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요 약

본 논문에서는 YOLOv7 기반의 객체 검출 및 특징 임베딩 통합 네트워크를 엣지 컴퓨팅 환경에 최적화하고,

다중 객체 추적 기술을 적용하여 산업 현장을 모니터링할 수 있는 시스템을 제안한다. 다양한 산업 현장의 요구에

맞게 객체 검출 통합 네트워크를 세 가지 복잡도와 세 가지 해상도로 설계하였다. 총 9개의 스케일을 갖는 모델

을 서버에서 학습하고, ONNX 모델 변환 및 TensorRT의 FP32, FP16, INT8 양자화 기반 최적화를 통해 Jetson

Xavier 및 Nano 보드에 적용하였다. 객체 검출 박스의 IOU 유사도와 특징 임베딩 유사도를 기반으로 다중 객체

추적 기법을 개발하였다. 실험 결과, 객체 검출 기법은 Xavier 보드에서 INT8 연산 기준 100 FPS 이상의 실시간

추론이 가능했으며, Nano 보드에서도 최대 약 70 FPS의 성능을 나타냈다. 정확도 측면에서도 INT8 최적화 적용

후 평균 1% 이내의 성능 저하만 발생하였다. 다중 객체 추적은 MOTA 52.73% 성능을 나타냈으며, 추론 속도는

평균 1.93ms로 측정되었다. 다양한 스케일의 모델과 객체 검출 및 다중 객체 추적 기법을 기반으로, 산업 현장의

다양한 요구사항에 맞게 적용 가능한 모니터링 시스템을 개발하였다.

Key Words : Edge Computing, Object Detection, Multiple Object Tracking, Industrial Monitoring, Deep
Learning Optimization

ABSTRACT

This paper proposes a monitoring system for industrial sites by optimizing a YOLOv7-based integrated

network for object detection and feature embedding in edge computing environments and applying multi-object

tracking techniques. The object detection network was designed with three levels of complexity and three

resolutions to meet the diverse requirements of industrial environments. A total of nine scale models were

trained on the server and deployed on Jetson Xavier and Nano boards after ONNX conversion and

TensorRT-based optimization using FP32, FP16, and INT8 quantization. A multi-object tracking method was

developed based on the IOU similarity of detection boxes and the similarity of feature embeddings.

Experimental results showed that the object detection model achieved real-time inference at over 100 FPS on
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Ⅰ. 서 론

최근 CCTV 산업은인공지능영상감시기술과융합
되며고도화되고있다. 특히중대재해처벌법시행이후

산업현장에서의안전사고예방이주요과제로떠오르

면서, 현장 내 CCTV 설치가 급증하고 있다. 기존의
단순 저장형 CCTV 시스템은 사고 발생 이후의 사후

분석에만 활용되었으나, 최근에는 실시간으로 위험을
감지하고경보를제공할수있는지능형 CCTV로진화
하고있다[1]. 이러한변화는객체인식, 이상행동탐지,

사고예측기능등을포함한 AI 기반영상분석기술의
발전과함께이뤄지고있으며, 이에따라산업현장의
요구에부합하는고정밀영상분석솔루션에대한수요

도지속적으로증가하고있다. 특히다양한각도의다채
널 카메라를 통해 넓은 공간을 동시에 모니터링하고,

이를 중앙 서버에서 통합적으로 관리함으로써 즉각적

인상황대응이가능해지고있다. 이러한시스템은제조
업뿐만 아니라 건설 현장, 플랜트, 항만, 공공 인프라
등 다양한 산업 및 기반 시설로 확산되고 있으며, 그

중요성은 점차 확대되고 있다.

그러나영상데이터를모두중앙서버에서처리하는
기존방식은카메라채널수가증가할수록네트워크과

부하, 분석지연, 병목현상등의문제가발생하게된다.

특히 이상 상황 발생 시 빠른 판단과 조치가 필요한
산업현장의특성상, 중앙집중형구조는즉각적인대응

에 한계를 가지며, 시스템 전체의 신뢰성과 확장성을
저해할수있다. 이러한문제를해결하기위한대안으로

엣지컴퓨팅(Edge Computing) 기술이부상하고있다.

