
논문 25-50-12-13 The Journal of Korean Institute of Communications and Information Sciences '25-12 Vol.50 No.12
https://doi.org/10.7840/kics.2025.50.12.1907

1907

※ 본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. RS-2023-00278925).
w First Author : Hannam University, Department of Information and Communication Engineering, 20254055@m365.hnu.ac.kr, 정회원
° Corresponding Author : Kongju National University, Department of Computer Education, dongho.you@kongju.ac.kr, 정회원
* Hannam University, Department of Information and Communication Engineering, hanheejung18@hnu.kr, 정회원
논문번호：202506-143-C-RU, Received June 26, 2025; Revised July 15, 2025; Accepted July 28, 2025

WebRTC 기반 실시간 포인트 클라우드 영상 스트리밍을
위한 데이터 직렬화 기법 비교

이 용 준w, 정 한 희*, 유 동 호°

Comparison of Data Serialization Techniques for Point Cloud
Video Streaming in Real Time over WebRTC

Yongjun Leew, Han Hee Jung*, Dongho You°

요 약

메타버스와 가상현실(VR) 콘텐츠 기술의 발전으로, 현실을 정밀하게 재현하는 포인트 클라우드 기술의 수요가

증가하고 있다. 하지만 데이터의 대용량 특성으로 인해 실시간 전송에는 높은 대역폭이 요구되어, 상호작용 기반

응용에서 제약이 발생한다. 본 연구에서는 WebRTC 기반의 실시간 전송 시스템을 구축하고, RDP, Protobuf,

Draco 세 가지 방식의 인코딩 시간, 전송 지연, 디코딩 시간, 수신 FPS, 데이터 크기를 비교 분석하였다. 실험 결

과, RDP는 빠른 인코딩·디코딩 속도를 보였고, Protobuf는 균형 잡힌 성능을 제공했으며, Draco는 높은 압축률과

낮은 전송 지연을 달성하였다. 각 방식은 서로 다른 특성을 보이며, 포인트 클라우드의 실시간 전송에는 전송 효

율성과 실시간성 간의 균형 있는 선택이 필요함을 확인하였다.

키워드 : 포인트 클라우드, 저지연 스트리밍, WebRTC

Key Words : Point Cloud, Low-latency Streaming, WebRTC

ABSTRACT

With the advancement of metaverse and virtual reality (VR) content technologies, the demand for point

cloud technology that precisely reproduces the real world is increasing. However, due to the large data size,

real-time transmission requires high bandwidth, which poses challenges for interaction-based applications. This

study builds a WebRTC-based real-time transmission system and compares the performance of three methods—

RDP, Protobuf, and Draco—in terms of encoding time, transmission delay, decoding time, received FPS, and

data size. Experimental results show that RDP achieved fast encoding and decoding speeds, Protobuf provided

balanced performance, and Draco achieved high compression efficiency and low transmission delay. Each

method exhibits different characteristics, confirming that a balanced choice between transmission efficiency and

real-time performance is essential for point cloud transmission.

mailto:20254055@m365.hnu.ac.kr


The Journal of Korean Institute of Communications and Information Sciences '25-12 Vol.50 No.12

1908

Ⅰ. 서 론

최근 메타버스, 가상현실(VR) 등 초실감형 콘텐츠
기술이급속도로발전함에따라, 현실세계를가상공간
에정확하고생생하게구현하려는수요가증가하고있

다.[1] 이러한배경속에서 3차원공간데이터를효과적
으로표현할수있는포인트클라우드(Point Cloud)가
주요 기술로 주목받고 있다. 포인트 클라우드는

LiDAR, RGB-D 센서 등으로 획득한 수많은 점들의
3차원좌표정보로구성되어있으며, 실제공간의구조
와 형태를 고정밀도로 묘사할 수 있다는 장점을 갖는

다.[2]

그러나포인트클라우드는수십만개에서수백만개
이상의점으로이루어져있어데이터용량이매우크고,

이를실시간으로전송s하기위해서는높은대역폭이요
구된다. 이러한 문제를해결하기위해, MPEG에서제
안한 V-PCC(Video-based Point Cloud Compression),

G-PCC(Geometry-based Point Cloud Compression)

등다양한 압축기술이 개발되어 왔다.[3] 이들기술은
데이터용량을효과적으로줄이지만, 인코딩및디코딩

과정에서 불가피하게 지연(latency)이 발생하며, 압축
과정에서원본정밀도가손상될수있다. 이에따라상
호작용성이중요한실시간응용환경에서는사용에제

한이 따른다.

