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Ⅰ. Introduction

Since the commercialization of the 4G communica-

tion system, efforts have been made to develop an

improved 5G communication system or pre-5G com-

munication system to meet the increasing demand for

wireless data traffic. For this reason, the 5G communi-

cation system or pre-5G communication system is re-

ferred to as a beyond 4G network communication sys-

tem or a post-LTE system. To achieve high data trans-

mission rates, the implementation of the 5G communi-

cation system in the ultra-high frequency (mmWave)

band (e.g., bands above 6 GHz) has also been consid-

ered in addition to the band used by LTE (bands be-

low 6 GHz). In the 5G communication system, tech-

nologies such as beamforming, massive multi-

ple-input-multiple-output (MIMO), full-dimensional

MIMO (FD-MIMO), array antennas, analog beam-

forming, and large-scale antennas are being discussed.

Recently, the fifth-generation communication system

considers providing communication services using not

only fixed base stations on land but also entities that

are not fixed on land. The fifth-generation communi-

cation system considers implementing cellular com-

munications using satellites, performs cellular com-

munications using satellites while having difficulty

connecting with base stations, and satellite-based cel-

lular communications may implement wider coverage

than cellular communications using base stations due

to the characteristics of moving satellites in Earth's

orbit. Satellite-based cellular communications are at-

tracting attention in terms of reducing shadow areas

where communication services cannot be provided.

With recent advances in satellite communication tech-

nology, efforts are actively underway to provide com-

munication services even in regions beyond the cover-

age area of ground networks. Such non-terrestrial net-

works play an important role in expanding access to

communication services, but there are challenges to

be addressed in terms of interworking with terrestrial

networks and efficient resource management. When

a terminal moves to a shadow region of a ground net-

work and needs to switch to satellite communication,

previously, it had to go through a process of searching

the entire network (full scanning) to register with the

satellite network. This full-scanning process may

cause latency and increase power consumption at

terminals. Also, continuous search of the ground net-
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work's band during satellite communication services

causes unnecessary power consumption, and immedi-

ate network switching back to the ground network

may be difficult. Therefore, this paper proposes an

AI geo fence generation algorithm for satellite com-

munication networks using a multi-dimensional SVM

model. While linear SVM or logistic regression mod-

els are computationally simple and can process data

quickly, they have limitations in handling nonlinear

and complex data. In contrast, multi-dimensional

SVM can solve nonlinear problems, demonstrating su-

perior performance in complex satellite communica-

tion environments. Non-linearly distributed data to

higher dimensions, it ensures high accuracy even with

intricate patterns or boundaries in the data. Given that

the propagation environment in satellite communica-

tions is highly nonlinear, multi-dimensional SVM ef-

fectively addresses nonlinear challenges through the

kernel trick. Consequently, it enables more sophisti-

cated predictions compared to traditional linear mod-

els or other techniques. However, the use of multi-di-

mensional SVM cannot always be considered

efficient. Especially in satellite communication sys-

tems, where low latency and high processing speeds

are essential, it is necessary to design models that min-

imize computational overhead.

In this paper, we propose an algorithm that predicts

the location of a terminal in advance by creating an

AI geo-fence for satellite communication networks us-

ing multi-dimensional SVM models and analyze its

performance through simulations.

Ⅱ. An Algorithm for Generating Satellite 
Communication Network AI geo-fence 

using proposed Multi-Dimensional SVM 
Model

Figure 1 shows the division of regions connected

to the terrestrial network and those connected to the

non-terrestrial network using geo-fence.

This intentionally illustrates the boundaries and

coverage areas of terrestrial networks (TN) and

non-terrestrial networks (e.g., satellite networks, SAT)

to emphasize their complementary relationship. In re-

ality, terrestrial network coverage areas exhibit irregu-

lar and complex shapes due to varying terrain and

range, and physical obstacles or signal degradation

can create shadow regions. However, for intuitive rep-

resentation of both TN and SAT networks, the dia-

gram depicts terrestrial network zones as multiple el-

liptical shapes contained within the broader coverage

area of non-terrestrial satellite networks (SAT). While

terrestrial networks (TN) typically provide high ca-

pacity coverage in urban and accessible areas, the

shadow regions beyond TN's reach can be covered

by non-terrestrial satellite networks (SAT). The dia-

gram employs geo-fencing to clearly distinguish be-

tween areas connected to terrestrial networks (TN)

and those served by non-terrestrial satellite networks

(SAT). “Out of synchronization (OOS)” refers to a

situation where electronic devices lose synchroniza-

tion with the terrestrial network, indicating loss of net-

work signals or unstable connections. The term

“satellite mode (SAT mode)” refers to a mode in

which communication is performed via satellites in-

stead of the terrestrial network. Global Navigation

Satellite System (GNSS) is a global positioning sys-

tem utilizing satellites, whereas AI geo-fence utilizes

artificial intelligence to set up virtual geographical

boundaries for monitoring and defining certain areas.

