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요 약

본 논문에서는 저궤도 군집위성 네트워크 상황에서

위성 스케줄링 기법에 따른 물리계층보안 기술의 보

안 성능을 조사한다. Nakagami-m 페이딩 채널 환경

에서 위성의 스케줄링 기법에 따른 보안 아웃티지 확

률(Secrecy Outage Probability, SOP)을 분석하고, 제

안 스케줄링 기법에 대한 보안 다이버시티 차수

(Secrecy Diversity Order, SDO)를 유도하여 시스템

의 점근적 성능을 고찰한다. MATLAB 기반 모의실

험을 통해 위성 스케줄링이 보안 성능에 미치는 영향

을 논의한다.
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ABSTRACT

This paper investigates physical layer security

(PLS) considering satellite scheduling schemes in low

Earth orbit (LEO) satellite networks. We analyze the

secrecy outage probability (SOP) with Nakagami-m

fading channel models, considering several satellite

scheduling schemes. Furthermore, we derive the se-

crecy diversity order (SDO) for the proposed sched-

uling scheme and it provides asymptotic secrecy per-

formance of the system. Finally, the effects of satel-

lite scheduling schemes on both SOP and SDO are

evaluated and discussed through extensive simulations

using MATLAB.

Ⅰ. 서 론

최근무선통신시스템에서는보안성에대한관심이

급격히증가하고있다. 특히, 위성네트워크의경우넓

은서비스범위와높은데이터처리량으로인해안전한

통신채널의확보가필수적인과제로떠오르고있다[1].

통신시스템에서기존의보안방식은주로전통적인암

호화기술을활용하였으나, 위성의하드웨어제약으로

인해새로운형태의보안통신방법연구에대한필요성

이 제기되고 있다. 물리계층보안(Physical Layer

Security, PLS)은무선채널의고유한특성을활용하여

물리계층 단에서 신호처리 기법으로 무선통신의 보안

성을높일수있는연구분야로각광을받고있다[2]. 본

연구는 도청을 시도하는 공격자가 무인 항공기

(Unmanned Aerial Vehicle, UAV)의형태로존재하는

상황에서다수의위성중데이터전송에적합한위성을

선별하는스케줄링알고리즘의보안성능을분석한다.
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Ⅱ. 시스템 모델

본 연구에서는 단일 안테나를 갖춘 개의 저궤도
(Low Earth Orbit, LEO) 군집위성, 개의안테나를
갖춘지상기지국(Ground Base Station, GBS) 및 
개의안테나를갖춘악의적인무인항공기(UAV)가존
재하는상황을가정한다. 악의적인 UAV의목적은위

성에서지상국으로전송되는신호를도청하는것이다.

위성인덱스  ∈  에대해서위성 에서 GBS

로의채널벡터를  ∈  ×
로, 위성 에서 UAV의

채널 벡터를  ∈  ×
로 정의한다.

본 연구에서는 채널 벡터의 각 요소를 모양(shape)

매개변수 과 척도(scale) 매개변수 를 갖는
Nakagami-m 확률변수로모델링하고독립동일분포
(independent and identically distribution, i.i.d.)를가정

한다. Nakagami-m 채널모델은저궤도위성통신관련
연구에서많이사용되고있으며위성네트워크의고속
이동성, 시야각제약등의특징으로인해발생할수있

는 무선 채널의 통계적 불확실성을 모델링할 수 있다
[3,4]. 예를들어, Nakagami-m 채널모델은형상매개변
수값과척도매개변수값을통해위성과지상국사이의

가시성(LoS)과 비가시성(NLoS)의 영향을 조정할 수
있다.

GBS와 UAV는 최대비율결합(Maximum Ratio

Combining, MRC) 수신기를사용한다. GBS는가장높

은채널이득을가진위성 을스케줄링하며, 이스케
줄링기법을 MRC-Max 기법으로명명한다. 이때, GBS

와 UAV의수신신호대잡음비(Signal-to-Noise Ratio,

SNR)은 각각 다음과 같다:

  max∈ …,  ∼  ,

   ,  ∼  ,

여기서   Ω ≐ ,  ≐이며, 는
위성의전송전력, 와 는각각 GBS와 UAV에서의

평균 잡음 전력을 나타낸다. MRC-Max 기법은 선형

탐색으로구현가능하며  복잡도를가진다. 또한
MRC-Max 기법은 GBS의채널정보( )만을이용하

며 UAV의 채널 정보( )를 사용하지 않는다.

GBS와 UAV에서각각달성가능한전송속도와이
를바탕으로계산되는보안전송률(secrecy rate)은다

음과 같다:   max , 여기서 와 는  log와   log을 의미한다.

최종적으로 의보안전송률요구사항을가정했을
때, 보안 아웃티지 확률(SOP)은 다음과 같다:

  Pr   Pr    
추가적으로  으로설정할경우, 보안아웃티지

확률(  Pr  )은도청자링크의전송률

인 이지상국링크의전송률인 보다큰상황이발생
하는 확률을 의미하게 된다. 이는 가로채기 확률
(intercept probability)로 다음과 같이 정의된다.

  Pr   Pr  .

Ⅲ. 보안 아웃티지 확률 분석

본장에서는위성통신에서 MRC-Max 기법의보안

아웃티지 확률과 다이버시티 차수를 분석한다.

3.1 보안 아웃티지 확률 분석
MRC-Max 스케줄링 기법을 사용했을 때, SNR 

의 누적분포함수(Cumulative Distribution Function,

CDF)는 다음과 같다:

      (1)

여기서      
  

 이다.