이러한 지연 문제를 해결하기 위한 방안으로, 선행
연구[4]에서는 WebRTC의데이터채널을이용하여압

축하지않은형태의포인트클라우드데이터를직접전
송하는 RDP(RawDataPack) 방식이 제안된 바 있다.

WebRTC(Web Real-Time Communication)는웹브라

우저환경에서별도의소프트웨어설치없이음성, 영
상, 데이터등을 P2P 방식으로실시간전송할수있도
록 구글에서 개발한 개방형 웹 표준 프로토콜이다.[5]

WebRTC는크게 GetUserMedia, RTCPeerConnection,

RTCDataChannel[6]의세가지 API 계층으로구성된다.

GetUserMedia는사용자의카메라및마이크장치로부

터 영상 및 오디오 스트림을 수집하며, RTCPeer

Connection은해당스트림을네트워크를통해전송하
는 역할을 수행한다. 이와 함께 포함되는 RTCData

Channel은텍스트및바이너리데이터를전송할수있
는채널을제공하며, SCTP(Stream Control Transmis-

sion Protocol)를 기반으로 하여 신뢰성 및 순서 보장

여부를설정할수있는유연성을갖춘다. 이러한구조는
포인트클라우드와같이고속대용량비정형데이터를
전송할때효과적인전송방식을설계할수있는기반이

된다.

선행연구에서는이 RTCDataChannel의특성을활
용하여, 포인트 클라우드 데이터를 압축 없이 실시간
전송하는 가능성을 입증하였다. 이 과정에서 JSON이

나 XML과같은텍스트기반직렬화포맷도고려되었
으나, 해당방식들은데이터크기가원본대비과도하게
증가하여전송효율이매우낮다는한계가있어실시간

전송에는적합하지않은것으로판단되어제외되었다.

또한해당연구는전송가능성과저지연성에대한기본
적인확인수준에머물렀으며, 포인트수의증가에따른

상세한성능분석이나, 포인트클라우드압축방식과의
비교 분석은 수행되지 않았다.

이에본연구는이러한선행연구의한계를극복하

고, WebRTC 환경에서의포인트클라우드데이터전송
성능을보다정밀하게평가하고자한다. 이를위해, 기
존의 RDP 방식뿐만 아니라 성능 평가 대상이었던

Protobuf[7] 기반전송방식, 그리고기존연구에서다루
지않았던 Draco 압축방식을새롭게도입하여비교하
였다. Draco는구글에서개발한오픈소스기반의 3차원

데이터압축기술로, 포인트클라우드데이터를효과적
으로압축하면서도타압축기술인 G-PCC 또는 V-PCC

에비하여빠른인코딩및디코딩속도를제공하는특징

이있다.[8] 본연구에서는 RDP, Protobuf, Draco 방식
간의성능을포인트수의증가에따라비교·분석함으로
써, WebRTC 기반실시간포인트클라우드전송기술

의 실용성과 한계를 종합적으로 평가하고자 한다.

Ⅱ. 본 론

2.1 시스템 구성
본 시스템은 획득부, 처리 및 전송부, 수신부의 세

구성요소로이루어져있으며, 각요소는실시간포인트

클라우드생성및전송을위한연속적인처리파이프라
인을형성한다. 전체시스템의흐름은그림 1의시스템
구성도와그림 2, 그림 6 알고리즘에기반하여다음과

같이 동작한다.

2.2 획득부
획득부에서는포인트클라우드데이터는 RGB-D 센

서인 Azure Kinect DK에서 Color Image와 Depth

Image를 결합하여 생성된다. Color Image와 Depth

Image를통한포인트클라우드생성과정은다음과같다.

먼저, 카메라초기단계에서 Azure Kinect DK가 3D

변환을 위한 X, Y 테이블을 미리 생성하여, 이 값을
통해실시간으로 3D 좌표변환을원활하게수행할수
있도록한다. 그후, 아래와같은수식을사용하여실시



논문 / WebRTC 기반 실시간 포인트 클라우드 영상 스트리밍을 위한 데이터 직렬화 기법 비교

1909

간으로캡처되는 Depth Image의좌표를 X, Y 테이블
값과 곱하여 3D 좌표로 변환한다

  ×   ×     (1)

여기서 는 Color 또는 Depth Image에서캡처된

2D 좌표, 과 은사전에계산된좌표변환
값이며, 는 Depth Image를 의미한다.

이를 통해 2D 좌표와 Depth값을 이용해   라는 3D 좌표를 생성한다.

동시에, Color Image는 Depth Image 기준으로생성
된 Point Cloud에 맞는 색상을 추출하기 위해 Depth

Image의해상도로변환한다. 변환된 Color Image에서

Depth Image의좌표값을이용하여아래와같은수식으
로 Depth Image에 맞는 Color값을 추출한다.

