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요 약

기존 시스템의 클라우드 전환이 활발해짐에 따라 비용관리 문제가 부각되고, 이를 위한 전사적 비용관리 체계

인 핀옵스(FinOps: Finance and DevOps)에 대한 활용도 증가하고 있다. 기존 스토리지 비용 최적화 연구는 아카

이브 관점에서 저비용 원격지로 재배치 또는 압축기법의 단순 용량 축소에 초점을 맞추고 있다. 하지만, 실시간성

스토리지 데이터는 서비스 생명주기 동안 누적 증가하고, 높은 서비스 영향도로 단순 최적화로는 한계가 있다. 본

연구는 단일 클라우드 서비스(CSP: Cloud Service Provider)의 계층 서비스를 활용한 운영모델을 연구한다. 중대

형 규모의 기존 시스템의 스토리지 데이터와 CSP 스토리지 분석을 통해 구성한 복합 배치모델을 제안한다. 제안

모델은 웹 서비스 3계층의 필수 데이터를 용도별 CSP 스토리지 서비스로 배치하는 복합 배치모델을 통한 비용

최적화와 운영특성을 반영한 머신러닝 예산예측으로 핀옵스 효율화를 지원한다. 중대형 규모의 기존 시스템을 클

라우드로 전환시 비용평가를 통해 단일모델보다 약 56% 이상의 운영비용 절감과 순환신경망(RNN: Recurrent

Neural Network)인 LSTM(Long Short-Term Memory)으로 비용예측을 수행해 예측오차율 약 18%로 효과성도 검

증하였다. 본 연구는 기업의 지속 가능한 데이터 운영을 지원하여 클라우드 운영비용 절감과 클라우드 핀옵스를

효과적으로 지원하는 데 기여할 것으로 기대된다.

키워드 : 클라우드 비용 최적화, 스토리지 배치 모델, 핀옵스, 머신러닝, LSTM

Key Words : Cloud Cost Optimizing, Cloud Storage Model, FinOps, RNN, LSTM

ABSTRACT

As cloud adoption proliferates and operational costs increase, interest in Finance and DevOps(FinOps) for

cost management is growing. Existing studies have focused on reducing storage costs through techniques such

as remote relocation and compression, but simple optimization is limited as data and inter-dependencies

increase. This study proposes a hierarchical storage deployment model that uses the services of a single cloud

service provider(CSP) optimized for a 3-tier system consistring of WEB, WAS, and DB components. This

model shows 56% annual cost reduction compared to a single model approach. Recurrent Neural Network

(RNN)-based Long Short-Term Memory (LSTM) machine learning predicts budget overruns with an error rate

of 18%. This study supports cost reduction and effective FinOps in cloud operations.
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Ⅰ. 서 론

기존시스템의클라우드전환가속화에따라클라우
드 사용비용이 새로운 문제가 되고 있다. 사용비용은
관리하지않으면예산초과로문제가되어기업의클라

우드지속가능성을위협하게되었고, IT 부서는비용관
리가높은우선순위의업무가되었다[1]. 이러한원인으
로인해비용문제를전사적으로통합관리하는체계인

핀옵스(FinOps: Finance and DevOps) 활용도도증가
하고 있으며, 클라우드 서비스(CSP: Cloud Service

Provider)도핀옵스관련지원기능을강화하고있다[2].

L. M. Gutta의 클라우드 자원의 총소유비용(TCO:

Total Cost of Ownership) 조사분석 연구에서 가장
TCO가높은자원은스토리지로평가되었다[3]. 스토리

지는다른컴퓨팅자원과다르게운영시데이터가누적
되어 증가하는 특성이 있다.

일반적인클라우드비용연구는소유와사용의비용

차이에포커스하고있다. K. H. Kim et al.은사용비용
의 경제성분석 연구를 수행하였는데[4], 마이그레이션
관점만고려한정적분석에그친점은아쉽다. 특히, 스

토리지사용비용최적화연구는주로멀티클라우드요
금차이를이용한최적화방안을제시하지만, 실무적관
점에서는 운영복잡도 증가, 지연 문제 등으로 실시간

서비스에는 적용이 어렵다. 따라서, 본 연구는 단일
CSP에서비용최적화를달성하는모델을제안하여실
무 적용성을 높였다. 실시간 서비스의 스토리지 데이

터는 지속 누적 증가하는 특성으로 인해 시간이 지날
수록 고비용의 직접적인 요인이 된다. 이러한 이유로
스토리지는초기장기적관점의운영배치설계가매우

중요하다.