엣지컴퓨팅은영상수집장치자체에서데이터를선별·
처리하여 실시간으로 반응함으로써, 네트워크 부담을
줄이고분석속도및응답성을크게향상시킨다. 예를

들어, 현장에서이상행동이나위험요소가탐지될경우
즉시알람을송출하고, 필요한정보만중앙서버로전송
함으로써 효율적 자원 운영이 가능하다. 최근에는

NVIDIA Jetson Xavier와 Nano와 같은 저전력 엣지
디바이스의보급으로인해[3], 영상분석시스템의분산
구조 설계가 더욱 유연하고 정교하게 구성되고 있다.

이로인해기존대비빠르고민첩한반응체계를구축할

수 있게 되었으며, 감시 시스템의 전체적인 실용성과
확장성 또한 한층 강화되고 있다.

이러한 지능형 영상 감시 시스템의 핵심은 딥러닝
기반 객체 검출 및 객체 추적 기술이다. 특히 YOLO

계열은단일단계추론구조를기반으로하여연산속도

가 빠르고, 경량화가 용이하며, 다양한 복잡도에 따라
산업 환경에 유연하게 적용할 수 있다는 장점이 있다
[2,6,11]. YOLO와같이검증된네트워크를선택함으로써

하드웨어호환성과실시간성, 안정성을확보할수있으
며, 특히연산자원이제한된엣지환경에적합한특성
을보인다. 객체검출과더불어딥러닝기반의다중객

체추적기술역시산업현장에서중요성이커지고있으
며, 실시간추적정확도를유지하기위해다양한경량화
기법과후처리알고리즘이함께적용되고있다. 이러한

기술들은모두고정밀연산을필요로하므로, 연산자원
이제한된환경에서는효율적인모델최적화및컴파일
이 반드시 필요하다.

본 논문에서는 고사양 PC 환경에서 학습된
YOLOv7[2] 기반의객체검출및특징임베딩통합네트
워크[12]를복잡도와해상도를조절하여 9개의스케일을

갖도록 설계하였다. ONNX(Open Neural Network

Exchange)[4] 형식으로 모델을 변환하고, TensorRT[5]

의 FP32, FP16, INT8 양자화 기반으로 최적화하여

NVIDIA Jetson Xavier 및 Nano 보드에실시간추론이
가능하도록개발하였다. TensorRT는 NVIDIA에서제
공하는고성능추론최적화프레임워크로, 모델구조를

단순화하고 연산 경로를 최적화함으로써 메모리 사용
량을줄이고처리속도를크게향상시킬수있다. 객체
검출 이후의 연속적인 대상 식별 및 행동 분석 등을

위해 객체 추적이 필수적이며, 실시간 처리가 가능한
객체추적기술을 개발하였다. 객체검출 박스의 IOU

유사도[9]를 기반으로 객체 추적 매칭을 하였고, 추적

중사라졌다가다시나타나는객체에대해서는특징임
베딩 유사도[10]을 기반으로 재식별(Re-Identification)

을수행하였다. 산업현장에서는사용환경, 해상도, 처

리속도등의조건이다양하기때문에, 상황에맞는최
적의모델을선택하는것이중요하다. 이에본논문에서
는다양한객체검출및추적모델에대해성능을정량

the Xavier board with INT8 operations and up to approximately 70 FPS on the Nano board. In terms of

accuracy, INT8 optimization led to an average performance degradation of less than 1%. The multi-object

tracking achieved a MOTA of 52.73% with an average inference time of 1.93 ms. Based on models of

various scales and object detection and tracking techniques, the proposed system is adaptable to the diverse

monitoring needs of industrial environments.
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적으로 비교·분석하고, 이를 바탕으로 그림 1과 같이
산업 현장 모니터링을 위한 적합한 모델을 제시한다.

Ⅱ. 본 론

2.1 다양한 스케일의 객체 검출 통합 네트워크
본 논문에서는 산업 현장 모니터링을 위하여

YOLOv7[2] 기반의객체검출및특징임베딩통합네트
워크[13]를 사용하였다. 통합 네트워크는 경량화 back-

bone을 기반으로 기존의 객체 검출 네트워크에 특징

임베딩추출서브네트워크를추가하여, 하나의네트워
크로객체검출과특징임베딩추출이가능한 one-stage

네트워크이다. 특징 임베딩은 검출된 박스 당 하나의

64채널또는 128채널의특징을포함하고있고, 이특징
을기반으로객체의 ID를구분할수있다. 통합네트워
크[13]를기반으로산업현장의다양한요구사항에대응

하기 위하여 여러 스케일을 갖는 모델을 설계하였다.

