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Ⅰ. Introduction

The rapid advancement of the fifth-generation (5G)

and next-generation wireless networks has unraveled

a new era of global connectivity. The evolution of

wireless communication systems is expected to pro-

vide diverse services and applications through seam-

less connectivity with various Internet of Things (IoT)

devices[1]. The number of IoT devices in wireless net-

works has increased steadily but they are also exposed

to unexpected security threats due to diverse attack

vectors in IoT networks. Traditional security protocols

in wireless networks primarily depend on crypto-

graphic techniques, which are often inadequate for re-

source-constrained IoT applications such as sensing

and smart home applications[2]. Accordingly, alter-

native security techniques such as physical layer se-

curity and physical layer authentication (PLA) have

been recently studied to compensate for limitations in

directly applying the existing security protocols to IoT

devices[3].

Physical layer authentication (PLA) is one of the

promising techniques for enhancing wireless security,

which exploits features of wireless channels, such as

channel state information (CSI), to authenticate legit-

imate transmitters and identify malicious users (i.e.,

adversaries)[4]. Recent studies have shown that ma-

chine learning (ML)-based PLA schemes can improve

authentication accuracy[5]. For example, Liu et al. ap-

plied support vector machine (SVM) algorithms to

PLA, using CSI to build user-specific profiles in sta-

tionary scenarios[6]. However, most of the existing

ML-based PLA techniques are required to collect both

legitimate users’ and adversaries’ CSI data for
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training.

In fact, it is difficult to measure adversaries’ CSI

data in practical scenarios, and thus there have been

studies to tackle this issue. In [7], this problem is in-

vestigated by focusing on a stationary environment.

This study employs the one-class SVM (OSVM) mod-

el which is trained exclusively on legitimate users’

data. The OSVM model shows high accuracy in de-

tecting anomalies considering static conditions.

In addition, the use of generative adversarial net-

works (GAN) was employed in [8]-[10] to detect ad-

versaries while also identifying legitimate radio fre-

quency transmitters in stationary environments. In

[11], a dual-input convolution neural network (CNN)

model is proposed to learn the temporal and spatial

similarity scores between two input CSIs limited by

the need for both legitimate user and adversary CSI

data, making them less suitable for real-world use.

Despite the growing body of work on ML-based PLA

schemes, most existing studies focus on stationary en-

vironments or require adversary data, which makes

them unsuitable for mobile settings.

Moreover, deep learning-based classifiers such as

CNNs, LSTMs, or transformers, though effective, typ-

ically depend on supervised learning involving both

classes of data, including adversarial samples, which

are often unavailable in real-time deployment

scenarios. In contrast, autoencoder architectures offer

a powerful solution for one-class learning by learning

compact representations of legitimate users’ CSI only,

and identifying deviations as anomalies. This makes

them naturally aligned with practical PLA systems

where only legitimate channel profiles can be reliably

acquired. Furthermore, the autoencoder can flexibly

capture complex spatio-temporal patterns without ex-

plicit attacker labels, thus eliminating the dependency

on a complete adversarial dataset and improving ro-

bustness under mobility.

To fill this gap, we propose an autoencoder-based

PLA framework that only exploits legitimate users’

CSI data to efficiently learn the temporal and spatial

differences between legitimate users and adversaries

in dynamic wireless environments.While our experi-

ments are limited to a controlled indoor Wi-Fi 6 test-

bed using the 2.4 GHz band, the methodology is gen-

eralizable and can be extended to other configurations

including outdoor, 5 GHz Wi-Fi, or mmWave systems

in future work.

The main contributions of this work are summar-

ized as follows: (1) We propose an autoencoder-based

anomaly detection algorithm to authenticate legitimate

users against adversaries in mobile environments; (2)

We set up our testbed considering mobile and sta-

tionary devices in the wireless local area network

(WLAN) environment (e.g., Wi-Fi) and collect ex-

tensive CSI data for training and evaluation in both

line-of-sight (LoS) and non line-of-sight (NLoS) sce-

narios; (3) The experiment results demonstrate that the

proposed PLA scheme outperforms the OSVM-based

method, particularly in dynamic wireless environ-

ments, highlighting its potential for real-world IoT se-

curity applications. A comparison with the OSVM

serves as a meaningful baseline aligned with the con-

straint of unsupervised learning, and further evalua-

tions with other deep models are suggested as future

extensions.