본 논문은 실시간 서비스의 데이터 용도에 맞추어
단일 CSP 내에서복합배치모델을통한비용최적화를

연구한다. 실시간서비스에서발생하는데이터의특성
과 CSP의스토리지 비용계층을 연관지어분석하고,

클라우드네이티브에적합한배치모델을제안한다. 또

한, 장기미참조데이터를재배치하여비용효과를향상
시키고, 비주기적인이벤트변화로인한비용증가도포
함하여예측할수있도록머신러닝을통해핀옵스를지

원한다.

성능시험은중대형규모의기존시스템의스토리지
데이터를클라우드로전환후운영할때의비용을시뮬

레이션하여 제안모델의 효용성을 증명한다.

논문구성은 서론에 이어 2장에서는 클라우드 비용
최적화와관련된선행연구에대해살펴보며, 3장에서는

제안기법을 상세히설명하고 4장에서는 구현 및실험

평가내용을정리후마지막으로 5장에서결론을제시
한다.

Ⅱ. 관련 연구

클라우드스토리지비용연구는대부분데이터보존
비용연구가다수이다. M. Liu et al.은사용자관점에서

의클라우드스토리지비용최적화관련연구를수행하
였으나[5], 구체적인 방안없이가능한최적화 저장기술
을 분류하는 것으로만 그친 것은 아쉬운 점이다. H.

Yerramsetty는클라우드네이티브를위한최적화연구
에서스토리지데이터에수명관리적용, 스토리지비용
계층적용, 데이터중복제거적용등의방안을제시하였

으나[6], 구체적인 방안으로 주기적 감사와 삭제 같은
비기술적인 권고로만 그친 점은 아쉽다. V. L. Latha

et al.은멀티클라우드환경에서주성분분석및파레토

최적화기법을이용한데이터배치최적화를연구하였
다[7]. 연구는가용성과재배치비용만을고려하고저장
비용고려는제외되었다. Y. Mansouri et al.은클라우

드센터 간의 원격복제로 저장비용과 통신비용을 고려
한최적의저장소선정연구를수행하였다[8]. 이연구는
CSP의대륙센터간의원격복제연구로, 저장비용이유

사하고 오히려 전송비용이 추가되어 효과가 낮다. P.

Wang et al.은멀티클라우드스토리지서비스를이용
하여고가용성을위한비용최적화모델을연구하였다
[9]. 여러법칙을이용하여모델을정의하였으나실시간
데이터에 대한 고려가 없는 점은 아쉽다. S. Raut et

al.은데이터를 3가지 유형으로분류하고비용예측을

수행하는정책을연구하였다[10]. 하지만대상을백업데
이터로한정하고단순증가율을적용하여전송패킷에
대한고려가부족한점은아쉽다. W. Tian et al.은클라

우드자원별로스케쥴링을이용해확장, 축소로비용최
적화 달성을 제안하였다[11]. 하지만, 스토리지는 다른
자원과 다르게 단순 알고리즘만 제시된 점은 아쉽다.

A. K. Y. Yanamala는압축기법을이용한저장용량축
소방식에관해연구하였다. 단순압축과중복제거방
식, SSD 스토리지, 하이브리드스토리지의최적화비교

연구를하였다[12]. 연구는하드웨어의존도가높아퍼블
릭클라우드에는적용할수없는한계가있다. X. Qiu

et al.은파일의분산을통해저비용의저장소를사용하

는 연구를 수행하였다[13]. 하지만, 하이브리드 방식의
구매비용이고려되지않아아쉽다. P. Waibel et al.은
클라우드스토리지의저장모델활용최적화연구를수

행하였으나[14], 연구의최적화방식을단순저장만을고
려한 점은 아쉽다. Y. Mansouri et al.은 Hot과 Cold
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스토리지계층을이용해빈도에따라계층을이동하는
최적화를 연구했다[15]. 하지만, 요청시 계층을 옮기는
등 실시간성에 대한 고려가 부족하다. A. Q. Khan et

al.은빈도를기준으로스토리지계층을평가하는최적
화연구를수행하였다[16]. 하지만, 평가요소를접근빈
도로구분하고, 서비스파일을빈도가낮은로그파일로

만 한정한 점은 아쉽다고 하겠다.