따라서 SOP는

  
∞      (2)

로표현되고, 악의적 UAV의 SNR 의확률밀도함수
(Probability Density Function, PDF)는 다음과 같다:

     
분석의용이성을위해 를다음과같이정의하

며, 을 이용하면 수식 (1)은 다음과 같다.
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    
    ,

    
    .

최종적으로 아래의 정리를 유도할 수 있다[5].

정리 1: 주어진   Ω 와 다중 안테나 구성(
및 )에 대해, SOP는 다음과 같다.

     
  

×   
    

     
×  

            
 

,

여기서 는 다항식   
   를 회

컨벌루션한 의 계수이다.

3.2 다이버시티 차수 분석
본절에서는 MRC-Max 스케줄링기법의점근적성

능(asymptotic performance)을분석하기위해보안다

이버시티차수(Secrecy Diversity Order, )를유도한

다. 보안 다이버시티 차수는 높은 주 채널 SNR ()
영역에서보안아웃티지확률이감소하는속도를나타
내는척도로, 무선통신시스템의성능을평가하는중요
한 지표 중 하나이다[6]. 이는 다음과 같이 정의된다:

  lim→∞log
log

.

다이버시티 차수를 구하기 위해, →∞ 일 때 의 점근적 특성을 분석해야 한다. 먼저  
에서,  라 하고,  로 치환하면, 은 다음과 같이 표현할 수 있다.

    
 

  .

→∞이면 →이며, ≪ 일때, 와  
 



를테일러급수(Tayler series)로전개하여 를근
사하면, 다음과 같이 주어진다[5].

≈  .

따라서, 단일위성채널 SNR의 CDF는 →∞일때
다음과 같이 근사된다.

   ≈    
.

식 (1)에서, 높은 영역에서  는다음과같이
근사할 수 있다.

 ≈
  


.

   

식 (2)에 위 근사식을 대입하면,

≈  
∞ 

  
위식에서적분부분은 와무관한상수값을가진

다. 따라서,

∝ .

결론적으로, 제안된 MRC-Max 스케줄링기법의보
안 다이버시티 차수는 다음과 같다.

 , (3)

이는 보안 다이버시티 차수가 선택 가능한 위성의

수 , Nakagami-m 페이딩 파라미터 , 그리고
GBS의 안테나 수의 곱에 비례함을 의미한다.
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Ⅳ. 모의실험 결과

본장에서는 MRC-Max 기법을두가지기준기법과
비교하여 보안 아웃티지 확률(SOP)을 비교한다.

(1) MRC-Max(제안기법): GBS는 MRC 수신기를사용

하고 개의후보위성중가장좋은위성을선택한다.
정리 1의 이론적인 성능도 함께 검증한다.

(2) SISO(단일안테나): 단일안테나상황에서 개의
후보 위성 중 가장 좋은 위성을 선택한다.

(3) MRC: 스케줄링 없이 MRC 수신기를 사용한다.

그림 1의모의실험에서는 Nakagami-m 매개변수를 , Ω ,  로 설정하고, UAV의 SNR은 로고정한다. 또한, 보안전송률요구사항은 , 군집위성의수는 , 반복횟수는

으로설정한다. GBS의 SNR 의변화에따른 SOP

성능을살펴봤을때 MRC-Max 기법이단일안테나및
MRC 기법에비해더우수한보안성능을달성하는것
을확인할수있다. 또한정리 1의유도결과가모의실

험결과와일치하는것과 SNR  값이커질때다이버
시치차수   의근사성능을달성할수
있다는 것을 함께 확인할 수 있다.

그림 2의모의실험에서는 Nakagami-m 매개변수를 과  인두경우를고려하고있으며, 이외
의설정값은그림 1과동일한값을사용한다. 모의실험

결과 LoS 성분이 강할수록(즉, 값이 큰 경우) 모든
기법의 SOP 성능이우수한것을확인할수있다. 또한

다양한 값을통해위성통신상황에서발생할수있
는무선채널의통계적불확실성을반영한모의실험이
가능하다는것을확인할수있다. 따라서실제위성통

신운영에상황을모델링하는 값의범위(예: 1~10)를
추정할 경우 이를 토대로 목표 SOP 성능을 달성하기
위한보안전송기법의활용방안을추가적으로논의해
볼 수 있다.

그림 3의모의실험은보안전송률요구사항을제외
한나머지설정값이그림 1의설정값과동일한설정
값을사용하고, 보안전송률요구사항이 0인가로채기

확률의 결과를 나태난다. 군집 위성의 수는 ,
UAV의 SNR을  으로설정하고지상국의채
널 링크의 SNR은 UAV의 SNR과 비슷한 수준(5~15

dB)으로 설정했을 때 위성 스케줄링을 사용할 경우

(MRC-Max, SISO), 스케줄링을사용하지않은경우와
비교했을때악의적사용자의가로채기확률을현저히
줄일 수 있는 것을 확인할 수 있다.

그림 1. SNR에 따른 보안 아웃티지 확률(SOP)
Fig. 1. SOP with SNR

그림 2. 값에 따른 보안 아웃티지 확률(SOP)
Fig. 2. SOP with different  values

그림 3. SNR에 따른 가로채기 확률
Fig. 3. Intercept probability with SNR
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Ⅴ. 결 론

본논문은 LEO 위성네트워크에서스케줄링방식에
따른 SOP를분석하고, Nakagami-m 페이딩채널에서
SOP의 폐쇄형 표현과 이론적 SDO를유도하였다. 본

논문에서도출한정리 1의결과를통해위성통신상황
에서다중안테나와위성스케줄링이보안성능에미치
는영향을수식적으로분석하고, 다이버시티차수분석

결과를 통해 시스템 설정 값에 따라 직관적으로 이해
가능한 근사적 성능(SDO)을 도출하였다.
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