기본모델(Medium)[13]를기반으로각레이어의채널수
를절반으로줄인 Small 모델, 그리고채널수를 2배로

확장한 Large 모델을설계하였다. 그리고입력해상도
를 320x320, 480x480, 640x640로설정하여총 9개의

스케일의갖는통합모델을설계하였다. 통합네트워크

의 기존 Darknet 프레임워크기반 학습 방식[6]은 검출
대상이아닌모든샘플을음성(negative) 샘플로간주하
여 클래스 불균형 문제를 유발하고, 학습 안정화에도

시간이오래걸린다. 이를해결하기위해, 본논문에서
는 online hard negative mining 기법[7]을적용하여양
성샘플비율에맞춰어려운음성샘플(hard negatives)

만선택해학습에사용함으로써정확도향상과수렴속
도개선을달성하였다. 이를통해산업현장에서객체
검출과식별을통합적으로처리하는실시간시스템구

현이 가능하다.

2.2 통합 네트워크 ONNX 모델 변환
객체검출및특징임베딩통합네트워크는 Darknet

프레임워크에서 학습되었으며, Windows 환경에서

C/C++ 기반으로개발·테스트되었다. 그림 2와같이엣
지 컴퓨팅 환경에서 실시간 실행하기 위해 TensorRT

최적화를 위한 ONNX 형식으로 변환이 필요하다.

Linux 기반 Pytorch 환경에서 ONNX로변환하기위해,

기존프레임워크의모델구조텍스트파일과 weight 이
진파일을변환하였다. 이를위해개발된모델컨버터는

Darknet 텍스트구조를읽어 PyTorch nn 모듈함수(예:

Conv2d, MaxPool2d, Leaky ReLU 등)로변환하였다.

Darknet의 route layer는 torch.cat 함수를 사용해 fea-

ture map을 결합하였고, YOLO head도 Python 기반
모듈로변환하였다. Conv 계층의 weight, bias, mean,

var 값은 binary weight 파일에서읽어와 PyTorch 형식

에 맞게 적용하였다. 변환이 완료된 PyTorch 모델은
ONNX 형식으로 내보냈으며, 입력/출력 형식은
PyTorch 모델과 동일하게 유지하였고, opset_version

은 11을사용하였다. 최종적으로, 복잡도 3종(S, M, L)

과입력해상도 3종(320, 480, 640)을조합하여총 9개
의 ONNX 모델을 생성하였다.

그림 2. 엣지 컴퓨팅 환경에서 딥러닝 모델 변환 과정
Fig. 2. Deep Learning Model Conversion Workflow for
Edge Computing.

2.3 임베디드 보드에서 TensorRT 모델 생성
엣지 컴퓨팅 환경으로 NVIDIA Jetson Xavier와

Nano 보드를 사용하였다. 이들 보드는 일반 PC 대비
GPU 성능이 수십에서 수백 배 낮기 때문에, ONNX

모델을 TensorRT로최적화하여실시간처리를가능하
게 하였다. 모든 모델은 FP32, FP16, INT8 정밀도로
변환하였으며, 특히 INT8은 정확도 하락을 방지하기

위해 calibration 과정을적용하였다. COCO 데이터셋[8]

과 Polygraphy Calibrator를사용하여 수백장의 이미
지로 보정된 TensorRT 엔진을 생성하였다. Jetson

Xavier는 1,000장단위로 cache를생성했고, Nano 보
드는메모리제한으로 100장씩분할보정을수행하였
다. 결과적으로, 그림 3과 같이 9개의 ONNX 모델에

대해 FP32, FP16, INT8 변환을 적용하여 총 27개의
TensorRT 엔진을생성하였다. 객체검출정확도와추

그림 1. 엣지 컴퓨팅 환경에서 산업 현장 모니터링 시스템
Fig. 1. Industrial Site Monitoring System Based on Edge
Computing.
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론속도를기준으로, 산업현장에서사용환경에맞는
최적의 모델 선택이 가능하도록 하였다.

