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ABSTRACT

In this paper, we propose a method for creating an Al-based geo-fence using satellite communication

networks to predict the location of terminals in advance and quickly switch between satellite networks in

shadow areas of the TN network and TN networks where they exist. To achieve this goal, we used a

multi-dimensional support vector machine (SVM) model to create an Al-based geo-fence and confirmed that

classification accuracy was secured above a specified level (e.g., 98%).
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I. Introduction

Since the commercialization of the 4G communica-
tion system, efforts have been made to develop an
improved 5G communication system or pre-5G com-
munication system to meet the increasing demand for
wireless data traffic. For this reason, the 5G communi-
cation system or pre-5G communication system is re-
ferred to as a beyond 4G network communication sys-
tem or a post-LTE system. To achieve high data trans-
mission rates, the implementation of the 5G communi-
cation system in the ultra-high frequency (mmWave)
band (e.g., bands above 6 GHz) has also been consid-
ered in addition to the band used by LTE (bands be-
low 6 GHz). In the 5G communication system, tech-
nologies such as beamforming, massive multi-
ple-input-multiple-output (MIMO), full-dimensional
MIMO (FD-MIMO), array antennas, analog beam-
forming, and large-scale antennas are being discussed.
Recently, the fifth-generation communication system
considers providing communication services using not
only fixed base stations on land but also entities that
are not fixed on land. The fifth-generation communi-

cation system considers implementing cellular com-

munications using satellites, performs cellular com-
munications using satellites while having difficulty
connecting with base stations, and satellite-based cel-
lular communications may implement wider coverage
than cellular communications using base stations due
to the characteristics of moving satellites in Earth’s
orbit. Satellite-based cellular communications are at-
tracting attention in terms of reducing shadow areas
where communication services cannot be provided.
With recent advances in satellite communication tech-
nology, efforts are actively underway to provide com-
munication services even in regions beyond the cover-
age area of ground networks. Such non-terrestrial net-
works play an important role in expanding access to
communication services, but there are challenges to
be addressed in terms of interworking with terrestrial
networks and efficient resource management. When
a terminal moves to a shadow region of a ground net-
work and needs to switch to satellite communication,
previously, it had to go through a process of searching
the entire network (full scanning) to register with the
satellite network. This full-scanning process may
cause latency and increase power consumption at
terminals. Also, continuous search of the ground net-
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work’s band during satellite communication services
causes unnecessary power consumption, and immedi-
ate network switching back to the ground network
may be difficult. Therefore, this paper proposes an
Al geo fence generation algorithm for satellite com-
munication networks using a multi-dimensional SVM
model. While linear SVM or logistic regression mod-
els are computationally simple and can process data
quickly, they have limitations in handling nonlinear
and complex data. In contrast, multi-dimensional
SVM can solve nonlinear problems, demonstrating su-
perior performance in complex satellite communica-
tion environments. Non-linearly distributed data to
higher dimensions, it ensures high accuracy even with
intricate patterns or boundaries in the data. Given that
the propagation environment in satellite communica-
tions is highly nonlinear, multi-dimensional SVM ef-
fectively addresses nonlinear challenges through the
kernel trick. Consequently, it enables more sophisti-
cated predictions compared to traditional linear mod-
els or other techniques. However, the use of multi-di-
mensional SVM cannot always be considered
efficient. Especially in satellite communication sys-
tems, where low latency and high processing speeds
are essential, it is necessary to design models that min-
imize computational overhead.

In this paper, we propose an algorithm that predicts
the location of a terminal in advance by creating an
Al geo-fence for satellite communication networks us-
ing multi-dimensional SVM models and analyze its

performance through simulations.

II. An Algorithm for Generating Satellite

Communication Network Al geo-fence

using proposed Multi-Dimensional SVM
Model

Figure 1 shows the division of regions connected
to the terrestrial network and those connected to the
non-terrestrial network using geo-fence.