               (2)

여기서 는캡처하여 Depth Image 해상도로변환

된 Color Image를의미하며, 색상값은 BRGA 포맷으

로 각 좌표에 맞는, B,R,G,A 값이 추출된다.

이두과정을통해얻어진 3D 좌표와색상값을이용
하여색상이포함된포인트클라우드데이터를생성한

다. 또한, Azure Kinect에서사용하는좌표계와 Unity

의좌표계가다르기때문에, 일치시키기위해 Y 좌표를

반전시키며, 원하는크기를위한스케일링팩터 를곱
하여 크기를 조정할 수 있다.

′  ×′  ×′  × (3)

이러한과정을통해얻어진 Unity 좌표계의 3D 좌표값
과색상값을사용하여아래수식과같이포인트클라우
드한프레임을표현할수있다. 포인트수는미리실험

을 위해 설정한 임계값 또는 Depth Image의 해상도
중작은값에해당하는포인트들만수집된다. 이과정을
반복하여실시간포인트클라우드생성을구현하며, 포

인트 클라우드 데이터가 생성되는 FPS(Frame Per

Second)는 Azure Kinect가촬영하는 FPS에따라설정
되며, 수식으로 나타내면 다음과 같다.

  ′′′  (4)

여기서   min × 이다.

2.3 처리 및 전송
본시스템의처리및전송부에서는실시간으로생성

된포인트클라우드데이터를WebRTC의데이터채널
을 통해 수신 측으로 전송한다. 포인트 클라우드는
Azure Kinect DK에서획득한 RGB-D 데이터를기반

그림 1. 시스템 구성도
Fig. 1. System configuration diagram



The Journal of Korean Institute of Communications and Information Sciences '25-12 Vol.50 No.12

1910

으로 매 프레임마다 생성되며, 각 프레임에는 고유한
타임스탬프가부여된다. 생성된포인트클라우드데이
터는WebRTC 전송에적합하도록직렬화되며, 직렬화

방식으로는 RDP, Protobuf, Draco 세가지를지원한다.

전송에는 SCTP 기반의WebRTC 데이터채널이사용
되며, 이는 DTLS 및 UDP 위에서동작하는메시지지

향전송방식으로, 직렬화방식에따라전송성능과실
시간성에 영향을 미친다.

이때데이터채널의설정을위해WebRTC 시그널링

과정이 선행되며, 본 논문에서는 Node.js 기반의
Socket.io를 이용하여 구현하였다. 시그널링 서버는
Peer 간 연결 설정 및 협상에 필요한 SDP(Session

Description Protocol) 정보와 ICE(Interactive

Connectivity Establishment) Candidate 정보를교환하
며, Unity 기반의 클라이언트와의 연동을 지원한다.

전송을위해직렬화된데이터는WebRTC 데이터채
널의전송가능패킷크기제한을고려하여일정크기의
청크단위로분할된다. 각프레임은복수의청크로나뉘

며, 수신측은모든청크를수신한뒤이를재조합하여
원본프레임을복원한다. 프레임이완전히수신되었음
을나타내기 위해, 마지막에는별도의 “END” 신호가

전송된다. 전체전송흐름은그림 2의송신알고리즘에
서 확인할 수 있다.

또한, 본시스템에서는전송성능을향상시키기위해

세가지데이터표현방식인 RDP, Protobuf, Draco를
각각 구현하였다.

RDP는각좌표축과색상정보를개별배열로분리

하여순차적으로나열하는매우단순한구조를가진다.

인코딩속도가빠르고처리부하가낮다는장점이있으
나, 압축이적용되지않아데이터크기가크고수신측에
서포맷구조를미리알고있어야한다는제한이있다.

Protobuf는 점 좌표와 색상 정보를 독립된 필드로
정의하여저장하며, 각필드는데이터종류를식별하는
태그, 데이터길이, 그리고실제값의순으로구성된다.

예를들어좌표정보는 “Vertices”라는필드로묶이며,

색상정보는별도의필드에저장된다. 이방식은구조적
으로명확하여수신측에서데이터경계를명확히파악

할수있지만, 구조정보를포함하므로 RDP보다크기
가 커지고 디코딩 과정이 더 복잡하다.

Draco는고압축률을목표로설계된포맷으로, 데이

터를헤더, 메타데이터, 연결정보(Connectivity), 속성
(Attribute) 블록순서로구성하여저장한다. 좌표및색
상데이터는중복제거와부호화를통해효율적으로압

축되며, 높은압축률을달성할수있다. 그러나인코딩
과디코딩시간이비압축방식에비하여상대적으로길
어실시간처리에는제약이있다. 세방식의비트스트림

구성은 그림 3에 나타나 있다.