Ⅱ. System and Threat Model

In this section, we introduce our system and threat

model, including some basics for the IEEE 802.11

physical layer and assumptions for an adversary.

2.1 System Model
We consider two legitimate devices (Alice and

Bob) and a single adversary as illustrated in Fig. 1,

where HB and HA indicate channel state information

in the frequency domain at Bob and adversary,

Fig. 1. System model



The Journal of Korean Institute of Communications and Information Sciences '25-11 Vol.50 No.11

1662

respectively. Alice (e.g., access point) is responsible

for authenticating legitimate users (i.e., Bob) consider-

ing CSI as a feature for a one-class classifier. We

assume that both Bob and an adversary are mobile

and apart from each other at least d cm. We consider

that every node (including an adversary) adopts or-

thogonal frequency division multiplexing (OFDM) for

physical layer transmission with the IEEE 802.11ax

standard[12].

Alice receives OFDM signals from Bob or the ad-

versary and estimates the CSI of them. The received

signal at Alice in the frequency domain is given by

(1)

where k denotes a subcarrier index, H(k), X(k), and

N(k) indicates channel response in the frequency do-

main, transmitted symbol, and additive white Gaussian

noise (AWGN), respectively, on subcarrier k.

Although our setup considers only one legitimate

transmitter-receiver pair and one adversary, this model

can be extended to multi-user scenarios involving con-

current transmissions and interference sources. In such

environments, the classifier may need to be adapted

to operate over segmented or aggregated CSI streams

from multiple users, and future work will explore such

scalability. The IEEE 802.11ax standard adopts the

high-efficiency long training field (HE-LTF) to pre-

cisely estimate CSI over wideband. If we consider

X(k) as the pilot symbol in the frequency domain, the

channel estimation on subcarrier k is calculated as

(2)

where nsc is the number of subcarriers, which is set

to 242 for a 20 MHz bandwidth in the IEEE 802.11ax.

Thus, Alice can estimate CSI from any received sig-

nals and also ask Bob to repeat transmission for CSI

collection.

2.2 Threat Model
The adversary’s primary objective is to bypass

Alice’s authentication, which could serve as an entry

point for more sophisticated cyberattacks (e.g., mal-

ware injection into a router). It is assumed that con-

ventional authentication protocols can be compro-

mised, making physical layer authentication (PLA) the

primary security measure. We also consider that an

adversary is placed or moving close to Bob with short

distance of d cm to increase the possibility of passing

the authentication with similar channel properties to

that of Bob. This model assumes a passive and nearby

adversary who attempts to mimic the CSI profile of

the legitimate user. This is a realistic and challenging

case.

It is worth noting that more sophisticated attack

models, such as replay attacks, signal amplification,

coordinated adversarial nodes, or mobile relays, could

be deployed in practice. However, these types of ac-

tive and cooperative adversaries remain outside the

scope of this study but are important directions for

future investigation, particularly to evaluate the ro-

bustness of the proposed framework against high-

(a) Stationary scenario (b) Mobile scenario

Fig. 2. 10 CSI samples collected from Bob and the adversary for d = 10 cm: (a) stationary scenario and (b) mobile scenario
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er-layer attacks and physical-layer impersonation

strategies.

Remark 1. Fig. 2 shows CSI samples from Bob and
the adversary in stationary and mobile scenarios (on
the top of the next page). In the stationary scenario
(Fig. 2a), a clear distinction is observed, whereas in
the mobile scenario (Fig. 2b), the difference is less
apparent due to CSI variations. While ML-based PLA
schemes work well in stationary environments, they
struggle in mobile settings, highlighting the need for
more robust deep learning-based anomaly detection
models for improved accuracy.