This intentionally illustrates the boundaries and
coverage areas of terrestrial networks (TN) and
non-terrestrial networks (e.g., satellite networks, SAT)

to emphasize their complementary relationship. In re-

,

Networks and

Fig. 1. Separation  of  Terrestrial
Non-terrestrial Networks using geo-fence

ality, terrestrial network coverage areas exhibit irregu-
lar and complex shapes due to varying terrain and
range, and physical obstacles or signal degradation
can create shadow regions. However, for intuitive rep-
resentation of both TN and SAT networks, the dia-
gram depicts terrestrial network zones as multiple el-
liptical shapes contained within the broader coverage
area of non-terrestrial satellite networks (SAT). While
terrestrial networks (TN) typically provide high ca-
pacity coverage in urban and accessible areas, the
shadow regions beyond TN’s reach can be covered
by non-terrestrial satellite networks (SAT). The dia-
gram employs geo-fencing to clearly distinguish be-
tween areas connected to terrestrial networks (TN)
and those served by non-terrestrial satellite networks
(SAT). “Out of synchronization (OOS)” refers to a
situation where electronic devices lose synchroniza-
tion with the terrestrial network, indicating loss of net-
work signals or unstable connections. The term
“satellite mode (SAT mode)” refers to a mode in
which communication is performed via satellites in-
stead of the terrestrial network. Global Navigation
Satellite System (GNSS) is a global positioning sys-
tem utilizing satellites, whereas Al geo-fence utilizes
artificial intelligence to set up virtual geographical
boundaries for monitoring and defining certain areas.
Satellite public land mobile network (SAT PLMN) is
a public land mobile network that provides mobile
communication services via satellites, and Full
Scanning involves searching all available networks,
taking longer than typical network scan operations.
Therefore, when movement is detected through an ac-
celerometer sensor, the device uses GNSS coordinates
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and velocity information to predict movement towards
a terrestrial network region; upon detecting entry
within the geo-fence, it searches for public land mo-
bile network (PLMN) and registers with the terrestrial
network.

When setting up a geo-fence using a trained mul-
ti-dimensional model, the distinction between the
service areas of ground networks and satellite net-
works creates non-linear boundaries. Among non-
linear models, support vector machine (SVM) is one
of the classification algorithms in machine learning,
which maps data to high-dimensional feature spaces
to create complex nonlinear boundaries. This learned
model is widely used for various classification prob-
lems™!]. This paper uses kernel functions to transform
input data into high-dimensional space, effectively
classifying data that is difficult to distinguish linearly
through an algorithm called multi-dimensional SVM,
which sets up complex boundary shapes distinguish-
ing the service area of ground network and satellite
network.

When setting up a geo-fence using a trained mul-
ti-dimensional model, the distinction between the
service areas of ground networks and satellite net-
works creates non-linear boundaries. Among non-
linear models, support vector machine (SVM) is one
of the classification algorithms in machine learning,
which maps data to high-dimensional feature spaces
to create complex nonlinear boundaries. This learned
model is widely used for various classification prob-
lems™). This paper uses kernel functions to transform
input data into high-dimensional space, effectively
classifying data that is difficult to distinguish linearly
through an algorithm called multi-dimensional SVM,
which sets up complex boundary shapes distinguish-
ing the service area of ground network and satellite
network.

Figure 2 illustrates the process of classifying data
using a hyperplane, where multiple classes (e.g., class
A and class B) can be distinguished using a
hyperplane. It’s worth noting that class A and class
B are just examples, and there is no limitation on the
number and types of data classes. For example, linear
classification can be performed on a two-dimensional

plane, determining that data points corresponding to
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Class A are distributed above the hyperplane, while
those corresponding to Class B are distributed below
the hyperplane. Hyperplanes refer to subspaces of di-
mension n-1 that divide n-dimensional space into two
regions; they appear as lines in 2D space, planes in
3D space, and generalized forms in higher
dimensions. In SVM, hyperplanes serve as decision
boundaries for classifying different classes of data, be-
ing set in a direction that maximizes the margin be-
tween the two classes.

This linear support vector machine (SVM) model
operates by linearly separating each data class, but
in complex data distributions, the boundaries between
multiple classes cannot be separated linearly as we
can see from the data samples in Figure 3. In other
words, depending on the characteristics of the data,
higher-dimensional nonlinear boundaries may be
required. For data with a multilayer structure or non-
linear relationships, linear models cannot reflect such

complex relationships, potentially leading to degraded
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Fig. 2. Linear SVM model
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Fig. 3. Multi-dimensional SVM model
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classification performance. As a result, linear model
may be unsuitable or significantly underperform in
multi-class problems. Therefore, based on Linear sup-
port vector machine (SVM) model, but in actual im-
plementation, we apply the kernel trick to the max-
imum margin hyperplane problem proposed in 1992
for non-linear classification, applying the radial basis
function (RBF) kernel function to map data into high