이처럼직렬화방식의구조와압축률, 인코딩복잡도
는서로다르기때문에, 동일한조건에서도청크크기에

따라전송성능이달라질수있다. 이를정량적으로분
석하기 위해 각 방식에 대해 32KB, 64KB, 128KB,

256KB의 청크 크기를 설정하여 실험을 진행하였다.

포인트 클라우드 데이터 는 직렬화 과정을 거쳐
직렬화 데이터 로 변환되며, 전체 청크 개수 은
다음과 같이 계산된다.

 ⌈max
 ⌉ (5)

여기서 max는 설정된 최대 청크 크기로, 다양한

값으로설정되어성능비교에활용된다. 최대청크크기
가정해졌다면, 포인트클라우드데이터직렬화결과인를각청크크기별로자른다. 이때자른각청크 ​
는아래와같이직렬화된데이터의슬라이스로정의된
다.

 max  max  ≤  ≤  (6)

모든청크가성공적으로전송된경우에만해당포인

트클라우드직렬화데이터 가완전히전송되었다고
판단하며, 이는 다음과 같이 표현된다.

그림 2. 송신 프로그램 알고리즘
Fig. 2. Transmission Program Algorithm



논문 / WebRTC 기반 실시간 포인트 클라우드 영상 스트리밍을 위한 데이터 직렬화 기법 비교

1911

⇔∀∈     (7)

실험은 Azure Kinect DK를 통해 획득한 약 10만
개의포인트로구성된포인트클라우드프레임을 10만

프레임연속전송하는방식으로수행되었으며, 전송방
식은 RDP, Protobuf, Draco를 각각 동일한 조건에서
적용하였다. 원본 청크와 비교하였을 때, 모든 청크가

종료신호이전에수신되지않아디코딩에실패한프레
임의비율로정의되는에러확률을기준으로이루어졌
다.

그림 4는청크크기에따른수신 FPS의변화를나타
낸다. 전반적으로청크크기가증가할수록수신 FPS가
점진적으로향상되는경향을보였으며, 이는동일한데

이터 양을 더 큰 단위로 나눌 경우 청크 분할 횟수가
감소하고, 이에따라전송중발생하는패킷수와수신

측의병합및처리오버헤드가줄어들기때문이다. 이러
한 효율성은 결과적으로 전송 지연을 완화하고 수신

FPS를 높이는 데 긍정적인 영향을 미친다.

반면, 그림 5의결과에따르면, 청크크기가증가할
수록에러발생확률이높아지는경향이나타났다. 이는

압축 방식 자체의 정밀도 손실과는 무관하게, 하나의
청크라도프레임종료신호보다늦게도착할경우전체
프레임복원이실패하는구조적특성에기인한다. RDP

는직렬화구조가단순하고압축이적용되지않아인코
딩속도가빠르다는장점이있으나, 데이터크기와청크
수가많아져전송지연이발생하고손실에취약한특성

이있다. Protobuf 또한압축을사용하지않으며구조화
된데이터형식을기반으로하여데이터경계식별에는
유리하지만, 디코딩과정이복잡하고데이터크기가커

전송효율이떨어진다. 반면, Draco는고압축률기반의

그림 3. 직렬화 방식에 따른 비트스트림 구성
Fig. 3. Bitstream configuration according to the serialization method

그림 4. 청크 크기별 수신 FPS
Fig. 4. Received FPS by chunk size

그림 5. 청크 크기별 에러 비율
Fig. 5. Error ratio by chunk size



The Journal of Korean Institute of Communications and Information Sciences '25-12 Vol.50 No.12

1912

직렬화및압축기법을사용하여청크수를효과적으로
줄일수있으며, 그결과에러율이낮고전송효율성이
개선된다. 하지만인코딩및디코딩시간이길어실시간

처리 성능에서는 불리하다.

청크크기의증가는수신 FPS 향상과전송효율개
선 측면에서는 긍정적인 영향을 미치지만, 손실 발생

시전체프레임의복원이불가능해지는위험또한증가
하게된다. 이러한특성은실시간성과전송안정성간의
전형적인 trade-off로볼수있으며, 응용환경에따라

적절한균형설정이필수적이다. 본연구에서는실시간
스트리밍환경에서사용자체감품질확보를목표로하
여, 이후모든성능실험에서청크크기를 256KB로고

정하여 일관된 조건 하에 성능을 비교하였다.