Ⅲ. Autoencoder-based PLA

This section presents our proposed autoencoder-

based PLA scheme, detailing the autoencoder archi-

tecture and the anomaly detection criterion.

The proposed scheme leverages only legitimate

users’ CSI data to effectively learn the temporal and

spatial differences between legitimate users (i.e., Bob)

and adversaries in mobile environments. The overall

framework is illustrated in Fig. 3 with each step dis-

cussed in the following subsections. Unlike classi-

fication-based approaches that require labeled exam-

ples of both legitimate users and adversaries, the pro-

posed autoencoder is trained solely on legitimate

users’ data, allowing it to learn the manifold of au-

thorized CSI patterns. This design mitigates the prac-

tical limitation of requiring adversary CSI data and

enables anomaly detection based on reconstruction er-

rors, which reflect deviation from the legitimate

distribution. Additionally, by capturing nonlinear tem-

poral and spatial relationships in CSI, the autoencoder

is more robust to mobility-induced channel variations.

3.1 Autoencoder Architecture
In Step 1 of Fig. 3, the proposed autoencoder net-

work processes CSI samples from either a legitimate

user or an adversary. The input consists of CSI values

across multiple subcarriers, with a dimensionality of

nsc × M, where M represents the number of features

considered. In this study, M = 1 as only the absolute

amplitude of CSI values is used. Previous studies,

such as [11], have shown that magnitude-based fea-

tures outperform complex CSI for authentication

tasks, as magnitude is less influenced by phase varia-

tions due to carrier frequency offset, making it more

robust in dynamic environments.

The autoencoder architecture consists of a sym-

metric encoder-decoder structure with a bottleneck

layer for dimensionality reduction and feature

extraction. The encoder reduces CSI data through

fully connected layers, with neuron sizes 256 → 128

→ 64 → 32 → 16, while the decoder reconstructs

it symmetrically (16 → 32 → 64 → 128 → 256).

The ReLU activation function is applied to all layers

except the final output layer, which employs linear

activation. The model is trained by minimizing the

mean squared error (MSE) using the Adam optimizer

with a learning rate of 10−4, and early termination is

implemented to prevent overfitting. The training proc-

ess uses a batch size of 64 and is executed over a

maximum of 100 epochs, with early stopping trig-

gered if the validation loss does not improve for 10

consecutive epochs. These configurations ensure sta-

ble convergence while preserving generalization.

3.2 Anomaly Detection Criterion
Once the autoencoder is trained, it is used for

anomaly detection. As described in step 2 of Fig. 3,

the proposed autoencoder-based PLA scheme com-

pares the input CSI data and the

reconstructed one , where i in-

dicates the data index.

We define the reconstruction error εi for the input

CSI data i based on MSE between xi and as follows:

Fig. 3. Overview of the proposed autoencoder-based
anomaly detection procedure
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(3)

Finally, we consider threshold-based comparison

for anomaly detection, which is given by

(4)

where T0 denotes a pre-determined threshold value

and ri represents a detection result for input data index

i and it indicates anomaly CSI data for r i = 1 (i.e.,

CSI data from adversary) and legitimate CSI data for

r i = 0, respectively.

Remark 2. In scenarios where adversarial data is un-
available-such as during real-world deployment-the
optimal threshold T0 cannot be computed using met-
rics that depend on both legitimate and adversarial
labels. To address this limitation, we adopt an adap-
tive thresholding scheme that estimates the decision
boundary based solely on the distribution of re-
construction errors from legitimate users during
training. Specifically, the optimal threshold is selected
based on the 90th quantile of the reconstruction error
distribution, ensuring that the majority of legitimate
samples fall below this boundary. This approach en-
ables unsupervised deployment and preserves anom-
aly detection capabilities in the absence of
ground-truth adversarial data, making it more suit-
able for practical implementation in dynamic wireless
environments.

Ⅳ. Performance Evaluation

This section investigates our experimental setup,

scenarios, and results of the proposed PLA scheme

compared to the existing OSVM-based approach.