2.4 통합 네트워크 기반 다중 객체 추적 기법
TensorRT로최적화된객체검출및특징임베딩통

합 네트워크를 기반으로 다중 객체 추적(Multiple

Object Tracking) 기법을개발하였다. 실시간추적기
법인 SORT[9] 기법의 IOU 유사도와 딥 특징 임베딩

유사도[10]을사용하였다. IOU 유사도는현재프레임과
이전프레임의객체검출박스의겹침정도를계산하고,

이를기반으로동일한객체인지판단하기때문에계산

량이적어실시간시스템에적합하다. 하지만추적중
가려짐등에의해객체가검출되지않고, 일정영역을
벗어나서다시검출됬을경우재식별이불가능하다. 딥

특징임베딩유사도는검출박스에서 64채널또는 128

채널과 같이 특징을 추출하고, 이를 기반으로 동일한
객체인지판단한다. 하지만유사객체가많을경우신뢰

도가 떨어지는 단점이 있다.

본논문에서는다중객체추적을위해두단계의연
속적인데이터연관전략을적용한다. 먼저, 프레임간

검출된객체들간의위치기반유사도를판단하기위해
IOU 유사도를계산한다. 현재프레임의각검출박스와
이전프레임에서추적된객체들의경계상자간 IOU를

산출한후, 사전에설정한 IOU 임계값(threshold) 이상
인경우에만객체 ID를유지한다. 객체의이동경로가
연속적이며겹침이충분히큰경우에효과적으로동작

한다. 그러나객체간의 IOU가임계값미만으로낮아지
거나, 일시적으로객체가가려져위치기반연관이어려
운경우에는, 두번째단계로특징임베딩을활용한재

식별유사도기반매칭을수행한다. 이를위해각객체
에대해딥러닝기반임베딩벡터를추출하고, 이전프
레임에서 추적되었으나 현재 IOU 기반으로 매칭되지

않은객체들과의코사인유사도(cosine similarity) 또는
거리(metric distance)를계산하여가장유사한쌍을매

칭한다. 동일한객체의외형적특징이시간경과후에도
일정부분유지된다는가정하에, 단기적인 occlusion이
나프레임손실상황에서도안정적인추적이가능하다.

이와같이 IOU 기반의유사도와특징임베딩기반유사
도를함께고려하여산업현장의다양한환경에서도견
고하게 다중 객체 추적이 가능하다.

Ⅲ. 실 험

3.1 실험환경
엣지컴퓨팅환경에서최적화한객체검출및특징

임베딩통합네트워크의정확도와추론속도평가를위
하여 COCO 데이터셋을사용하였다. 객체검출 COCO

데이터셋은 82,783장의 학습이미지와 40,504장의평
가이미지로구성되어있고, 클래스개수는사람, 동물,

차량, 가전제품, 식품등 80개로구성되어있다. 본논문

에서는기존 COCO 데이터셋의다양한클래스에서산
업현장에서모니터링을위하여검출하여야하는클래
스 및 산업 현장 별 레이블링 비용을 고려하여 5개의

클래스로축소하였다. 산업현장내에서모니터링이필
요한작업자와산업현장외에서모니터링이필요한이
동수단으로 클래스를 축소하였다. 사람, 자동차, 버스,

자전거, 오토바이로 5개의클래스로축소하였고, 변경
된클래스개수에맞게학습및평가이미지도라벨이
존재하는이미지만추출하였다. 변경한커스텀데이터

셋은 48,674장의학습이미지와 23,504장의평가이미
지로구성하였고, 클래스개수는 5개로설정하였다. 객
체검출딥러닝네트워크는 NVIDIA RTX 3090 그래

픽카드를 탑재한 딥러닝 서버에서 학습하였고, 이를
NVIDIA Jetson Xavier와 NVIDIA Jetson Nano 보드
로 컨버팅 및 최적화를 수행하였다.

