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요 약

본 연구에서는 수중 음향 환경에서 학습되지 않은

미지의 음향 신호를 효과적으로 탐지하기 위한 ODIN

기반의 이상 음원 탐지 프레임워크를 제안한다. 구체

적으로, 사전 학습된 분류기의 소프트맥스 출력에 온

도 스케일링과 입력 교란을 적용하여 훈련된 클래스

와 미지의 클래스간의 출력 차이를 유도하고, 최대

소프트맥스 확률을 이상 점수로 활용하여 이상 탐지

를 수행한다.
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ABSTRACT

In this paper, we propose an ODIN-based novelty

detection framework to effectively identify unknown

acoustic signals in underwater environments.

Specifically, temperature scaling and input

perturbation are applied to the softmax output of a

pre-trained classifier to induce differences between

known and unknown samples, and the calibrated

maximum softmax probability is used as a novelty

score to perform novelty detection.

Ⅰ. 서 론

수중음향환경은날씨, 조류, 수온, 계절변화등으

로 인해 매우 동적이고 예측이 어렵기 때문에 정밀한

감지와분석이어렵다[1]. 특히실시간감지시스템에서

는 기존에 학습되지 않은 새로운 음향 신호가 출현할

가능성이높고, 이는위협요소나이상상황을나타낼

수 있다. 이러한 환경에서 널리 사용되는 수동 소나

시스템은 하이드로폰을 통해 음향을 수집하며, 자체

신호를 방사하지 않아 보안성이 높다는 장점이 있다.

이와 같은 수동 소나 데이터를 기반으로 다양한 표적

인식기법이제안되어왔으며, 최근에는 CNN 및트랜

스포머 기반의 딥러닝 모델이 높은 성능을 보여주고

있다[2,3].

그러나위연구는학습된클래스만을대상으로하며,

학습되지않은새로운신호가입력되었을때기존클래

스중하나로잘못분류하는문제가있다. 이를해결하

기위해이상탐지기법(novelty detection)에대한연구

가 진행되고 있으며, 계층적 LSTM 오토인코더나

stacked autoencoder를 활용한 방법이 제안되었다[4,5].

하지만클래스수증가에따른복잡도증가, 임계값설

정의민감도등여러한계를지닌다. 또다른방법으로

는 MSP(Maximum Softmax Probabilities) 기법이 있

으나, 이는과신(over-confidence)문제로인해분포외

데이터를 정확히 탐지하는 데 한계가 있다[6].

본 연구에서는 이러한 한계를 극복하기 위해

ODIN(Out-of-DIstribution Detector for Neural

Networks) 기법을수중음향환경에적용한이상탐지

방법을제안한다. ODIN은추론시소프트맥스출력에

온도스케일링을적용하고, 입력에미세한교란을추가
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하여분포내/외샘플간의출력차이를유도한다[7]. 이
후 소프트맥스 최대 출력값에 임계값을 적용함으로써
이상신호를효과적으로탐지할수있으며, 이를통해

수중환경에서의미지신호에대한탐지성능을향상시
키고자 한다.

Ⅱ. ODIN 기반 이상 음원 탐지

본연구에서는수중음향환경에서학습에포함되지
않은신호를효과적으로탐지하기위해 ODIN 기반의

이상음원탐지프레임워크를제안한다. 제안하는방법
은그림 1의 (1) Attention ResNet(AResNet) 분류모델
을학습하는과정과[8], (2) 온도스케일링과입력교란

을포함하는 ODIN 기법을통해얻은보정된소프트맥
스출력값중최대값을이상점수로사용하여이상여부
를판단하는추론과정으로구성된다. 이상점수가설정

된임계값이상이면입력신호는학습된클래스중하나
로간주되며, 분류기의예측결과를따른다. 반대로이
상점수가임계값미만이면입력은이상음원으로탐지

된다.

추론과정에서사용되는온도스케일링계수 T와입
력교란크기 은각각 T = {1, 2, 5, 10, 50, 100, 500,

1000}, = {0, 10-7, 10-6, 10-5, 10-4, 10-3, 10-2}의값에
대해 실험을 수행하였다.

그림 1. 제안하는 ODIN 기반 이상 탐지 방법의 개요도
Fig. 1. Scheme of the proposed ODIN based novelty
detection method

Ⅲ. 실험 결과 및 분석

본논문의검증을위해 4종류로분류된선박운행시

의소음데이터를포함하는 DeepShip 공개데이터셋을
사용하였다[9]. 학습/검증/테스트를 7/2/1 비율로나누었
으며, mel-frequency cepstral coefficient(MFCC)를입

력 피쳐로 사용하였다.

이상 탐지 모델의 성능 평가를 위해 AUROC,

FPR@95TPR, AUPR-In, AUPR-Out을 사용하였다.

AUROC는 이상 점수를 기준으로 다양한 임계값에서
의 TPR(True Positive Rate)과 FPR(False Positive

Rate)을계산해 ROC 곡선아래면적을측정한값으로,

전반적인분류성능을나타낸다. FPR@95TPR은 TPR

이 95%일때의 FPR 값을의미하며, 미지클래스를학
습된클래스와혼동하는비율을나타낸다. AUPR-In과

AUPR-Out은각각학습된클래스와미지클래스를양
성으로 간주하여 계산한 precision-recall 곡선의 면적
으로, 정상및이상클래스에대한탐지성능을정량화

한 지표이다.

표 1은 제안한 ODIN과 MSP의 이상 탐지 성능을
각클래스에대해각각미지클래스로설정하여비교한

결과이다. FPR@95TPR이 가장 낮았던 T = 10, 10-5

에서, ODIN은 모든 지표에 대해 클래스별 샘플 수를
고려한평균성능값이 MSP 대비우수한결과를보였

다. 특히 AUPR-in의 성능저하 없이 AUPR-Out에서
2.75%의성능향상이나타나, 제안한방법이정상클래
스분류성능을유지하면서도미지클래스탐지능력을

효과적으로 향상시켰음을 알 수 있다.

Novelty
label

AUROC
↑

FPR@95
TPR ↓

AUPR-In
↑

AUPR-Out
↑

Cargo
76.61 73.77 91.47 47.57

78.94 66.23 92.35 54.62

Passengership
71.36 81.80 86.58 47.15

73.61 77.47 88.01 51.63

Tanker
73.36 76.94 91.62 38.51

73.49 79.35 91.74 37.66

Tug
79.00 72.03 86.59 63.98

79.35 72.93 86.77 64.55

Average
75.42 75.92 88.52 51.39

76.66 73.88 89.18 54.14

표 1. 이상 신호 탐지 성능 비교(MSP/ODIN)
Table 1. Novelty detection performance(MSP/ODIN)

Ⅳ. 결 론

본 연구에서는 수중 음향 환경에서 학습되지 않은
미지의음향신호를효과적으로탐지하기위해 ODIN
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기반의이상음원탐지프레임워크를제안하였다. 제안
한방법이모든지표에서기존방법대비우수한성능을
나타내었다. 이러한성능향상은온도스케일링을통해

소프트맥스출력의과신을완화하고, 입력교란을통해
분포내/외샘플간의출력차이가효과적으로보정된
결과로볼수있다. 이는제안한방법이정상클래스의

분류성능을유지하면서도미지의수중음향신호를보
다안정적으로탐지할수있는가능성을보여주며, 제안
한 방법의 실용성과 적용 가능성을 입증하였다.
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