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ABSTRACT

Physical layer authentication (PLA) enhances wireless security by using wireless channel features like

channel state information (CSI) to authenticate transmitters and detect adversaries. While machine learning

(ML) has been applied to improve PLA, most methods require adversary data or assume a stationary

environment, limiting real-world practicality. This paper proposes an autoencoder-based PLA framework that

relies solely on legitimate users’ CSI to distinguish them from adversaries in dynamic wireless environments.

Using a wireless local area network (WLAN) testbed (e.g., Wi-Fi) with mobile and stationary devices in both

line-of-sight (LoS) and non-line-of-sight (NLoS) scenarios, experimental results show that the proposed method

outperforms existing schemes in authentication accuracy under mobility conditions.

Key Words : Physical layer authentication, autoencoder, mobility, channel state information, anomaly

detection

I. Introduction

The rapid advancement of the fifth-generation (5G)
and next-generation wireless networks has unraveled
a new era of global connectivity. The evolution of
wireless communication systems is expected to pro-
vide diverse services and applications through seam-
less connectivity with various Internet of Things (IoT)
devices!"!. The number of IoT devices in wireless net-
works has increased steadily but they are also exposed
to unexpected security threats due to diverse attack
vectors in IoT networks. Traditional security protocols
in wireless networks primarily depend on crypto-
graphic techniques, which are often inadequate for re-
source-constrained IoT applications such as sensing
and smart home applications™™. Accordingly, alter-

native security techniques such as physical layer se-

curity and physical layer authentication (PLA) have
been recently studied to compensate for limitations in
directly applying the existing security protocols to IoT
devices®.

Physical layer authentication (PLA) is one of the
promising techniques for enhancing wireless security,
which exploits features of wireless channels, such as
channel state information (CSI), to authenticate legit-
imate transmitters and identify malicious users (i.e.,
adversaries)™*. Recent studies have shown that ma-
chine learning (ML)-based PLA schemes can improve
authentication accuracy™. For example, Liu ef al ap-
plied support vector machine (SVM) algorithms to
PLA, using CSI to build user-specific profiles in sta-
tionary scenarios'®. However, most of the existing
ML-based PLA techniques are required to collect both

legitimate users’ and adversaries’ CSI data for
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training.

In fact, it is difficult to measure adversaries’ CSI
data in practical scenarios, and thus there have been
studies to tackle this issue. In [7], this problem is in-
vestigated by focusing on a stationary environment.
This study employs the one-class SVM (OSVM) mod-
el which is trained exclusively on legitimate users’
data. The OSVM model shows high accuracy in de-
tecting anomalies considering static conditions.

In addition, the use of generative adversarial net-
works (GAN) was employed in [8]-[10] to detect ad-
versaries while also identifying legitimate radio fre-
quency transmitters in stationary environments. In
[11], a dual-input convolution neural network (CNN)
model is proposed to learn the temporal and spatial
similarity scores between two input CSIs limited by
the need for both legitimate user and adversary CSI
data, making them less suitable for real-world use.
Despite the growing body of work on ML-based PLA
schemes, most existing studies focus on stationary en-
vironments or require adversary data, which makes
them unsuitable for mobile settings.

Moreover, deep learning-based classifiers such as
CNNs, LSTMs, or transformers, though effective, typ-
ically depend on supervised learning involving both
classes of data, including adversarial samples, which
are often unavailable in real-time deployment
scenarios. In contrast, autoencoder architectures offer
a powerful solution for one-class learning by learning
compact representations of legitimate users’ CSI only,
and identifying deviations as anomalies. This makes
them naturally aligned with practical PLA systems
where only legitimate channel profiles can be reliably
acquired. Furthermore, the autoencoder can flexibly
capture complex spatio-temporal patterns without ex-
plicit attacker labels, thus eliminating the dependency
on a complete adversarial dataset and improving ro-
bustness under mobility.

To fill this gap, we propose an autoencoder-based
PLA framework that only exploits legitimate users’
CSI data to efficiently learn the temporal and spatial
differences between legitimate users and adversaries
in dynamic wireless environments.While our experi-
ments are limited to a controlled indoor Wi-Fi 6 test-
bed using the 2.4 GHz band, the methodology is gen-

eralizable and can be extended to other configurations
including outdoor, 5 GHz Wi-Fi, or mmWave systems
in future work.

