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ABSTRACT

Artificial intelligence systems deployed to individual devices are exposed to shifting label distributions over
time, degrading model performance. While post-training has been studied to address this, limited local data and
overfitting can cause loss of critical knowledge in the pre-trained model. We propose Fed-AFIR(Federated
Adaptation with FIM Regularization), leveraging the Fisher Information Matrix (FIM) to preserve critical
parameters while enabling collaboration across devices, consistently outperforming existing approaches under
dynamic label distribution and heterogeneous device data conditions.
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Fig. 1. Structure of the proposed Fed-AFIR system
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E 1 elold 2E wslel we A7 23}
Table 1. Performance Comparison under Label Distribution Shifts
Method NSL-KDD CSE-CIC-IDS 2018 CIFAR-10 CIFAR-100
Sin. Squ. Sin. Squ. Sin. Squ. Sin. Squ.
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