이렇듯기존의연구는스토리지의장기저장데이터
의보존비용최적화가중심이다. 이와다르게본연구는

실시간성서비스데이터의유형에따른저장비용최적
화를 중심으로 한다.

Ⅲ. 제안 기법

3.1 연구방법
본연구는실시간서비스의유관데이터의스토리지

비용최적화를연구한다. 기존시스템의서비스과정에
서 발생하는 저장 데이터의 분류를 수행한 후 유형에
따른최적의클라우드스토리지서비스배치모델을정

의한다. 그림 1은제안시스템의목표모델이다. 연구의
1단계는시스템유형에맞춘다중스토리지배포모델
을정의한다. 세부적으로는 a. 기존시스템에서사용되

는데이터종류정의, b. 데이터특성분류, c. 스토리지
유형분류, d. CSP의스토리지서비스계층특성분류,

e. 클라우드네이티브서비스유형에맞춘스토리지서

비스복합모델정의순으로수행한다. 2단계는스토리
지 비용예산을 예측하도록 구성한다.

본연구에서는데이터의수명, 빈도, 성능등의특성

에따라 CSP의스토리지서비스를조합하여저장하는
모델을 복합 배치모델이라 한다. 복합 배치모델은 각
데이터유형에적합한스토리지서비스를식별하여배

치하는것을목표로하며, 이를기반으로시스템구성
단계에서는다중스토리지배치모델로구현된다. 다음
절에서는모델을구성하는데이터특성과스토리지유

형에 대한 분석을 상세히 설명한다.

그림 1. 목표 시스템 모델
Fig. 1. Target System model

3.2 데이터 생명주기
실시간서비스와연관된스토리지데이터는소스파

일과 데이터베이스(DB: Database) 파일 같은 서비스

데이터와접근로그, 실행로그같은자체생산데이터로
구분할 수 있다. 자체생산 데이터는 주로 디버깅이나
컴플라이언스용도로사용된다. 그림 2는웹서버와 DB

서버에서생성되는데이터의생명주기를나타낸다. 예
로웹접속로그는시간단위로생성후압축파일로변경
되어 저장된다.

그림 2. 데이터 생명주기
Fig. 2. Data Life-cycle

3.3 스토리지 유형
기존인프라환경은물리스토리지장비를사용한다.

표 1은상용스토리지장비분류이다. 스토리지는고성

능, 고용량일수록고가장비로 DB 저장은고성능급스
토리지를, 일반용도로는중성능~저성능급스토리지장
비를 사용한다.

CSP도물리환경과유사한스토리지계층서비스를
제공한다. 표 2는구글(Google)에서제공하는스토리지
서비스의분류이다[17]. CSP는성능과고가용성을기준

으로차등비용을적용하는계층형스토리지서비스를
제공하고있다. 핀옵스재단의 State of FinOps Report

2023에 따르면, 글로벌 클라우드 시장에서 AWS와

Azure가가장높은시장점유율을유지하고, Google은

상위 3대클라우드제공업체로서중요한위치를차지하
고 있다 하였다. 이 보고서는 Google의 데이터 분석

및머신러닝역량과타 CSP 대비경쟁력있는스토리지

Classification Purpose

High-End Storage OLTP

Mid-Range Storage Service data

Entry Storage Service and Storing

Backup Storage Archiving

표 1. 스토리지 하드웨어 분류
Table 1. Classification of Storage Hardware
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요금정책을기반으로실무현장에서자주채택된다고
강조하고있다. 또한, A. Q. Khan et al.의연구에서는

3개사의스토리지계층및특성을비교·분석하여등급

을정의하였으며, 그결과구글이스토리지저장비용
측면에서가장경쟁력이높은것으로보고하였다[18]. 국

내에서는공공기관, 대기업은보안인증등으로 AWS나
Azure를선호하는경향이있으며, IT서비스중심기업
일부는 구글을 채택하고 있다. 또한 AWS는 6종류의

스토리지유형을제공하는데비하여, 구글은 4종류의
계층서비스를제공하여기존아키텍처와맵핑분석이
용이한장점이있다. 이에본연구는구글을기준으로

실험을 수행하였으며, 향후 AWS 및 Azure와의 비교
검증을 통해 연구의 범위를 확장할 예정이다.