The main contributions of this work are summar-
ized as follows: (1) We propose an autoencoder-based
anomaly detection algorithm to authenticate legitimate
users against adversaries in mobile environments; (2)
We set up our testbed considering mobile and sta-
tionary devices in the wireless local area network
(WLAN) environment (e.g., Wi-Fi) and collect ex-
tensive CSI data for training and evaluation in both
line-of-sight (LoS) and non line-of-sight (NLoS) sce-
narios; (3) The experiment results demonstrate that the
proposed PLA scheme outperforms the OSVM-based
method, particularly in dynamic wireless environ-
ments, highlighting its potential for real-world IoT se-
curity applications. A comparison with the OSVM
serves as a meaningful baseline aligned with the con-
straint of unsupervised learning, and further evalua-
tions with other deep models are suggested as future

extensions.
II. System and Threat Model

In this section, we introduce our system and threat
model, including some basics for the IEEE 802.11

physical layer and assumptions for an adversary.

2.1 System Model

We consider two legitimate devices (Alice and
Bob) and a single adversary as illustrated in Fig. 1,
where Hp and H, indicate channel state information

in the frequency domain at Bob and adversary,

AE-based
authentication

Adversary

Fig. 1. System model
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respectively. Alice (e.g., access point) is responsible
for authenticating legitimate users (i.e., Bob) consider-
ing CSI as a feature for a one-class classifier. We
assume that both Bob and an adversary are mobile
and apart from each other at least d cm. We consider
that every node (including an adversary) adopts or-
thogonal frequency division multiplexing (OFDM) for
physical layer transmission with the IEEE 802.11ax
standard!?.

Alice receives OFDM signals from Bob or the ad-
versary and estimates the CSI of them. The received
signal at Alice in the frequency domain is given by

Y(k) = H(k)X (k) +N(k), 1)
where k& denotes a subcarrier index, H(k), X(k), and
MK indicates channel response in the frequency do-
main, transmitted symbol, and additive white Gaussian
noise (AWGN), respectively, on subcarrier &

Although our setup considers only one legitimate
transmitter-receiver pair and one adversary, this model
can be extended to multi-user scenarios involving con-
current transmissions and interference sources. In such
environments, the classifier may need to be adapted
to operate over segmented or aggregated CSI streams
from multiple users, and future work will explore such
scalability. The IEEE 802.11ax standard adopts the
high-efficiency long training field (HE-LTF) to pre-
cisely estimate CSI over wideband. If we consider
X&) as the pilot symbol in the frequency domain, the
channel estimation on subcarrier k is calculated as

N(k)

ﬁ(k):H(k)er,

where ny is the number of subcarriers, which is set
to 242 for a 20 MHz bandwidth in the IEEE 802.11ax.
Thus, Alice can estimate CSI from any received sig-
nals and also ask Bob to repeat transmission for CSI

collection.

2.2 Threat Model

The adversary’s primary objective is to bypass
Alice’s authentication, which could serve as an entry
point for more sophisticated cyberattacks (e.g., mal-
ware injection into a router). It is assumed that con-
ventional authentication protocols can be compro-
mised, making physical layer authentication (PLA) the
primary security measure. We also consider that an
adversary is placed or moving close to Bob with short
distance of d cm to increase the possibility of passing
the authentication with similar channel properties to
that of Bob. This model assumes a passive and nearby
adversary who attempts to mimic the CSI profile of
the legitimate user. This is a realistic and challenging
case.

It is worth noting that more sophisticated attack
models, such as replay attacks, signal amplification,
coordinated adversarial nodes, or mobile relays, could
be deployed in practice. However, these types of ac-
tive and cooperative adversaries remain outside the
scope of this study but are important directions for
future investigation, particularly to evaluate the ro-

bustness of the proposed framework against high-
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Fig. 2. 10 CSI samples collected from Bob and the adversary for d= 10 cm: (a) stationary scenario and (b) mobile
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er-layer attacks and physical-layer impersonation

strategies.