4.1 Experimental Setup
The experiment configures Alice as a Wi-Fi 6 ac-

cess point (AP), as shown in Fig. 4. The AP is a NET-

GEAR AX1800 (RAX20) model, supporting the IEEE

802.11ax standard. We operate on a 20 MHz band-

width within the 2.4 GHz frequency band, utilizing

242 subcarriers for CSI measurement. Bob and the

adversary are high-performance laptops with Intel i7

(8-core CPU), 16GB RAM, and Intel AX201 NICs,

running Ubuntu 20.04 LTS. This setup represents a

controlled indoor environment with homogeneous de-

vice capabilities. While this provides reproducible re-

sults, future work will extend the evaluation to more

diverse scenarios, such as 5 GHz band, outdoor

line-of-sight and non-line-of-sight settings, and heter-

ogeneous chipsets. These steps are essential to assess

the method’s robustness under more challenging wire-

less conditions.

To collect and analyze CSI data, we employ the

PicoScenes open-source software[13], which enables

fine-grained CSI extraction from commodity Wi-Fi

devices, providing a flexible framework for wireless

signal analysis research.

4.2 Experimental Scenarios
We conducted our experiment in our laboratory and

near places located on the sixth floor of the N4 build-

ing at Hanbat National University, South Korea. Fig.

5 shows details of our experimental scenarios. We

consider two experimental scenarios considering non

lineof-sight (NLoS) and line-of-sight (LoS)

environments.

For the NLoS scenario, the presence of obstacles

and reflections within the laboratory introduces sig-

nificant variability in the wireless channels. For the

LoS scenario, a direct LoS is guaranteed and thus

clearer signal propagation is expected, minimizing in-

terference from obstacles and enhancing the reliability

of CSI measurements. A total of 50,000 CSI frames

were collected across all scenarios at a rate of 100

frames per second. The data was split 70% for training

Fig. 4. Experiment setup: NETGEAR AX1800 (RAX20)
model used as AP (Alice) and two laptops equipped with
Intel AX201 NIC used for Bob and the adversary
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and 30% for testing, with 10% of the training data

used for validation. This evaluation assumes only one

legitimate user and one adversary with dedicated

channel access. However, realistic wireless environ-

ments often involve multiple users, devices, and inter-

fering traffic. Future experiments will incorporate

crowding effects and concurrent transmissions to in-

vestigate the scalability and interference resilience of

the proposed scheme.

Bob and the adversary remain fixed at a distance

d cm apart, while Alice moves to induce channel

variations. This setup is equivalent to moving Bob and

the adversary while keeping Alice stationary, allowing

precise control over spatial separation. CSI samples

were collected from both Bob and the adversary, but

only Bob’s samples were used to train the proposed

autoencoder-based PLA scheme. Both devices con-

tinuously ping the AP at 0.01 second intervals. The

experiments were conducted at three distances: 10 cm,

50 cm, and 100 cm, to assess how proximity influen-

ces the PLA system’ s ability to detect adversarial

presence.

4.3 Performance Metrics
The performance of the proposed PLA scheme is

evaluated using the receiver operating characteristic

(ROC) curve and the area under the curve (AUC).

The ROC curve visually represents the trade-off be-

tween the true positive rate and the false positive rate

across various decision thresholds, providing insight

into the model’s ability to distinguish between legit-

imate and adversarial users. The AUC quantifies the

overall performance of the model by measuring the

area beneath the ROC curve, where a higher AUC

value signifies greater classification accuracy and im-

proved adversary detection capabilities.

4.4 Experimental Results
The OSVM model-based PLA scheme (shortly,

OSVM in this subsection) as the baseline scheme dur-

ing the performance evaluation of our autoencoder-

based PLA scheme (shortly, AE in this subsection).

Fig. 6 and Fig. 7 present the performance compar-

ison between AE and OSVM across different dis-

tances in both NLoS and LoS scenarios. The AUC

results confirm that AE consistently outperforms

OSVM at all tested distances in both environments.