2.4 수신 및 렌더링
WebRTC 데이터채널을통해송신측으로부터전송

된포인트클라우드데이터는수신측에서실시간으로

수신되며, 이후복원및시각화과정을거쳐사용자에게
제공된다. 수신된데이터는프레임단위로버퍼에저장
되며, 마지막청크를식별하는 “END” 신호가수신되었

을 때 해당 프레임의 복원 처리가 시작된다.

각프레임은전송전직렬화되어바이트시퀀스형태
로변환되고, 이후설정된최대청크크기에따라여러

청크로분할되어전송된다. 수신측에서는전체청크가
정상적으로도달했는지를확인한후복원처리를수행
하며, 이 과정을 수식으로 표현하면 다음과 같다.

⇔∀∈    (8)

그림 6. 수신 프로그램 알고리즘
Fig. 6. Reception Program Algorithm

위 수식은 수신 측이 개의 모든 청크에 해당하는~ max 를 수신한 경우에만 해당 데이터가 수신
완료되었다고 판단함을 의미한다. 즉, 일부 청크가누
락되거나 손상되었을 경우, 해당 프레임은 복원 대상

에서 제외된다.

모든청크가수신되면, 수신된 데이터  는각
청크의 결합을 통해 다음과 같이 정의된다.

   
∪ (9)

이와 같이 결합된 바이트 시퀀스는 직렬화 이전의
포인트클라우드데이터구조로복원되어야하며, 이를

위해역직렬화함수    이사용된다. 복원된포인트

클라우드  는 다음과 같이 표현된다.

    (10)

복원된 데이터  는 각 포인트의 좌표와 색상
정보가포함된 3차원점들의집합으로구성되며, Unity

엔진 내 렌더링 모듈을 통해 실시간으로 시각화된다.

전체수신및복원알고리즘은그림 6의 Algorithm 2에
상세히 기술되어 있다.

결과적으로, 포인트클라우드데이터가 렌더링되어
시각적으로표현되기위해서는모든청크가손실없이
정확히수신되어야하며, 역직렬화과정을통해원래의

3차원좌표데이터를성공적으로복원해야한다. 이과
정은 실시간 처리 상황에서의 데이터 손실 복원 여부
및디코딩정확도와직결되며, 에러율지표를정의하는

핵심적인 기준이 된다.

이와같이, 본시스템은송신측에서의포인트클라
우드생성및압축부터수신측에서의복원및실시간

렌더링까지의전과정을프레임단위로반복처리하며,

WebRTC 기반저지연통신구조를통해실시간저지연
포인트 클라우드 스트리밍을 가능하게 한다.

Ⅲ. 성능 분석

3.1 테스트 환경 및 설정
본연구에서는포인트클라우드전송시스템의성능

을정량적으로평가하기위해송신기와수신기를동일
한 로컬 컴퓨터 환경에서 구동하였다.

이는 외부 변수의 영향을 최소화하고 비교 실험의
일관성을확보하기위한설정으로, 실제네트워크환경



논문 / WebRTC 기반 실시간 포인트 클라우드 영상 스트리밍을 위한 데이터 직렬화 기법 비교

1913

에서발생할수있는지연, 패킷손실, 연결품질의변동
성과같은요소는반영되지않았다는한계가있다. 실험

에 사용된 하드웨어는 Intel Core i9-13900KF CPU,

NVIDIA RTX 4080 GPU, 64GB RAM이며, 운영체제
는Windows 11이다. 포인트클라우드생성에는 Azure

Kinect DK를 사용하였고, 640×576 해상도에서 초당
30FPS으로 Depth 이미지를획득하였다. 송신기및수
신기 애플리케이션은 Unity 기반으로 구현되었으며,

WebRTC 데이터채널을통해실시간포인트클라우드
전송을 수행하였다.

실험은포인트수를 50K에서 350K까지 50K 단위로

변화시키며진행하였고, RDP, Protobuf, Draco 세가
지전송방식을각각적용하여성능을비교하였다. 특히
Draco 방식의인코딩및디코딩은 Unity에서기본으로

제공하는설정값(default configuration)을그대로사용
하였으며, 별도의파라미터최적화는수행하지않았다.

이는실제 Unity 기반응용에서의기본적인성능을평

가하기위함이다. 주요측정항목은그림 7과같이인코
딩 지연, 전송 지연, 디코딩 지연, 수신 FPS, 데이터
크기로설정하였으며, 각방식에대해총 100만프레임

을연속수신하면서해당항목의누적평균값을산출하
였다.

