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Implementation of an Edge Computing-Based Industrial Site
Monitoring System Using Deep Learning for Object Detection
and Tracking
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ABSTRACT

This paper proposes a monitoring system for industrial sites by optimizing a YOLOv7-based integrated
network for object detection and feature embedding in edge computing environments and applying multi-object
tracking techniques. The object detection network was designed with three levels of complexity and three
resolutions to meet the diverse requirements of industrial environments. A total of nine scale models were
trained on the server and deployed on Jetson Xavier and Nano boards after ONNX conversion and
TensorRT-based optimization using FP32, FP16, and INT8 quantization. A multi-object tracking method was
developed based on the IOU similarity of detection boxes and the similarity of feature embeddings.

Experimental results showed that the object detection model achieved real-time inference at over 100 FPS on
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the Xavier board with INT8 operations and up to approximately 70 FPS on the Nano board. In terms of

accuracy, INT8 optimization led to an average performance degradation of less than 1%. The multi-object

tracking achieved a MOTA of 52.73% with an average inference time of 1.93 ms. Based on models of

various scales and object detection and tracking techniques, the proposed system is adaptable to the diverse

monitoring needs of industrial environments.
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Fig. 2. Deep Learning Model Conversion Workflow for
Edge Computing.
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Table 2. Object Detection Inference Speed on NVIDIA
Jetson Xavier Board.

f

Inference time(ms)

Input
Sip;e BFLOPs FP32 FP32 | FP16 | INT8
(RT) | (RT) | (RT)

320x320 | 0.672 |32.76| 3.85 | 3.97 | 3.95
S 480x480 | 1.512 [33.99| 535 | 497 | 4.73
640%640 | 2.689 |33.06| 7.27 | 6.15 | 594
320%320 2.62 |33.30| 586 | 3.86 | 3.80
M | 480%480 590 [3236| 893 | 548 | 4.60
640%640 | 10.49 |34.36|15.60| 7.92 | 598
320%320 | 10.356 |33.38|1391| 5.60 | 4.18
L 480x480 | 23.302 |37.05|23.91| 9.28 | 6.46
640%640 | 41.425 |58.49|40.87| 15.36| 9.59

Model
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Table 3. Object Detection Inference Speed on NVIDIA
Jetson Nano Board.

Inference time(ms)

Input
Sipze BFLOPs e FP32 | FP16 | INTS8
[RT) | RT) | (RT)

Model

320%320| 0.672 | 60.08 | 14.43 | 12.69 | 14.49
S |480x480| 1.512 | 62.10| 27.40 | 21.10 | 28.37
640x640| 2.689 | 66.08 | 44.10 | 34.12 | 42.30

320x320| 2.62 62.88 | 28.80 | 19.27 | 28.07
M [480x480| 5.90 | 80.10| 51.88 | 35.39 | 50.38
640x640| 10.49 |121.64| 87.19 | 58.09 | 82.42

320%320| 10.356 | 113.03| 75.23 | 45.79 | 74.63
L |480x480| 23.302 | 194.49| 136.64| 83.06 | 132.87
640x640| 41.425 | 323.36| 249.50| 144.93| 242.25

E 4. 9wk GPUS Yuit]e BE ~o v
Table 4. Specification Comparison Between General
GPUs and Embedded Boards.

S NVIDIA NVIDIA NVIDIA
pecs RTX 3090 |Jetson Xavier| Jetson Nano
Architecture Ampere Volta Maxwell
CUDA core 10,496 512 128
Tensor core 328 64 X
Power 350W 30W 5-10W
consumption
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Table 7. Accuracy Performance Comparison of Optimized
Object Detection Models on NVIDIA Xavier Board.

Inference time(ms) mAP(%)
Model |Input Size| Channels | FP32 | FP16 INTS Model Trsat SFLOPS FP32 | FP16 | INTS
RT) | RT) RT) size FP32| RT) | (RT) | (RT)
64 9.62 5.90 4.46
S 480%480 ACC+ | ACC* | ACC+t
128 | 1062 | 620 | 4.63 om0l 0g7a | 3pagl 566 | 4567 | 4378
64 982 | 518 | 434 * : :
M | 480x480 - | 001 | -189
= s 480450 1512 3390 | P12} 933
64 2424 | 989 | 6.74 * : -
L | 480x480 - | 001 059
128 | 25.14 | 10.16 | 693 6087 | 60.88 | 59.97
640%x640| 2.689 |33.06
- 0.01 -0.91
E 6. NVIDIA Jetson Nano B ol %3 HEYT F2 65.86 | 65.89 | 65.11
&% H|a 320%320| 2.62 |33.30
Table 6. Inference Speed Comparison of the Integrated - 0.02 | -0.78
Network on NVIDIA Jetson Nano Board 66.44 | 66.46 | 66.11
M [480%480| 5.90 |32.36
Inference time(ms) - 0.02 | 035
i 66.60 | 66.53 | 65.72
Model |Input Size| Channels| Fp32 | FP16 INTS 640x640| 1049 3436
(RT) (RT) (RT) - -0.07 | -0.81
64 29.40 | 22.55 28.65 68.98 | 68.94 | 68.52
S 480%480 320%320| 10.356 |33.38
128 34.40 | 27.98 35.07 - -0.04 | -0.42
64 5452 | 37.41 54.15 70.84 | 70.80 | 69.69
M 480%480 L |480x480| 23.302 |37.05
128 61.39 | 40.33 60.55 - -0.04 | -1.11
64 139.96 | 87.22 139.27 72.19 | 72.13 | 71.27
L 480%480 640%640| 41.425 |58.49
128 14591 | 87.89 142.02 - -0.07 | -0.85
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Fig. 4. Object Tracking Results Using IoU-Based
Matching.
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Fig. 5. Object Tracking Results Using IoU and
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Table 8. Evaluation results of multi-object tracking
accuracy on the NVIDIA Jetson Xavier platform

Model Input Size MOTA(%)
S 480%x480 48.23
M 480480 52.73
L 480480 51.74
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