3.2 객체 검출 추론 속도 비교 분석
엣지컴퓨팅환경에서의실시간추론성능을분석하

기 위해, 각 객체 검출 모델에 대해 데이터셋의 평가
이미지전체에대한평균추론속도를측정하였다. 측정

에는 딥러닝 네트워크의 추론 시간과 NMS(Non

Maximum Suppression)에 소요되는 시간까지 포함하
였다. 실험은 NVIDIA RTX 3090 GPU 기반학습서

버, Jetson Xavier, Jetson Nano 보드에서각각수행하
였으며, 모델은 복잡도(S, M, L) 및 입력 해상도(320,

480, 640)에따른총 9개조합에대해측정하였다. 표

1은일반 PC 환경(NVIDIA RTX 3090 GPU)에서각
모델의추론속도와연산량(BFLOPs)을비교한결과를
나타낸다. BFLOPs가가장낮은 Small 모델(320 입력)

그림 3. 객체 검출 모델을 엣지 컴퓨팅 환경에 변환 결과
Fig. 3. Results of Deploying Object Detection Model on
Edge Device.
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의 경우 평균 3.5ms로 약 285 FPS의 성능을 보였고,

가장복잡한 Large 모델(640 입력)은 8.6ms로약 116

FPS를기록하였다. 전반적으로 RTX 3090 환경에서는
모델의 복잡도 및 입력 해상도와 무관하게 전 모델이
100 FPS 이상의 실시간 추론이 가능하다.

표 2는 Jetson Xavier 보드에서측정한최적화전후
추론속도비교결과를나타낸다. 먼저, 기존 PC 환경에
서학습된모델을최적화없이실행한경우, Small (320

입력)는 32.76ms(약 30 FPS), Large (640 입력)는
58.49ms(약 17 FPS)로측정되어실시간처리에어려움
이있다. 이에따라 TensorRT 기반최적화와 INT8 정

밀도보정(calibration)을수행하여 FP32, FP16, INT8

모델에대해추론속도를비교하였다. S 모델(320 입력)

은정밀도별속도차이가크지않았지만, 모델복잡도

가증가할수록최적화의효과가뚜렷하게나타났다. 특
히 INT8 연산은가장높은속도를기록하였으며, 모델
에따라최소약 5.6배에서최대약 8.8배까지성능향상

되었다. Jetson Xavier 보드에서는최적화를통해대부
분 모델이 100 FPS 이상 실시간 추론이 가능하였다.

표 3은 Jetson Nano 보드에서 최적화 전후의 추론

속도비교결과를나타낸다. Nano 보드에서는 Xavier

보드에비해전반적인추론속도가느리게측정되었으
나, FP16 정밀도에서가장빠른추론속도를나타내었

고, 최적화에 따른 성능 향상 폭은 모델에 따라 최소
1.9배에서최대 4.7배수준이었다. 최적화적용이후최
대 약 70 FPS의 실시간 추론이 가능하였으며, 이는

Xavier 보드대비낮은연산자원에도불구하고실시간
처리가 가능함을 의미한다.

표 4는 사용된 세 가지 GPU 플랫폼의 아키텍처와

연산자원구성을비교한결과를나타낸다. RTX 3090

은 Ampere 아키텍처를, Jetson Xavier는 Volta 아키텍
처를, Jetson Nano는 Maxwell 아키텍처를기반으로하

Model
Input
Size

BFLOPs
Inference
time(ms)

S

320 0.67 3.5

480 1.51 4.5

640 2.69 4.7

M

320 2.62 4.7

480 5.90 5.0

640 10.49 6.1

L

320 10.36 5.5

480 23.30 5.7

640 41.43 8.6

표 1. NVIDIA RTX 3090에서 객체 검출 추론 속도 결과
Table 1. Object Detection Inference Speed on NVIDIA
RTX 3090.

Model
Input
Size

BFLOPs

Inference time(ms)

FP32
FP32
(RT)

FP16
(RT)

INT8
(RT)

S

320×320 0.672 32.76 3.85 3.97 3.95

480×480 1.512 33.99 5.35 4.97 4.73

640×640 2.689 33.06 7.27 6.15 5.94

M

320×320 2.62 33.30 5.86 3.86 3.80

480×480 5.90 32.36 8.93 5.48 4.60

640×640 10.49 34.36 15.60 7.92 5.98

L

320×320 10.356 33.38 13.91 5.60 4.18

480×480 23.302 37.05 23.91 9.28 6.46

640×640 41.425 58.49 40.87 15.36 9.59

표 2. NVIDIA Jetson Xavier 보드에서 객체 검출 추론 속
도 결과
Table 2. Object Detection Inference Speed on NVIDIA
Jetson Xavier Board.