Remark 1. Fig. 2 shows CSI samples from Bob and
the adversary in stationary and mobile scenarios (on
the top of the next page). In the stationary scenario
(Fig. 2a), a clear distinction is observed, whereas in
the mobile scenario (Fig. 2b), the difference is less
apparent due to CSI variations. While ML-based PLA
schemes work well in stationary environments, they
struggle in mobile settings, highlighting the need for
more robust deep learning-based anomaly detection

models for improved accuracy.

II. Autoencoder-based PLA

This section presents our proposed autoencoder-
based PLA scheme, detailing the autoencoder archi-
tecture and the anomaly detection criterion.

The proposed scheme leverages only legitimate
users’ CSI data to effectively learn the temporal and
spatial differences between legitimate users (i.e., Bob)
and adversaries in mobile environments. The overall
framework is illustrated in Fig. 3 with each step dis-
cussed in the following subsections. Unlike classi-
fication-based approaches that require labeled exam-
ples of both legitimate users and adversaries, the pro-
posed autoencoder is trained solely on legitimate
users’ data, allowing it to learn the manifold of au-
thorized CSI patterns. This design mitigates the prac-
tical limitation of requiring adversary CSI data and
enables anomaly detection based on reconstruction er-
rors, which reflect deviation from the legitimate
distribution. Additionally, by capturing nonlinear tem-

poral and spatial relationships in CSI, the autoencoder

Step 1: Autoencoder training

1N !
gl

Step 2: Anomaly detection
(with threshold comparison)

Fig. 3. Overview of the proposed autoencoder-based
anomaly detection procedure

is more robust to mobility-induced channel variations.

3.1 Autoencoder Architecture

In Step 1 of Fig. 3, the proposed autoencoder net-
work processes CSI samples from either a legitimate
user or an adversary. The input consists of CSI values
across multiple subcarriers, with a dimensionality of
ns. X M, where M represents the number of features
considered. In this study, M= 1 as only the absolute
amplitude of CSI values is used. Previous studies,
such as [11], have shown that magnitude-based fea-
tures outperform complex CSI for authentication
tasks, as magnitude is less influenced by phase varia-
tions due to carrier frequency offset, making it more
robust in dynamic environments.

The autoencoder architecture consists of a sym-
metric encoder-decoder structure with a bottleneck
layer for dimensionality reduction and feature
extraction. The encoder reduces CSI data through
fully connected layers, with neuron sizes 256 — 128
— 64 — 32 — 16, while the decoder reconstructs
it symmetrically (16 — 32 — 64 — 128 — 256).
The ReLU activation function is applied to all layers
except the final output layer, which employs linear
activation. The model is trained by minimizing the
mean squared error (MSE) using the Adam optimizer
with a learning rate of 10, and early termination is
implemented to prevent overfitting. The training proc-
ess uses a batch size of 64 and is executed over a
maximum of 100 epochs, with early stopping trig-
gered if the validation loss does not improve for 10
consecutive epochs. These configurations ensure sta-

ble convergence while preserving generalization.

3.2 Anomaly Detection Criterion

Once the autoencoder is trained, it is used for
anomaly detection. As described in step 2 of Fig. 3,
the proposed autoencoder-based PLA scheme com-
pares the input CSI data X; = [xi1, - 7xinsc]T and the
reconstructed one Xi = [£i1,++ . fin.]”, where i in-
dicates the data index.

We define the reconstruction error ¢, for the input
CSI data 7 based on MSE between x; and X; as follows:
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1 Nsc
E = — Z
Mse j=1

(xij — £))%. 3)
Finally, we consider threshold-based comparison

for anomaly detection, which is given by

1, ifg> To,
ri= ) 4
0, otherwise,

where 7j denotes a pre-determined threshold value
and r; represents a detection result for input data index
7 and it indicates anomaly CSI data for r;=1 (i.e.,
CSI data from adversary) and legitimate CSI data for

r;= 0, respectively.

Remark 2. In scenarios where adversarial data is un-
available-such as during real-world deployment-the
optimal threshold T0 cannot be computed using met-
rics that depend on both legitimate and adversarial
labels. To address this limitation, we adopt an adap-
tive thresholding scheme that estimates the decision
boundary based solely on the distribution of re-
construction errors from legitimate users during
training. Specifically, the optimal threshold is selected
based on the 90th quantile of the reconstruction error
distribution, ensuring that the majority of legitimate
samples fall below this boundary. This approach en-
ables unsupervised deployment and preserves anom-
aly detection capabilities in the absence of
ground-truth adversarial data, making it more suit-
able for practical implementation in dynamic wireless
environments.