231 In

dimensional space and perform classification
this paper, we use the RBF kernel to accurately dis-
tinguish between the service areas of terrestrial net-
works (TN) and satellite networks, which are difficult
to classify simply linearly due to their geographical
characteristics. Expanding upon this, we utilize a mul-
ti-dimensional SVM model capable of nonlinear clas-
sification to effectively model complex geo-fences.
Considering the characteristics of terrain or TN cover-
age ranges that are not fixed and exhibit irregular
shapes, we employ a SVM model. We primarily apply
the kernel at this stage because it allows us to learn
complex nonlinear boundaries efficiently. By utilizing
the RBF kernel, we can model irregular network cov-
erages caused by factors such as mountainous terrains
or shadowed urban buildings.

To establish an Al-based geo-fence as described in
this paper, rather than relying solely on 2D classi-
fication, we leverage the kernel trick to elevate in-
tricate patterns drawn on a flat surface into three di-
mensions, revealing clearer patterns. This involves
transforming low-dimensional complex data into high-
er dimensions, making classification easier. For in-
stance, when dividing urban and suburban areas along
winding borders, projecting these onto a third di-
mension may result in clean separation surfaces.
Compared to conventional linear models, the multi-di-
mensional SVM model achieves high accuracy even
with small amounts of training data™, operates stably
despite of errors in GNSS signals or temporary net-
work instability, and has fewer risks of overfitting,
allowing effective generalization to new locations.
Through the RBF kernel, it actually works in an in-
finite-dimensional feature space. Therefore, by em-
ploying a multi-dimensional SVM model, we expand
the complexity of geometric figures on a 2D plane

into higher dimensions such as 3D or 4D, thereby

finding the most appropriate demarcation line. As
shown in Figure 4, when data is distributed, adjusting
the gamma value controls the strength of trans-
formation, enabling more complex borderline learning
as the gamma value increases.

Figure 5 illustrates the change in decision bounda-
ries according to the gamma value through visual
representation.

Figure 6 demonstrates classified data resulting from
this learning process.

Figure 7 depicts the schematic representation of
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Fig. 4. Data distribution in simulation
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Fig. 6. Data classification using multi-dimensional SVM
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Fig. 7. Creating a multi-dimensional SVM model and
training process

Table 1. Abbreviation description

Abbreviation Description

TN terrestrial networks

SAT satellite

00S out of synchronization

SVM support vector machine

RBF radial basis function

GNSS global navigation satellite system

Al artificial intelligence

PLMN public land mobile network
2/3/4 D 2/3/4 dimensional space

creating and training a multi-dimensional SVM
model.

. Performance Analysis and Conclusions

In order to conduct performance analysis experi-
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ments, Figure 8 samples GPS coordinates at intervals
of 0.1 within a 10 x 10 grid to construct the training
dataset of 10,000 units.

This simulation divides imaginary region similar
with latitude and longitude, labeling them either as
part of the Terrestrial Network (TN) or satellite net-
work according to elliptical equations defining re-

spective zones.

if ((x_x - 3) **2) / 4+ ((yy -2) **2)/3<=1
or ((xx -5) **2)/ 3+ ((y_y - 3) **2)/8«<«<=1
or ((x_x - 8) **2) / 3+ ((y_y - 8) **2) / 4 1
or ((x_x - 9) **2) + ((y_y - 1) ** 2) <= 1:
res_array.append(1)
else:
res_array.append(@)

Figure 9 generates four graphs - three ellipses and
one circle - for performance analysis testing purposes
via this method.

To effectively differentiate data, kernel functions
are applied to map data into high-dimensional spaces.
During this process, the kernel function transforms da-
ta into a 3D space, then projects transformed high-di-
mensional data back onto a 2D plane. Data points can
now be effectively separated by multi-dimensional
boundaries, generating curved decision boundaries in-
stead of simple linear ones, thus accurately categoriz-
ing complex datasets. Using this methodology, we ap-
ply the RBF kernel to create an Al-powered geo-fence

x_data y_data wvrdet

0 0.0 0.0 0

1 0.0 01 0
2 0.0 0.2 0
3 0.0 0.3 0
4 0.0 0.4 0

9995 9.9 9.5
9996 9.9 9.6

o o o

9997 9.9 9.7
9998 9.9 9.8 0
9999 9.9 9.9 0

10000 rows x 3 columns

Fig. 8. Set 0.1 units of coordinates on 10%¥10 grid (10000
coordinates)
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o 2 4 6 8 10

Fig. 9. True/False classification after assuming a specific
area as a ground network or satellite communication
network

that distinguishes between satellite communication
networks and terrestrial networks (TN).

