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ABSTRACT

The lack of security mechanism of Controller
Area Network (CAN) bus protocol introduces
structural vulnerabilities, requiring intrusion detection
agents for message injection attacks. This study
presents an intrusion detection system based on

Recurrent Neural Networks (RNNs), capturing

time-series patterns. We compare the performance of
various RNNs and analyze how each architecture

influences its detection capability.
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Fig. 1. Intrusion Detection System for In-Vehicle CAN
based on RNN
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MCC | Precision| Recall |Fl-score| MCC | Precision| Recall |Fl-score|] MCC | Precision| Recall |F1-score
LSTM 0.7988 | 0.8565 | 0.8910 | 0.8728 | 0.8375| 0.8795 | 0.9219 | 0.8981 | 0.8123 | 0.8574 | 0.9070 | 0.8797
GRU 0.8252 | 0.8773 | 0.9082 | 0.8914 | 0.8659 | 0.8885 | 0.9415 | 0.9128 | 0.8949 | 0.9110 | 0.9594 | 0.9325
BiLSTM ([ 0.8282 | 0.8725 | 0.9108 | 0.8904 | 0.8194 | 0.8704 | 0.9088 | 0.8874 | 0.8262 | 0.8702 | 0.9117 | 0.8895
BiGRU 0.8487 | 0.8867 | 0.9301 | 0.9056 | 0.8894 | 0.9373 | 0.9235 | 0.9297 | 0.8877 | 0.9089 | 0.9562 | 0.9293
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Fig. 2. In-Vehicle CAN Intrusion Detection Performance
of RNNs for Attack Classes
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