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ABSTRACT

In this paper, we propose an ODIN-based novelty

detection framework to effectively identify unknown

acoustic ~ signals in  underwater  environments.
Specifically, temperature scaling and input
perturbation are applied to the softmax output of a
pre-trained classifier to induce differences between
known and unknown samples, and the calibrated
maximum softmax probability is used as a novelty

score to perform novelty detection.
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Fig. 1. Scheme of the proposed ODIN based novelty
detection method
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Table 1. Novelty detection performance(MSP/ODIN)

Novelty AUROC |FPR@95| AUPR-In | AUPR-Out
label t |TPR | 1 )
76.61 73.77 91.47 47.57
Cargo
78.94 66.23 92.35 54.62
71.36 81.80 86.58 47.15
Passengership
73.61 77.47 88.01 51.63
73.36 76.94 91.62 38.51
Tanker
73.49 79.35 91.74 37.66
79.00 72.03 86.59 63.98
Tug
79.35 72.93 86.77 64.55
75.42 75.92 88.52 51.39
Average
76.66 73.88 89.18 54.14
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