attack classes, enhanc-

Fig. 8. Abnormal data packets stored in blockchain using smart contract
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ing detection reliability in highly imbalanced

scenarios. Its multi-agent adversarial setup fosters

adaptability to evolving threats, a key advantage over

traditional IDS frameworks reliant on static pattern

recognition. Computational efficiency is maintained,

with BAE-RL prediction times comparable to leading

models (approximately 0.5-0.6 seconds), despite its

enhanced complexity. Additionally, the integration of

a smart contract provides immutable, tamper-proof

logging of detected threats, ensuring secure audit trails

without compromising detection speed. Compared to

prior blockchain-IDS approaches that report accu-

racies up to 92.6% but lack real-time adaptability and

scalability, BAE-RL balances high detection accuracy

with dynamic threat response and secure data in-

tegrity, positioning it as a superior, mission-critical

solution for marine tactical network cybersecurity.

Future research will explore adapting the BAE-RL

framework to IoT-enabled industrial control systems

and vehicular ad hoc networks, which share similar

dynamic topologies and robust security requirements.

Multi-agent adversarial learning can dynamically de-

tect evolving threats, while blockchain ensures secure

and tamper-proof logging for trust and compliance.

Furthermore, integrating federated learning will en-

able scalable, privacy-preserving training across dis-

tributed, heterogeneous nodes, maintaining robustness

in large-scale, sensitive environments.
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