Satellite public land mobile network (SAT PLMN) is

a public land mobile network that provides mobile

communication services via satellites, and Full

Scanning involves searching all available networks,

taking longer than typical network scan operations.

Therefore, when movement is detected through an ac-

celerometer sensor, the device uses GNSS coordinates

Fig. 1. Separation of Terrestrial Networks and
Non-terrestrial Networks using geo-fence
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and velocity information to predict movement towards

a terrestrial network region; upon detecting entry

within the geo-fence, it searches for public land mo-

bile network (PLMN) and registers with the terrestrial

network.

When setting up a geo-fence using a trained mul-

ti-dimensional model, the distinction between the

service areas of ground networks and satellite net-

works creates non-linear boundaries. Among non-

linear models, support vector machine (SVM) is one

of the classification algorithms in machine learning,

which maps data to high-dimensional feature spaces

to create complex nonlinear boundaries. This learned

model is widely used for various classification prob-

lems[1]. This paper uses kernel functions to transform

input data into high-dimensional space, effectively

classifying data that is difficult to distinguish linearly

through an algorithm called multi-dimensional SVM,

which sets up complex boundary shapes distinguish-

ing the service area of ground network and satellite

network.

When setting up a geo-fence using a trained mul-

ti-dimensional model, the distinction between the

service areas of ground networks and satellite net-

works creates non-linear boundaries. Among non-

linear models, support vector machine (SVM) is one

of the classification algorithms in machine learning,

which maps data to high-dimensional feature spaces

to create complex nonlinear boundaries. This learned

model is widely used for various classification prob-

lems[1]. This paper uses kernel functions to transform

input data into high-dimensional space, effectively

classifying data that is difficult to distinguish linearly

through an algorithm called multi-dimensional SVM,

which sets up complex boundary shapes distinguish-

ing the service area of ground network and satellite

network.

Figure 2 illustrates the process of classifying data

using a hyperplane, where multiple classes (e.g., class

A and class B) can be distinguished using a

hyperplane. It's worth noting that class A and class

B are just examples, and there is no limitation on the

number and types of data classes. For example, linear

classification can be performed on a two-dimensional

plane, determining that data points corresponding to

Class A are distributed above the hyperplane, while

those corresponding to Class B are distributed below

the hyperplane. Hyperplanes refer to subspaces of di-

mension n-1 that divide n-dimensional space into two

regions; they appear as lines in 2D space, planes in

3D space, and generalized forms in higher

dimensions. In SVM, hyperplanes serve as decision

boundaries for classifying different classes of data, be-

ing set in a direction that maximizes the margin be-

tween the two classes.

This linear support vector machine (SVM) model

operates by linearly separating each data class, but

in complex data distributions, the boundaries between

multiple classes cannot be separated linearly as we

can see from the data samples in Figure 3. In other

words, depending on the characteristics of the data,

higher-dimensional nonlinear boundaries may be

required. For data with a multilayer structure or non-

linear relationships, linear models cannot reflect such

complex relationships, potentially leading to degraded

Fig. 2. Linear SVM model

Fig. 3. Multi-dimensional SVM model
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classification performance. As a result, linear model

may be unsuitable or significantly underperform in

multi-class problems. Therefore, based on Linear sup-

port vector machine (SVM) model, but in actual im-

plementation, we apply the kernel trick to the max-

imum margin hyperplane problem proposed in 1992

for non-linear classification, applying the radial basis

function (RBF) kernel function to map data into high

dimensional space and perform classification[2,3]. In

this paper, we use the RBF kernel to accurately dis-

tinguish between the service areas of terrestrial net-

works (TN) and satellite networks, which are difficult

to classify simply linearly due to their geographical

characteristics. Expanding upon this, we utilize a mul-

ti-dimensional SVM model capable of nonlinear clas-

sification to effectively model complex geo-fences.

Considering the characteristics of terrain or TN cover-

age ranges that are not fixed and exhibit irregular

shapes, we employ a SVM model. We primarily apply

the kernel at this stage because it allows us to learn

complex nonlinear boundaries efficiently. By utilizing

the RBF kernel, we can model irregular network cov-

erages caused by factors such as mountainous terrains

or shadowed urban buildings.

To establish an AI-based geo-fence as described in

this paper, rather than relying solely on 2D classi-

fication, we leverage the kernel trick to elevate in-

tricate patterns drawn on a flat surface into three di-

mensions, revealing clearer patterns. This involves

transforming low-dimensional complex data into high-

er dimensions, making classification easier. For in-

stance, when dividing urban and suburban areas along

winding borders, projecting these onto a third di-

mension may result in clean separation surfaces.