IV. Performance Evaluation

This section investigates our experimental setup,
scenarios, and results of the proposed PLA scheme
compared to the existing OSVM-based approach.

4.1 Experimental Setup

The experiment configures Alice as a Wi-Fi 6 ac-
cess point (AP), as shown in Fig. 4. The AP is a NET-
GEAR AX1800 (RAX20) model, supporting the IEEE
802.11ax standard. We operate on a 20 MHz band-
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Fig. 4. Experiment setup: NETGEAR AX1800 (RAX20)
model used as AP (Alice) and two laptops equipped with
Intel AX201 NIC used for Bob and the adversary

width within the 2.4 GHz frequency band, utilizing
242 subcarriers for CSI measurement. Bob and the
adversary are high-performance laptops with Intel i7
(8-core CPU), 16GB RAM, and Intel AX201 NICs,
running Ubuntu 20.04 LTS. This setup represents a
controlled indoor environment with homogeneous de-
vice capabilities. While this provides reproducible re-
sults, future work will extend the evaluation to more
diverse scenarios, such as 5 GHz band, outdoor
line-of-sight and non-line-of-sight settings, and heter-
ogeneous chipsets. These steps are essential to assess
the method’s robustness under more challenging wire-
less conditions.

To collect and analyze CSI data, we employ the

I3 which enables

PicoScenes open-source software
fine-grained CSI extraction from commodity Wi-Fi
devices, providing a flexible framework for wireless

signal analysis research.

4.2 Experimental Scenarios

We conducted our experiment in our laboratory and
near places located on the sixth floor of the N4 build-
ing at Hanbat National University, South Korea. Fig.
5 shows details of our experimental scenarios. We
consider two experimental scenarios considering non
lineof-sight (NLoS) and line-of-sight (LoS)
environments.

For the NLoS scenario, the presence of obstacles
and reflections within the laboratory introduces sig-
nificant variability in the wireless channels. For the
LoS scenario, a direct LoS is guaranteed and thus
clearer signal propagation is expected, minimizing in-
terference from obstacles and enhancing the reliability
of CSI measurements. A total of 50,000 CSI frames
were collected across all scenarios at a rate of 100
frames per second. The data was split 70% for training
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Fig. 5. Experimental  scenarios: LoS and NLoS

environments

and 30% for testing, with 10% of the training data
used for validation. This evaluation assumes only one
legitimate user and one adversary with dedicated
channel access. However, realistic wireless environ-
ments often involve multiple users, devices, and inter-
fering traffic. Future experiments will incorporate
crowding effects and concurrent transmissions to in-
vestigate the scalability and interference resilience of
the proposed scheme.

Bob and the adversary remain fixed at a distance
d cm apart, while Alice moves to induce channel
variations. This setup is equivalent to moving Bob and
the adversary while keeping Alice stationary, allowing
precise control over spatial separation. CSI samples
were collected from both Bob and the adversary, but
only Bob’s samples were used to train the proposed
autoencoder-based PLA scheme. Both devices con-
tinuously ping the AP at 0.01 second intervals. The
experiments were conducted at three distances: 10 cm,
50 cm, and 100 cm, to assess how proximity influen-
ces the PLA system’ s ability to detect adversarial

presence.

4.3 Performance Metrics

The performance of the proposed PLA scheme is
evaluated using the receiver operating characteristic
(ROC) curve and the area under the curve (AUC).
The ROC curve visually represents the trade-off be-
tween the true positive rate and the false positive rate
across various decision thresholds, providing insight
into the model’s ability to distinguish between legit-

imate and adversarial users. The AUC quantifies the
overall performance of the model by measuring the
area beneath the ROC curve, where a higher AUC
value signifies greater classification accuracy and im-

proved adversary detection capabilities.

4.4 Experimental Results

The OSVM model-based PLA scheme (shortly,
OSVM in this subsection) as the baseline scheme dur-
ing the performance evaluation of our autoencoder-
based PLA scheme (shortly, AE in this subsection).