Moreover, the findings indicate that increasing the dis-

tance d between Bob and the adversary enhances au-

thentication accuracy. This improvement arises due to

reduced spatial correlation in CSI, making it increas-

ingly difficult for the adversary to replicate Bob’s CSI

characteristics. The AE model effectively leverages

these differences, achieving superior anomaly de-

tection and authentication accuracy. Although the cur-

rent work compares only with OSVM as a baseline,

which also adheres to a one-class learning framework,

future research will incorporate additional deep learn-

ing models such as convolutional neural networks

(CNNs), recurrent neural networks (RNNs), and trans-

former-based architectures. These comparisons will

Fig. 5. Experimental scenarios: LoS and NLoS
environments

Fig. 6. ROC curve of OSVM versus the proposed one
(i.e., AE) in NLoS for all distances
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help determine whether the unsupervised autoencoder

remains superior when attacker labels are unavailable,

or if supervised models can perform better under re-

laxed assumptions.

Fig. 8 illustrates that both AE and OSVM models

achieve higher authentication accuracy in NLoS sce-

narios compared to LoS environments. Specifically,

the AE model attains authentication accuracies of

0.84, 0.90, and 0.94 at distances of 10 cm, 50 cm,

and 100 cm in NLoS, whereas in LoS, the accuracy

slightly decreases to 0.81, 0.86, and 0.90, respectively.

A similar pattern is observed for OSVM, where accu-

racy is lower in LoS than in NLoS. In particular,

OSVM achieves 0.58, 0.72, and 0.80 in NLoS, where-

as in LoS, it records 0.55, 0.70, and 0.78 at distances

of 10 cm, 50 cm, and 100 cm, respectively. The ob-

served performance gap between NLoS and LoS envi-

ronments is attributed to the increased multipath ef-

fects in NLoS, which introduces more pronounced

variations in CSI. These variations make it sig-

nificantly more challenging for an adversary to imitate

Bob’ s CSI patterns, thereby strengthening the security

of the proposed scheme.

In Table 1, we assess the impact of threshold se-

lection sensitivity, we consider three cases: a lower

threshold TL (corresponding to the 80th percentile),

the adopted threshold T0 at the 90th percentile, and

a higher threshold TH (corresponding to the 95th per-

centile) of the reconstruction error distribution. The

authentication performance of the proposed AE model

is evaluated across these thresholds. In the LoS sce-

nario, all three threshold configurations yield rela-

tively high accuracy, particularly at longer distances.

However, in the NLoS scenario, only the 90th percen-

tile threshold consistently achieves high authentication

accuracy across all evaluated distances, whereas both

the lower and higher percentile thresholds result in

performance fluctuations due to the increased channel

variability introduced by multipath effects. These re-

sults confirm the robustness and reliability of the

adaptive thresholding strategy, demonstrating its suit-

ability for unsupervised deployment in dynamic and

complex wireless environments.

Distance TL T0 TH

LoS
10 cm
50 cm
100 cm

82.0%
88.0%
92.0%

87.0%
92.0%
97.0%

80.0%
87.0%
91.0%

NLoS
10 cm
50 cm
100 cm

72.0%
81.0%
69.0%

91.0%
94.0%
99.0%

83.0%
74.0%
88.0%

Table 1. Threshold comparison across distances

Ⅴ. Conclusion

In this paper, we investigated the au-

toencoder-based physical layer authentication frame-

work that only exploits legitimate users’ channel state

information (CSI) data to efficiently learn the tempo-

ral and spatial differences between legitimate users

and adversaries in the mobile scenario. We performed

Fig. 7. ROC curve of OSVM versus the proposed one
(i.e., AE) in LoS for all distances

Fig. 8. Distance vs authentication accuracy between AE
and OSVM for all distances



논문 / Physical Layer Authentication for Mobile Devices in WLAN Systems: An Autoencoder-Based Approach

1667

extensive experiments by collecting many CSI data

samples for training and evaluation in both non

line-of-sight and line-of-sight scenarios. Our ex-

perimental results verified that the proposed au-

toencoder-based PLA scheme outperforms the exist-

ing one in terms of authentication accuracy in dynam-

ic wireless environments. Future research aims to

study additional physical layer features to enhance au-

thentication accuracy and resilience against

adversaries.
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