This paper utilizes the RBF kernel to map 2D input
data consisting of GNSS coordinates into a feature

space. Specifically, for coordinate pairs (%, y),

1

20

- — oo |2
K(z;,zj) =e Mei=ail® - where v = 5

we convert them into an infinite-dimensional feature
space using the equation. Once mapped into this
space, what were previously nonlinear boundaries be-
come linear representations. The hyperplane serves as
the boundary separating the terrestrial network area
from the satellite network area, and by reversely con-
verting the hyperplane back into the original 2D
space, we generate a complex curvilinear decision
boundary. That is, we calculate the similarity between
data points using the RBF kernel and mathematical
formula.

- s —z ||2
K(zi,x;) = e =727 where v =

Here, the y (gamma) value determines the complex-
ity of the decision boundary; setting y = 0.1 results
in a gentle decision boundary, whereas y = 1.0 yields
a more complex one. In other words, the gamma value
determines how well the model fits the data or wheth-
er it faces issues of overfitting or under fitting. A high

gamma value narrowly defines the similarity between

data points, causing the kernel function to respond
strongly to specific data points. This results in highly
intricate and complex decision boundaries, making the
model overly sensitive to training data and increasing
the risk of overfitting. Consequently, the model be-
comes too tailored to the training data, potentially
leading to diminished generalization performance. A
small gamma value broadly defines the similarity be-
tween data points, causing the kernel function to re-
spond to a wider range of data points. This results
in smoother and simpler decision boundaries, but it
increases the risk of under fitting, as the model may
fail to capture the finer details of the training data,
potentially leading to reduced generalization
performance. The hyper parameter gamma value,
which controls the model’s complexity, represents
merely an illustrative case and can vary depending
on settings; parameter tuning optimizes model per-
formance, involving adjustments to kernel type, C-val-
ue, and gamma among other parameters, all fed back
into our multidimensional SVM model. Dynamic tun-
ing of parameters such as C-values for kernels or gam-
ma values for decision boundaries accounts for com-
plex urban environments shaped by building structures
versus simpler rural landscapes. Adjustable between
values over O to infinite, larger gamma values yield
increasingly convoluted decision boundaries. Through
iterative learning and validation processes, we gen-
erate an Al geo-fence model exhibiting relatively
higher accuracy compared to pre-training levels.
Figure 8 constructs a 2D vector from each GNSS co-
ordinate’s x-coordinate and y-coordinate, labels
whether the location is accessible by network with bi-
nary values (1 or 0), forming a training dataset. Then,
as depicted in Figure 10, this dataset trains the mul-

avm = SYC{kernel="rbf", C=100, gamma = 0.1, random_state = 256)

precision recall f1-score  suppor

0 0.98 0.99 0.98 1908

1 0.97 0.97 0.97 1092

accuracy 0.98 3000
macro avg 0.98 0.98 0.98 3000
weighted avg 0.98 0.98 0.98 3000

Fig. 10. Results of classification after data study and
preparation after generating the support vector machine
model
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ti-dimensional SVM model, model_f, using inputted
training data (X_train and y_train). Herein, X_train
represents position coordinates composed of (x_data,
y_data) while Y_train indicates the inclusion status
of the service area at said coordinates, performing the
task of teaching the model outcomes given inputs
(X_train(coordinates) — Y _train(classification)).

We predict test data using the trained model with
pred_y = svm.predict(X_test) function. That is, we
feed test coordinates represented as tuples of (x_data,
y_data) into X_test to determine whether the specified
location falls within the designated service zone.
Additionally, we assign a penalty for error by con-
figuring C to 100. With default C equaling 1.0, it acts
as a parameter deciding how much misclassification
tolerance allows™. To execute multiclass classi-
fication, we configure the kernel option as ’rbf’, short
for radial basis function’. Kernel options include
choices like ’rbf’, ’linear’, ’poly’, and ’sigmoid’; cur-
rently implemented, we select ’rbf’ suitable for multi-
dimensional classification, setting degree to 5 to de-
fine polynomial rank. Degree signifies the rank of pol-
ynomial kernels, random state ensures reproducibility
at 256. Gamma adjusts potential occurrence of over-
fitting affecting decision boundaries, defaults to
’scale,” while CoefO denotes constant term in poly-
nomial kernels, defaulting to 0.0. Evaluating the
trained model’s performance via test dataset, we label
every GNSS Coordinate as belonging either to ground
net area or satellitia net zone, generating a classi-
fication model accordingly. For instance, assuming the
present location is (37.5665, 126.9780), if the model
outputs 1, it selects the land network; otherwise, if
it outputs 0, it chooses the satellite network.
Consequently, examining experimental performance
reveals an fl-score reaching approximately 0.98 in-
dicating secured efficacy at around 98%. Following
creation of the support vector machine model, study-
ing & predicting data displays initial training data
(X_train, y_train) illustrated in Figure 12. Moreover,
visual verification shows overlap between Figures 9
(original data) and 11 (training data), representing
similarities at 98%