Compared to conventional linear models, the multi-di-

mensional SVM model achieves high accuracy even

with small amounts of training data[4], operates stably

despite of errors in GNSS signals or temporary net-

work instability, and has fewer risks of overfitting,

allowing effective generalization to new locations.

Through the RBF kernel, it actually works in an in-

finite-dimensional feature space. Therefore, by em-

ploying a multi-dimensional SVM model, we expand

the complexity of geometric figures on a 2D plane

into higher dimensions such as 3D or 4D, thereby

finding the most appropriate demarcation line. As

shown in Figure 4, when data is distributed, adjusting

the gamma value controls the strength of trans-

formation, enabling more complex borderline learning

as the gamma value increases.

Figure 5 illustrates the change in decision bounda-

ries according to the gamma value through visual

representation.

Figure 6 demonstrates classified data resulting from

this learning process.

Figure 7 depicts the schematic representation of

Fig. 4. Data distribution in simulation

Fig. 5. Gamma value-dependent decision boundary
changes
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creating and training a multi-dimensional SVM

model.

Ⅲ. Performance Analysis and Conclusions

In order to conduct performance analysis experi-

ments, Figure 8 samples GPS coordinates at intervals

of 0.1 within a 10 × 10 grid to construct the training

dataset of 10,000 units.

This simulation divides imaginary region similar

with latitude and longitude, labeling them either as

part of the Terrestrial Network (TN) or satellite net-

work according to elliptical equations defining re-

spective zones.

Figure 9 generates four graphs - three ellipses and

one circle - for performance analysis testing purposes

via this method.

To effectively differentiate data, kernel functions

are applied to map data into high-dimensional spaces.

During this process, the kernel function transforms da-

ta into a 3D space, then projects transformed high-di-

mensional data back onto a 2D plane. Data points can

now be effectively separated by multi-dimensional

boundaries, generating curved decision boundaries in-

stead of simple linear ones, thus accurately categoriz-

ing complex datasets. Using this methodology, we ap-

ply the RBF kernel to create an AI-powered geo-fence

Fig. 6. Data classification using multi-dimensional SVM

Fig. 7. Creating a multi-dimensional SVM model and
training process

Abbreviation Description

TN terrestrial networks

SAT satellite

OOS out of synchronization

SVM support vector machine

RBF radial basis function

GNSS global navigation satellite system

AI artificial intelligence

PLMN public land mobile network

2/3/4 D 2/3/4 dimensional space

Table 1. Abbreviation description

Fig. 8. Set 0.1 units of coordinates on 10*10 grid (10000
coordinates)
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that distinguishes between satellite communication

networks and terrestrial networks (TN).

This paper utilizes the RBF kernel to map 2D input

data consisting of GNSS coordinates into a feature

space. Specifically, for coordinate pairs (x, y),

we convert them into an infinite-dimensional feature

space using the equation. Once mapped into this

space, what were previously nonlinear boundaries be-

come linear representations. The hyperplane serves as

the boundary separating the terrestrial network area

from the satellite network area, and by reversely con-

verting the hyperplane back into the original 2D

space, we generate a complex curvilinear decision

boundary. That is, we calculate the similarity between

data points using the RBF kernel and mathematical

formula.

Here, the γ (gamma) value determines the complex-

ity of the decision boundary; setting γ = 0.1 results

in a gentle decision boundary, whereas γ = 1.0 yields

a more complex one. In other words, the gamma value

determines how well the model fits the data or wheth-

er it faces issues of overfitting or under fitting. A high

gamma value narrowly defines the similarity between

data points, causing the kernel function to respond

strongly to specific data points. This results in highly

intricate and complex decision boundaries, making the

model overly sensitive to training data and increasing

the risk of overfitting. Consequently, the model be-

comes too tailored to the training data, potentially

leading to diminished generalization performance. A

small gamma value broadly defines the similarity be-

tween data points, causing the kernel function to re-

spond to a wider range of data points. This results

in smoother and simpler decision boundaries, but it

increases the risk of under fitting, as the model may

fail to capture the finer details of the training data,

potentially leading to reduced generalization

performance. The hyper parameter gamma value,

which controls the model's complexity, represents

merely an illustrative case and can vary depending

on settings; parameter tuning optimizes model per-

formance, involving adjustments to kernel type, C-val-

ue, and gamma among other parameters, all fed back

into our multidimensional SVM model. Dynamic tun-

ing of parameters such as C-values for kernels or gam-

ma values for decision boundaries accounts for com-

plex urban environments shaped by building structures

versus simpler rural landscapes. Adjustable between

values over 0 to infinite, larger gamma values yield

increasingly convoluted decision boundaries. Through

iterative learning and validation processes, we gen-

erate an AI geo-fence model exhibiting relatively

higher accuracy compared to pre-training levels.