Model
Input
Size

BFLOPs

Inference time(ms)

FP32
FP32
(RT)

FP16
(RT)

INT8
(RT)

S

320×320 0.672 60.08 14.43 12.69 14.49

480×480 1.512 62.10 27.40 21.10 28.37

640×640 2.689 66.08 44.10 34.12 42.30

M

320×320 2.62 62.88 28.80 19.27 28.07

480×480 5.90 80.10 51.88 35.39 50.38

640×640 10.49 121.64 87.19 58.09 82.42

L

320×320 10.356 113.03 75.23 45.79 74.63

480×480 23.302 194.49 136.64 83.06 132.87

640×640 41.425 323.36 249.50 144.93 242.25

표 3. NVIDIA Jetson Nano 보드에서 객체 검출 추론 속도
결과
Table 3. Object Detection Inference Speed on NVIDIA
Jetson Nano Board.

Specs
NVIDIA

RTX 3090
NVIDIA

Jetson Xavier
NVIDIA

Jetson Nano

Architecture Ampere Volta Maxwell

CUDA core 10,496 512 128

Tensor core 328 64 X

Power
consumption

350W 30W 5-10W

표 4. 일반 GPU와 임베디드 보드 스펙 비교
Table 4. Specification Comparison Between General
GPUs and Embedded Boards.
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며, 각아키텍처는 FP16 및 INT8 연산지원수준에서
본질적인 차이를 가진다. 특히 Nano 보드의 Maxwell

아키텍처는 INT8 연산을 소프트웨어적으로 지원하지

만, 하드웨어차원의최적화(Tensor Core 등)가적용되
지않아 INT8 연산성능향상이극히제한적이다. 이와
같은하드웨어및아키텍처차이는동일한모델이라하

더라도추론속도, 최적화효과, 실시간처리가능성에
큰 차이를 발생시키며, 엣지 디바이스 특성을 고려한
모델 경량화 및 최적화 전략이 필요하다.

표 5와표 6은 Jetson Xavier 및 Jetson Nano 보드에
서, 특징임베딩통합네트워크의추론성능을측정한
결과를나타낸다. 통합네트워크는기존객체검출네트

워크에추가적인특징임베딩서브네트워크를결합하
여, 객체검출과함께고차원임베딩특징추출이가능
한 구조로 설계되었다. Jetson Xavier 보드에서 기존

객체 검출 네트워크와 통합 네트워크 간의 성능 비교
결과, FP32 환경에서는 small 모델 기준 5.35ms에서
10.62ms로 약 2배 가까이 추론 시간이 증가하였지만,

INT8 정밀도에서는 거의 동일한 수준(약 4.6ms)으로
추론 속도를 유지하였다. 이는 TensorRT 기반 INT8

최적화가 통합네트워크 구조에서도 효과적으로 적용

되었음을보여준다. 반면, Nano 보드에서는 FP32 환경
에서통합네트워크적용시평균 2배가까운추론시간
증가가발생하였다. 그러나 INT8 정밀도에서는임베딩

차원이 64인경우기존네트워크와유사한수준을유지
했으며, 128차원의 경우에도 모델에 따라 약 1.07

배~1.25배의비교적안정적인추론시간이측정되었다.

특징임베딩통합네트워크는차원수에따라연산복잡
도가증가하지만, Xavier 보드에서는대부분실시간추
론성능을유지할수있었으며, Nano 보드에서는모델

복잡도, 입력해상도, 임베딩차원수등에따라적절한
구성 선택이 필요하다.

3.3 객체 검출 정확도 성능 비교 분석
표 7은 NVIDIA Jetson Xavier 보드에서 TensorRT

최적화수행후정밀도별(FP32, FP16, INT8) 객체검
출정확도(mAP)를비교한결과를나타낸다. 일반적으

Model Input Size Channels

Inference time(ms)

FP32
(RT)

FP16
(RT)

INT8
(RT)

S 480×480
64 9.62 5.90 4.46

128 10.62 6.20 4.63

M 480×480
64 9.82 5.18 4.34

128 10.58 5.05 4.32

L 480×480
64 24.24 9.89 6.74

128 25.14 10.16 6.93

표 5. NVIDIA Jetson Xavier 보드에서 통합 네트워크 추론
속도 비교
Table 5. Inference Speed Comparison of the Integrated
Network on NVIDIA Jetson Xavier Board

Model Input Size Channels

Inference time(ms)

FP32
(RT)

FP16
(RT)

INT8
(RT)