3.2 전송 방식에 따른 성능 비교

3.2.1 인코딩 지연 비교

그림 8은포인트수증가에따른각전송방식별인코

딩 지연을 나타낸다. RDP 방식은 50K 포인트 기준
7.3ms에서 350K 포인트 기준 56.9ms까지 선형적으로
증가하였다. Protobuf 방식은같은범위에서 3.8ms에서

27.6ms로증가하여, RDP 대비약 50% 이하의인코딩
지연을기록하였다. 반면, Draco 방식은 50K 포인트에서
도 36.8ms의 높은 인코딩 지연이 소요되었으며, 350K

포인트에서 297ms에이르러다른방식대비현저히긴
인코딩지연을보였다. 이는 Draco가높은압축률을얻기
위해복잡한압축연산을수행함을보여주는결과이다.

그림 8. 인코딩 지연 비교
Fig. 8. Comparison of encoding delays

3.2.2 전송 지연 비교

그림 9은 포인트 수에 따른 전송 지연을 나타낸다.

RDP 방식은 50K 포인트기준 23.4ms, 350K 포인트에
서는 87.2ms로 선형 증가하였다. Protobuf 방식은

22.6ms에서 110.2ms로증가하여 RDP보다항상높은
전송지연을기록하였다. 이는 Protobuf의데이터크기
가 상대적으로 크기 때문으로 해석된다.Draco 방식은

데이터 크기 절감 덕분에 50K 포인트 기준 2.7ms,

350K 포인트에서도 22.1ms에불과하여, 다른두방식
대비최대 4배이상의전송지연개선을보였다. 전송

지연최소화측면에서는 Draco 방식이압도적인우위
를 보였다.

그림 9. 전송 지연 비교
Fig. 9. Comparison of transmission delays

3.2.3 디코딩 지연 비교

그림 10은 전송된 데이터를 수신한 후 디코딩하는
데소요된시간을나타낸다. RDP 방식은 50K 포인트

그림 7. Delay 구조도
Fig. 7. Delay structure diagram



The Journal of Korean Institute of Communications and Information Sciences '25-12 Vol.50 No.12

1914

기준 0.53ms, 350K 포인트기준 3.57ms로매우낮은

디코딩 지연을 보였다.

이는압축과정이없기때문에수신후바로메모리
에로드할수있기때문이다. Protobuf 방식은 50K 포

인트기준 9.86ms에서 350K 포인트기준 68.1ms까지
꾸준히증가하였으며, 압축해제및데이터구조복원에
따른부하가원인으로분석된다. Draco 방식은 5.99ms

에서 34.16ms로 증가하여, Protobuf보다는 디코딩 속
도가빠르지만인코딩 지연에 비하면 상대적으로 부담
이 적은 편이었다.

3.2.4 데이터 크기 비교

그림 11는 전송 데이터의 크기 변화를 보여준다.

RDP 방식은 50K 포인트기준 0.8MB에서 350K포인트
기준 5.6MB까지증가하였다. Protobuf는 0.95MB에서

6.65MB로 RDP보다약 15~20% 큰데이터크기를유

지하였다. Draco는압도적인데이터절감을보여주었으
며, 50K 포인트기준 0.1MB, 350K 포인트기준에서도
0.8MB 수준에머물렀다. 이는 Draco가 RDP 대비약

85% 이상의 데이터 압축률을 제공함을 나타낸다.

3.2.5 수신 FPS 비교

그림 12은수신 측에서측정된 FPS 결과를나타낸
다. 50K 포인트기준으로 RDP와 Protobuf는약 30FPS

를유지했으나 Draco는약 23FPS로시작하였다. 포인
트수가증가함에따라모든방식에서수신 FPS가감소
하는경향을보였으며, 특히 Draco는 350K 포인트에서

약 3.2FPS까지 급격히 하락하였다. 반면 RDP와
Protobuf는 8~9FPS 수준을유지하였다. 이는 Draco 방
식의높은인코딩및디코딩부하가실시간처리성능에

영향을주어 송신부에서 실시간으로 포인트클라우드
직렬화를타직렬화방식보다빠르게처리하지못하여
FPS가 낮은 것을 확인하였다.

다만본실험은동일시스템내에서의이상적인네트
워크환경을전제로하였기때문에, 실제스트리밍환경
에서의조건과는차이가존재한다. 특히대역폭이제한

되거나패킷손실이빈번한환경에서는, 고압축률로인
해전송 데이터크기와청크수가적은 Draco 방식이
오히려전송안정성과복원성공률측면에서더유리할

수있다. 반면, RDP와 Protobuf는수신 FPS는높게유
지하더라도 데이터 크기와 청크 수가 많아 손실에 더
취약한구조를 가지므로, 제한된네트워크조건에서는

실시간성이저하될가능성이있다. 이러한점을고려하
면, 네트워크환경의특성에따라직렬화방식의선택
전략이달라져야하며, 후속연구에서는다양한네트워

크조건을반영한실험을통해이같은예측을정량적
으로 검증할 예정이다.