Figure 8 constructs a 2D vector from each GNSS co-

ordinate's x-coordinate and y-coordinate, labels

whether the location is accessible by network with bi-

nary values (1 or 0), forming a training dataset. Then,

as depicted in Figure 10, this dataset trains the mul-

Fig. 9. True/False classification after assuming a specific
area as a ground network or satellite communication
network

Fig. 10. Results of classification after data study and
preparation after generating the support vector machine
model
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ti-dimensional SVM model, model_f, using inputted

training data (X_train and y_train). Herein, X_train

represents position coordinates composed of (x_data,

y_data) while Y_train indicates the inclusion status

of the service area at said coordinates, performing the

task of teaching the model outcomes given inputs

(X_train(coordinates) → Y_train(classification)).

We predict test data using the trained model with

pred_y = svm.predict(X_test) function. That is, we

feed test coordinates represented as tuples of (x_data,

y_data) into X_test to determine whether the specified

location falls within the designated service zone.

Additionally, we assign a penalty for error by con-

figuring C to 100. With default C equaling 1.0, it acts

as a parameter deciding how much misclassification

tolerance allows[5]. To execute multiclass classi-

fication, we configure the kernel option as 'rbf', short

for radial basis function'. Kernel options include

choices like 'rbf', 'linear', 'poly', and 'sigmoid'; cur-

rently implemented, we select 'rbf' suitable for multi-

dimensional classification, setting degree to 5 to de-

fine polynomial rank. Degree signifies the rank of pol-

ynomial kernels, random state ensures reproducibility

at 256. Gamma adjusts potential occurrence of over-

fitting affecting decision boundaries, defaults to

'scale,' while Coef0 denotes constant term in poly-

nomial kernels, defaulting to 0.0. Evaluating the

trained model's performance via test dataset, we label

every GNSS Coordinate as belonging either to ground

net area or satellitia net zone, generating a classi-

fication model accordingly. For instance, assuming the

present location is (37.5665, 126.9780), if the model

outputs 1, it selects the land network; otherwise, if

it outputs 0, it chooses the satellite network.

Consequently, examining experimental performance

reveals an f1-score reaching approximately 0.98 in-

dicating secured efficacy at around 98%. Following

creation of the support vector machine model, study-

ing & predicting data displays initial training data

(X_train, y_train) illustrated in Figure 12. Moreover,

visual verification shows overlap between Figures 9

(original data) and 11 (training data), representing

similarities at 98%

As an additional experiment, applying the per-

lin-noise algorithm[6] with random patterns generates

more realistic terrain-like data similar to Figure 13.

This results in spherical-shaped terrains being trans-

formed into forms with random patterns due to the

applied noise.

To find suitable parameters for the multi-dimen-

sional SVM model, we set up grid search and perform

5-fold cross validation for each parameter to avoid

overfitting. Then, evaluate the performance of the pa-

rameter combinations and select the one with the best

performance as shown in Figure 14.

Figure 15 shows that when the optimal model se-

lected through 5-fold cross-validation test is trained

on a dataset of 90,000 units, an accuracy of 97.76%

is achieved.

Various methods have been used to implement

Fig. 11. Data judged as True (in area) among the test
data

Fig. 12. Comparison of test True data on actual in area
data (green area)
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multi-dimensional SVM models, including

one-vs-one[7], one-vs-rest[8], error-correcting output

codes[9] and structured SVM[10]. The approach pro-

posed in this paper is designed by reflecting the con-

straints of satellite communication environments, par-

ticularly in geo-fence based satellite operation

scenarios. In geo-fencing situations, rapidly changing

regional information, limited data links, and high cost

communication resources play crucial roles.

Accordingly, this study proposes an optimized SVM

based approach that simultaneously considers compu-

tational resource efficiency and real time classification

feasibility. Therefore, it can be proven that fast

switching between satellite networks in shadow areas

of the TN network and the TN network in areas where

the TN network exists is possible with high accuracy

(e.g., 98%) through the AI geo-fence algorithm using

multi-dimensional SVM. This result provides im-

portant implications for automated decision making

and resource reallocation scenarios of satellites based

on geo-fence events. However, this paper im-

plementation only requires binary classification to dis-

tinguish between inside and outside the mobile com-

munication network area, eliminating the need for

multi-class classification. In subsequent studies, we

plan to further analyze the applicability of hybrid ap-

proaches reflecting various class interactions or online

learning based multi-dimensional SVM.
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