As an additional experiment, applying the per-
lin-noise algorithm!® with random patterns generates
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Fig. 11. Data judged as True (in area) among the test
data

&

N

Counter{{True: 2963, False: 37})

Fig. 12. Comparison of test True data on actual in area
data (green area)

more realistic terrain-like data similar to Figure 13.
This results in spherical-shaped terrains being trans-
formed into forms with random patterns due to the
applied noise.

To find suitable parameters for the multi-dimen-
sional SVM model, we set up grid search and perform
5-fold cross validation for each parameter to avoid
overfitting. Then, evaluate the performance of the pa-
rameter combinations and select the one with the best
performance as shown in Figure 14.

Figure 15 shows that when the optimal model se-
lected through 5-fold cross-validation test is trained
on a dataset of 90,000 units, an accuracy of 97.76%
is achieved.

Various methods have been used to implement
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Fig. 13. The application of the perlin-noise algorithm
with random patterns

towers - [

"name": "Station A",
"position”: (0, 0),
“radius”: 30,
"octaves”: 3,
"seed”: 1,

"scale”: 8

b

for tower in towers:
tx, ty - tower["position”]
radius - tower["radius"]
scale - tower["scale"]
octaves - tower[“octaves"]
seed = tower["seed"]

# 4-1. Create Perlin Noise object
noise = PerlinNoise(octaves-octaves, seed-seed)

# 4-2. Calculate terrain effect
terrain_effect - np.zeros((height, width))
for i in range(height):
for j in range(width):
# Scale with i/50, j/50
terrain_effect[i,j] - noise([i/50, j/50])

# 4-3. Calculate distance
distance = np.sqrt((X - tx)**2 + (Y - ty)**2)

# 4-4. distance <= Base radius + (noise * scale)

coverage_map - (distance <= (radius + scale * terrain_effect)).astype(int)
# 4-5. Reflect on union coverage

coverage union = np.maximum(coverage union, coverage map)

aram_grid = {
C': [0.1, 1, 10, 1e0],
‘gamma': [0.01, 0.1, 1, 10, 100, 'scale']

rid_search = GridSearchCV(
estimator-sVC (kernel="rbf'),
param_grid-param_grid,
cv=5, # 5-Fold Cross validation
n_jobs=-1,
verbose-1,
scoring-"accuracy’

Fig. 14. Evaluation using 5-fold cross-validation

multi-dimensional SVM models,
[71

including
one-vs-one'”), one-vs-rest™, error-correcting output
codes! and structured SVM!". The approach pro-
posed in this paper is designed by reflecting the con-
straints of satellite communication environments, par-
ticularly in geo-fence based satellite operation
scenarios. In geo-fencing situations, rapidly changing
regional information, limited data links, and high cost
communication resources play crucial roles.

Accordingly, this study proposes an optimized SVM

- k ..
o ® Toaininside 1)
& Train Qutside (00

Train #Accuracy with best model: 0.8776

Fig. 15. Results of the 5-fold cross-validation test

based approach that simultaneously considers compu-
tational resource efficiency and real time classification
feasibility. Therefore, it can be proven that fast
switching between satellite networks in shadow areas
of the TN network and the TN network in areas where
the TN network exists is possible with high accuracy
(e.g., 98%) through the AI geo-fence algorithm using
multi-dimensional SVM. This result provides im-
portant implications for automated decision making
and resource reallocation scenarios of satellites based
on geo-fence events. However, this paper im-
plementation only requires binary classification to dis-
tinguish between inside and outside the mobile com-
munication network area, eliminating the need for
multi-class classification. In subsequent studies, we
plan to further analyze the applicability of hybrid ap-
proaches reflecting various class interactions or online
learning based multi-dimensional SVM.
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