그림 11. 데이터 크기 비교
Fig. 11. Comparison of data sizes

그림 12. 수신 FPS 비교
Fig. 12. Comparision of incoming FPS

그림 10. 디코딩 지연 비교
Fig. 10. Comparison of decoding delays



논문 / WebRTC 기반 실시간 포인트 클라우드 영상 스트리밍을 위한 데이터 직렬화 기법 비교

1915

3.2.6 종합 분석

본 실험 결과를 종합하면, 각 전송 방식은 고유의
장단점을지닌다. RDP 방식은인코딩및디코딩이빠

르고수신 FPS가높지만, 데이터크기가커서전송지
연이상대적으로크다. Protobuf는구조화된데이터직
렬화로 인해 인코딩은 빠르지만, 디코딩 지연이 길고

데이터 크기가 더 커 실시간성에는 다소 불리하다.

Draco는높은압축률덕분에전송지연이가장적지만,

인코딩과디코딩부하가크고수신 FPS가급격히저하

되어 실시간 3D 스트리밍에는 한계가 존재한다.

또한, 포인트 수가 증가할수록 모든 전송 방식에서
성능저하가관찰되었으며, 특히수신 FPS와전송지연

측면에서민감한반응을보였다. 실시간성과데이터무
결성 간의 균형을 고려할 때, 특정 응용 환경에 따라
전송방식을적절히선택하는전략이필요함을확인할

수 있다.

표 1과 같은 성능 비교를 바탕으로, 대역폭 조건에
따라적합한전송방식을선택하는전략이필요함을알

수 있다.

대역폭이제한된환경에서는프레임당데이터크기
와전송지연이시스템성능에가장큰영향을미치므

로, 압축 효율이우수한 Draco 방식이가장적합하다.

Draco는인코딩지연이크고수신 FPS는낮지만, 상대
적으로 훨씬 작은 데이터 크기로 인해 동일 시간 내

더 많은 프레임 전송이 가능해 전송 효율성 측면에서
유리하다. 반면, 충분한대역폭이확보된환경에서는인
코딩및디코딩속도가빠르고수신 FPS가높은 RDP

방식이적합하며, 실시간성과응답성이중요한응용에
서 효과적으로 활용될 수 있다.

Method
En

coding
Delay

Trans
mission
Delay

De
coding
Delay

Data
Size

Received
FPS

RDP Medium High Low Large Medium

Protobuf Low High High Large Medium

Draco High Low Medium Small Low

표 1. 전송 방식별 전반적인 성능 수준 비교 (50K~350K 기준)
Table 1. Overall Performance Comparison of Transmi-
ssion Methods (Based on 50K–350K Points)

Ⅳ. 결 론

본연구에서는WebRTC 기반의포인트클라우드실
시간 전송 시스템을 구축하고, RDP, Protobuf, Draco

세가지전송방식을적용하여성능을정량적으로비교·

분석하였다. 기존연구가단순전송가능성과지연측정
에 머물렀던 것에 비해, 본 연구는 포인트 수 증가에
따른인코딩지연, 전송지연, 디코딩지연, 데이터크기,

수신 FPS 등다양한지표를종합적으로측정하고분석
함으로써, 실시간 3D 데이터전송기술의한계와가능
성을 보다 구체적으로 규명하였다.

성능분석결과, RDP 방식은인코딩과디코딩속도
면에서는가장우수하였지만, 데이터크기가크고전송
지연이커지는단점이있었다. Protobuf 방식은구조화

된직렬화포맷덕분에인코딩은빠르지만디코딩부하
가크고, 데이터크기도 RDP보다더커서전송지연이
가장크게나타났다. 반면, Draco 방식은높은압축률을

통해데이터크기와전송지연을획기적으로줄이는데
성공하였으나, 인코딩과디코딩과정에서상당한처리
시간이소요되어수신 FPS가급격히저하되는문제를

보였다.

특히 포인트 수가 증가할수록 모든 방식에서 수신
FPS 저하와지연증가가선형적으로나타났으며, 실시

간성이요구되는 환경에서는 압축률뿐만 아니라 인코
딩및디코딩지연까지함께고려해야함을확인할수
있었다. 또한, 데이터 전송의 신뢰성 측면에서는 청크

단위분할전송구조가성능에중요한영향을미쳤으며,

전송청크손실시복원실패로이어지는구조적한계도
존재함을 확인하였다.