S 480×480
64 29.40 22.55 28.65

128 34.40 27.98 35.07

M 480×480
64 54.52 37.41 54.15

128 61.39 40.33 60.55

L 480×480
64 139.96 87.22 139.27

128 145.91 87.89 142.02

표 6. NVIDIA Jetson Nano 보드에서 통합 네트워크 추론
속도 비교
Table 6. Inference Speed Comparison of the Integrated
Network on NVIDIA Jetson Nano Board

Model
Input
size

BFLOPs

mAP(%)

FP32

FP32
(RT)

FP16
(RT)

INT8
(RT)

ACC± ACC± ACC±

S

320×320 0.672 32.76
45.66 45.67 43.78

- 0.01 -1.89

480×480 1.512 33.99
54.13 54.12 53.53

- -0.01 -0.59

640×640 2.689 33.06
60.87 60.88 59.97

- 0.01 -0.91

M

320×320 2.62 33.30
65.86 65.89 65.11

- 0.02 -0.78

480×480 5.90 32.36
66.44 66.46 66.11

- 0.02 -0.35

640×640 10.49 34.36
66.60 66.53 65.72

- -0.07 -0.81

L

320×320 10.356 33.38
68.98 68.94 68.52

- -0.04 -0.42

480×480 23.302 37.05
70.84 70.80 69.69

- -0.04 -1.11

640×640 41.425 58.49
72.19 72.13 71.27

- -0.07 -0.85

표 7. NVIDIA Xavier 보드에서 객체 검출 모델 최적화에
따른 정확도 성능 비교 결과
Table 7. Accuracy Performance Comparison of Optimized
Object Detection Models on NVIDIA Xavier Board.
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로엣지컴퓨팅환경에서는실시간처리를위해 FP16

및 INT8 양자화연산을적용하지만, 이과정에서비트
표현 정밀도의 감소에 따른 양자화 오류가 발생할 수

있다. 본논문에서는양자화에따른정확도저하의영향
을정량적으로분석하였다. S, M, L 모델및입력해상
도(320, 480, 640)의조합에대해, COCO 데이터셋에

서 검출 정확도를 평가하였다. 그 결과, FP32 모델과
FP16 모델간정확도차이는 -0.07%에서 +0.02% 수준
으로거의유사하였다. INT8 모델의경우양자화오류

가누적되며평균 0.35%에서최대 1.89%까지정확도
감소가발생하였다. 가장큰정확도손실은 Small 모델
(320 입력)에서나타났으며, 복잡도가높은모델일수록

상대적으로정확도하락폭은작아지는경향을보였다.

전반적으로, INT8 연산은 추론 속도에서 최대 6~8배
향상을보이면서도, 객체검출정확도는대부분모델에

서 1% 이내로하락하여, 실시간엣지컴퓨팅환경에서

도충분히수용가능한수준의성능을유지함을확인할
수있었다. 따라서, 객체검출모델의경우 INT8 최적화
를적용하더라도정확도대비추론속도향상을확인할

수 있었다.

3.4 산업 현장 모니터링 활용 테스트
딥러닝서버에서학습된객체검출및특징임베딩

통합네트워크를엣지컴퓨팅환경으로변환하고최적

화하여, 산업현장모니터링에적용하였다. 작업자가활
동하는 위험 구역에 IP 카메라를 설치하고, RTSP

(Real-Time Streaming Protocol)를통해엣지디바이스

에서실시간영상을수신하여객체검출을수행하였다.

객체검출을통해작업자의위치를탐지함으로써, 특정
위험구역내작업자의존재유무를실시간으로판단할

수있다. 그러나객체검출만으로는작업자의이동경로
추적이나행동분석이제한되므로, 다중객체추적기술

그림 4. IOU 매칭 기반 객체 추적 결과
Fig. 4. Object Tracking Results Using IoU-Based
Matching.

