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ABSTRACT

As cyberattacks grow more sophisticated, detecting malicious behavior through network traffic has become
increasingly critical. Recently, image-based detection approaches that convert raw network traffic into grayscale
or RGB images for deep learning classification have gained attention. This paper provides a structured survey
on such methods, categorizing existing research by model architecture (e.g., CNN, CNN-LSTM, GAN, GNN),
image processing techniques, target environments such as IoT, and evaluation settings. We also examine
open-set recognition (OSR) approaches aimed at identifying previously unseen attacks. By analyzing
preprocessing strategies, image encoding methods, and OSR applications, this study outlines key limitations of
current research and discusses future directions, including lightweight modeling for IoT, real-time performance,

protocol independence, and enhanced OSR techniques.
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E 2. HE ML
Table 2. Methodology Comparison
Classification Type*
Method Dataset Target Image Type [— - el Accuracy Fl-score
Binary | Multi OSRT
R Grayscale
[20] USTC-TFC’16 Malware 2828) /(208) 99.17 99.97
[21] Own Dataset Malware R(G)B 91.32 91.35
Malicious Grayscale
[22] UNSW-NB15 Traffic (28*28) 96.82 98.52
s Malicious Grayscale
[23] CICIoT 23 Traffic (23%23) 99.71 98.47
s Grayscale
[24] CICAndMal’17 Malware (227%227) - 99.97
MCFP, USTC-TFC’16, RGB
(251 | MedBIoT, IEEE-Mirai | M2IWare (50%50) v (142) ) 97:00
CTU-13, ISOT HTTP Malicious Grayscale
[26] Botnet Dataset, Own Traffic Zl_) 99.98 99.98
Dataset
Grayscale
[27] Own Dataset Malware (64%64) 99.48 85.86
USTC-TEC’16, Malicious Grayscale
(28] ISCX-Tor’16 Traffic (28*28) v/ (103) 95.11 94.98
R Grayscale
[29] CICAndMal’17 Malware (28*28) 99.19 98.70
[30] CICIDS’17 Malicious Grayscale /(11) 99.81 99.91
CTU-13 Traffic (40%40) 99.82 99.87
CICAndMal’17, Grayscale 99.98(bin) | 99.98(bin)
v
B 1 CicvesAndAmrto | Matvare (28+28) @ 99.99(multi) | 99.99(multi)
s Malicious Grayscale
[32] CICIDS’17 Traffic (16*16) v/ (12) 99.87 99.79
RGB
[331 MCFP Malware (16*16) v (12) 99.07 96.25
RGB
[34] IoT-23 Malware (224%224) v (4%) 93.00 91.00
Grayscale
[35] CTU-13, MCFP Malware (2828) 99.90 99.90
s Malicious Grayscale
[36] CTU-13, CICIDS’17 Traffic (40*40) v (9) 40 85.83 82.90
s Malicious Grayscale
[37] CTU-13, CICIDS’17 Traffic (40*40) v (9) 40 85.83 82.90
CICIDS’17 o 83.93 90.69
[38] Own Dataset M;rl;cf‘fi’:g Gra?jcale /(1) 96.62 83.66
HMCT-2020 - 98.66
ISCX-VPN-Tor o /(138 | (128 88.60 81.38
[39] NSL-KDD M;:;Cf‘fffs G(gﬂ‘zyfg;;e va0) | v 91.88 93.66
Own Dataset v (5%) v (3) 96.25 97.43

* (n) indicates the number of classes used in each classification type (e.g., multi-class or OSR)
t denotes that the method incorporates open-set recognition
§ represents that the classification includes the normal class among the multiple classes
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