향후에는 실제 네트워크 환경에서 발생할 수 있는
다양한 변수들, 예를 들어 전송 지연, 패킷 손실 등을
고려한실험을수행할계획이다. 이를통해현재시스템

이가진한계를보다현실적인조건에서점검하고, 데이
터 손실이나 지연에 대응할 수 있는 전송 방식 개선
방안을 도출하고자 한다.

본연구는WebRTC를활용한포인트클라우드실시
간전송기술의실용성과제약을실험적으로규명하였
으며, 향후메타버스, 원격협업, 실시간 3D 스트리밍서

비스등다양한초실감형응용분야에서핵심기술로활
용될수있는기반을마련하였다는점에서의미가있다.

References

[1] S. Kim, Y. W. Kim, K. J. Sun, and S. G.

Yoo, “Trends in digital twin-based real-virtual

fusion interaction technology for metaverse

services,” J. KICS, vol. 40, no. 11, pp. 24-31,

2023.

[2] Y. Cheong, W. Jun, and S. Lee, “Study on

point cloud based 3D object detection for



The Journal of Korean Institute of Communications and Information Sciences '25-12 Vol.50 No.12

1916

autonomous driving,” J. KICS, vol. 49, no. 1,

pp. 31-40, 2024.

(https://doi.org/10.7840/kics.2024.49.1.31)

[3] S. J. Hwang, S. C. Park, Y. J. Jung, E. K.

Kim, I. H. Yeo, and Y. H. Lim, “Patent trends

of MPEG-I video coding standard,” J.
Broadcast Eng., vol. 29, no. 2, pp. 187-197,

2024.

(https://doi.org/10.5909/JBE.2024.29.2.187)

[4] Y. Lee, J. Sim, D. H. Kim, and D. You, “A

comparison of serialization formats for point

cloud live video streaming over WebRTC,” in

Proc. IEEE ICCE, pp. 123-126, Las Vegas,

USA, Jan. 2024.

(https://doi.org/10.1109/ICCE59016.2024.1044

4424)

[5] WebRTC Working Group, WebRTC 1.0: Real-
time communication between browsers(2025), Re

trieved May., 22, 2025, from https://www.w3.o

rg/TR/webrtc

[6] F. Weinrank, M. Becke, J. Flohr, E. Rathgeb,

I. Rungeler, and M. Tuxen, “WebRTC data

channels,” IEEE Commun. Standards Mag.,
vol. 1, no. 2, pp. 28-35, Jun. 2017.

(https://doi.org/10.1109/MCOMSTD.2017.1700

007)

[7] Google Developers, Protocol Buffers: Developer
Guide(2025), Retrieved May., 22, 2025, from

https://developers.google.com/protocol-buffers

[8] J. H. Byun and D. K. Shim, “Introduction to

DRACO 3D mesh compression technology,”

Broadcast and Media, vol. 28, no. 3, pp. 33-

44, 2023.

[9] Google Inc., Draco: 3D Data Compression
Specification(2017), Retrieved May., 26, 2025,

from https://google.github.io/draco/spec/

이 용 준 (Yongjun Lee)

2019년 3월~현재 :한남대학교
정보통신공학과 학석사통합

과정
<관심분야> 실감미디어 통신,

저지연 스트리 밍

[ORCID:0009-0005-7924-6445]

정 한 희 (Han Hee Jung)

2013년 12월 :일리노이 시카고
대학 전기공학 공학사

2019년 2월 :대구경북과학기술

원 로봇공학전공 공학석사
2023년 8월 :대구경북과학기술
원 로봇및기계전자공학 공학

박사
2023년 11월~2024년 2월 :대구경북과학기술원 박사
후연구원

2024년 3월~현재 :한남대학교 정보통신공학과 조교수
<관심분야> 생체 통합 전자장치, 웨어러블 기기 무
선통신

[ORCID:0009-0006-4141-1254]

유 동 호 (Dongho You)

2012년 2월 :서울과학기술대학

교 매체공학 공학사
2014년 2월 :서울과학기술대학
교 미디어IT공학 공학석사

2018년 8월 :서울과학기술대학
교 방송정보통신융합공학 공
학박사

2018년 9월~2021년 2월 :독일 드레스덴공과대학교
도이치텔레콤연구그룹 선임연구원

2021년 3월~2025년 8월 :한남대학교 정보통신공학

과 부교수
2025년 9월~현재 :국립공주대학교 컴퓨터교육과 부
교수

<관심분야> 실김미디어 통신, 다중감각 통신, 저지
연 통신 네트워크

[ORCID:0000-0003-3724-3244]

https://google.github.io/draco/spec/