Fig. 6 and Fig. 7 present the performance compar-
ison between AE and OSVM across different dis-
tances in both NLoS and LoS scenarios. The AUC
results confirm that AE consistently outperforms
OSVM at all tested distances in both environments.
Moreover, the findings indicate that increasing the dis-
tance d between Bob and the adversary enhances au-
thentication accuracy. This improvement arises due to
reduced spatial correlation in CSI, making it increas-
ingly difficult for the adversary to replicate Bob’s CSI
characteristics. The AE model effectively leverages
these differences, achieving superior anomaly de-
tection and authentication accuracy. Although the cur-
rent work compares only with OSVM as a baseline,
which also adheres to a one-class learning framework,
future research will incorporate additional deep learn-
ing models such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and trans-

former-based architectures. These comparisons will
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Fig. 6. ROC curve of OSVM versus the proposed one
(i.e., AE) in NLoS for all distances
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Fig. 7. ROC curve of OSVM versus the proposed one
(i.e., AE) in LoS for all distances

help determine whether the unsupervised autoencoder
remains superior when attacker labels are unavailable,
or if supervised models can perform better under re-
laxed assumptions.

Fig. 8 illustrates that both AE and OSVM models
achieve higher authentication accuracy in NLoS sce-
narios compared to LoS environments. Specifically,
the AE model attains authentication accuracies of
0.84, 0.90, and 0.94 at distances of 10 cm, 50 cm,
and 100 cm in NLoS, whereas in LoS, the accuracy
slightly decreases to 0.81, 0.86, and 0.90, respectively.
A similar pattern is observed for OSVM, where accu-
racy is lower in LoS than in NLoS. In particular,
OSVM achieves 0.58, 0.72, and 0.80 in NLoS, where-
as in LoS, it records 0.55, 0.70, and 0.78 at distances
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Fig. 8. Distance vs authentication accuracy between AE
and OSVM for all distances
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of 10 cm, 50 cm, and 100 cm, respectively. The ob-
served performance gap between NLoS and LoS envi-
ronments is attributed to the increased multipath ef-
fects in NLoS, which introduces more pronounced
variations in CSI. These variations make it sig-
nificantly more challenging for an adversary to imitate
Bob’ s CSI patterns, thereby strengthening the security
of the proposed scheme.

In Table 1, we assess the impact of threshold se-
lection sensitivity, we consider three cases: a lower
threshold 7; (corresponding to the 80th percentile),
the adopted threshold 7 at the 90th percentile, and
a higher threshold 7} (corresponding to the 95th per-
centile) of the reconstruction error distribution. The
authentication performance of the proposed AE model
is evaluated across these thresholds. In the LoS sce-
nario, all three threshold configurations yield rela-
tively high accuracy, particularly at longer distances.
However, in the NLoS scenario, only the 90th percen-
tile threshold consistently achieves high authentication
accuracy across all evaluated distances, whereas both
the lower and higher percentile thresholds result in
performance fluctuations due to the increased channel
variability introduced by multipath effects. These re-
sults confirm the robustness and reliability of the
adaptive thresholding strategy, demonstrating its suit-
ability for unsupervised deployment in dynamic and

complex wireless environments.

Table 1. Threshold comparison across distances

Distance T T Ty

10 cm 82.0% 87.0% 80.0%
LoS 50 cm 88.0% 92.0% 87.0%
100 cm 92.0% 97.0% 91.0%

10 cm 72.0% 91.0% 83.0%
NLoS 50 cm 81.0% 94.0% 74.0%
100 cm 69.0% 99.0% 88.0%

V. Conclusion

In this paper, we investigated the au-
toencoder-based physical layer authentication frame-
work that only exploits legitimate users’ channel state
information (CSI) data to efficiently learn the tempo-
ral and spatial differences between legitimate users

and adversaries in the mobile scenario. We performed
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extensive experiments by collecting many CSI data

samples for training and evaluation in both non

line-of-sight and line-of-sight scenarios. Our ex-

perimental results verified that the proposed au-

toencoder-based PLA scheme outperforms the exist-

ing one in terms of authentication accuracy in dynam-

ic wireless environments. Future research aims to

study additional physical layer features to enhance au-

thentication

accuracy and resilience  against

adversaries.
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