그림 5. IOU 매칭과 Re-ID 매칭 기반 객체 추적 결과
Fig. 5. Object Tracking Results Using IoU and
Re-Identification Matching.
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이필요하다. IOU 유사도기반의다중객체추적방식
은계산량이적고속도가빠르지만, 그림 4와같이작업
자가일시적으로가려지거나겹치는상황에서는 ID 스

위칭현상이발생하는단점이있다. 특징임베딩기반
유사도는객체추적의경우재식별이가능하지만유사
한객체에대한신뢰도가떨어지기때문에 IOU 유사도

와 특징 임베딩 유사도를 모두 사용하였다. 그림 5와
같이유사한작업복을입은사람들을그대로추적하면
서, 작업자가다른작업도구에가려졌다가다시나타났

을경우에도재식별을통하여지속적으로추적이가능
하였다. 산업현장에서작업자가특정구간에존재하는
지검출하고, 추적을통하여이동경로를파악할수있는

엣지컴퓨팅환경에서의작업자모니터링기술을개발
하였다.

3.5 다중 객체 추적 정확도 성능 비교 분석
다중객체추적정확도와테스트속도평가를위하여

MOT 17 dataset[12]을사용하였다. COCO dataset에서
학습한통합네트워크를기반으로 MOT 17 dataset의
09 시퀀스에서 사람 클래스에대한다중객체 추적을

테스트 하였고, CLEAR metric[12]로 정확도를 평가하
였다. 표 8과같이 Small, Medium, Large 모델에서각
각 MOTA 정확도가 48.23%, 52.73%, 51.74로나타냈

다. 테스트속도는 500장이상의이미지에서다중객체
추적기법을테스트하여평균시간을측정하였을때평
균 1.93ms로나타났다. 다중객체추적정확도는객체

검출 박스와 특징 임베딩에 영향을 많이 받기 때문에
산업현장의테스트환경에서영상을수집하고파인튜
닝을 수행하면 모니터링 시스템의 정확도를 효과적으

로향상시킬수있다. 또한 NVIDIA Xavier 보드에서
제일 복잡도가 높은 모델에서 다중 객체 추적 테스트
시간을포함하여도 10ms 이하로 100 FPS 이상실시간

모니터링이 가능하다.

Model Input Size MOTA(%)

S 480×480 48.23

M 480×480 52.73

L 480×480 51.74

표 8. NVIDIA Jetson Xavier 보드에서 다중 객체 추적 정
확도 결과
Table 8. Evaluation results of multi-object tracking
accuracy on the NVIDIA Jetson Xavier platform

Ⅳ. 결 론

본논문에서는객체검출및특징임베딩통합네트
워크를기반으로다중객체추적기술을적용하고, 엣지
컴퓨팅환경에서산업현장의다양한요구사항을반영

할수있는모니터링시스템을제안하였다. 산업현장의
다양한요구를반영하기위해, 네트워크복잡도(S, M,

L)와입력해상도(320, 480, 640)에따라다양한스케

일의네트워크를설계하고, 학습서버에서훈련된모델
을엣지컴퓨팅환경에적용가능하도록 ONNX 변환
및 TensorRT 기반최적화를수행하였다. 특히, Jetson

Xavier 및 Jetson Nano 보드와같은저전력 임베디드
GPU 환경에서실시간처리를위해 FP32, FP16, INT8

정밀도별최적화모델을생성하고비교분석하였다. 실

험결과, Jetson Xavier에서는 INT8 연산기준 100 FPS

이상의실시간객체검출이가능하였으며, Nano 보드
에서도최대약 70 FPS 성능을확인하였다. 정확도측

면에서는 INT8 양자화로 인해 평균 1% 내외의 성능
저하가발생했으나, 추론속도증가에비해성능손실이
매우적었다. 또한, 객체검출뿐아니라다중객체추적

기법도엣지 컴퓨팅환경에서구현하기위해, 두단계
의연속적인데이터연관전략을적용하였다. 먼저, 프
레임간검출된객체들의 IOU 유사도를계산하고, 매칭

시추적 ID를부여하였다. 추적중인상태에서 IOU 매
칭이 되지 않을 경우 특징 임베딩 유사도를 기반으로
재식별매칭을수행하였다. Jetson Xavier 보드의복잡

도가 가장 높은 모델을 기준으로 객체 검출 및 다중
객체추적기반으로 100 FPS 이상실시간모니터링이
가능한시스템을제안하였다. 향후연구에서는보다다

양한엣지플랫폼에서성능최적화및확장성을검증하
고, 다양한산업현장데이터셋구축, 그리고실제어플
리케이션 적용을 통한 산업 현장 맞춤형 지능형 영상

분석 솔루션 개발을 지속적으로 추진할 계획이다.
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