3.4 다중 스토리지 배치 모델
그림 3은기존시스템인프라환경에서의스토리지

사용모델이다. 시스템별로서비스데이터와자체생산
데이터를스토리지에저장한다. 클라우드네이티브환
경에서도 물리환경과 유사하게 스토리지 서비스를 영

구볼륨으로컨테이너에할당한다. 본연구는서비스생
명주기동안발생하는데이터유형에따른스토리지서
비스를식별하고, 컨테이너에최적의스토리지서비스

를 복합 배치하는 모델을 설계한다.

그림 4는 복합모델을 위한 분석 절차이다. 서비스
관련데이터를명세화한후수명, 기간, 빈도, 성능특성

으로 분석하여 적합한 스토리지를 도출한다.

그림 5는웹기반서비스에서사용되는서비스데이
터와자체생산데이터를분석한명세이다. 웹서비스를

구성하는 3계층시스템별로관련데이터의유형과확장

자, 용도, 수명에 대하여 분석한다.

분석을 통해 스토리지의 특성을 실시간, 연속성용,

안정성용, 감사용의 4가지로분류하고, 그림 6처럼세

부적데이터수명을단기, 중기, 장기의 3가지유형으로
분류한다.

수명에의한분류를기간별로취합하여분석하면그

림 7과같다. 각저장기한은 CSP의권고에따라 3개월
단위로구분하고, 영구보존은최소 1년이상보존이필
요한 경우로 분류한다.

그림 8은데이터의사용빈도에따른분류이다. 실시

Type Purpose Min. Duration

Standard Frequently access -

Nearline Service 30 days

Coldline Storing 90 days

Archive Archiving 365 days

표 2. 구글 클라우드 스토리지 서비스 분류
Table 2. Classification of Storage Service by Google

그림 3. 기존 시스템(좌)과 클라우드(우)의 스토리지 사용
Fig. 3. Storage Usage in Legacy(Left) and Cloud(Right)

그림 4. 다중 스토리지 배치를 위한 분석 절차
Fig. 4. Analysis procedure for multi-storage deployment

그림 5. 웹서비스에 필요한 스토리지 데이터 명세
Fig. 5. Specification of storage data required for web

그림 6. 데이터의 수명별 분류
Fig. 6. Classification of Data by Life-time

그림 7. 데이터의 보존기간에 따른 분류
Fig. 7. Classification of Data by Retention Period
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간데이터는높은사용빈도가발생하나연속성을위한
데이터는복제발생시, 감사를위한데이터는감사자료
필요시점 등 빈도 관점에서 분석한다.

성능은실시간처리를위한고성능과감사용은저성
능으로도충족되므로, 그림 9처럼필요성능분석을수
행한다.

위와같은분류과정을통해각시스템에필요한데
이터의용도와빈도, 수명의연관성을그림 10과같이
분류하였다.

데이터의상관관계에맞추어서비스유형별필요한
스토리지의 상관관계를 분석하면 그림 11과 같다.

그림 12. 클라우드 서비스 유형별 스토리지 모델
Fig. 12. Storage Models by Cloud Service Type

그림 12는 클라우드 스토리지 복합 배치모델이다.

각서비스는용도에맞춰 3~4가지유형의다른스토리
지가 적합한 것으로 분석되었다.

3.5 머신러닝을 통한 스토리지 비용 예측
예산은연간총TCO 예측과예산소진시기예측이중

요하다. 스토리지비용은시간에따라누적증가하다가
이벤트 시기에 추세가 급변하는 특성이 있다. 이러한
비용예측은선형회귀의 ARIMA 이용을고려할수있

으나, 이벤트에따른비선형적특성과다양한변수조합
을이용한장기예측은 순환신경망(RNN)이더효과적
이다. RNN의 LSTM은시계열변동성에대한다양한

예측연구가있다. M. H. Lee et al.의바닥난방제어를
위한실내온도예측[19], J. J. Jong, J. Y. KIM의 주가
예측[20], S. C. Park, Y. H. Kim의 서버 CPU 사용율

예측이다[21]. 본연구는이전연구의단층구조와다르게
알고리즘 1과같이 LSTM 다층구조를사용하고과적합
과 학습안정화에 중점을 두었다.

그림 8. 데이터 접근빈도에 따른 분류
Fig. 8. Classification of Data by Access Frequency

그림 9. 요구 성능에 따른 분류
Fig. 9. Classification by Performance Requirements

그림 10. 시스템과 스토리지 유형의 연관도
Fig. 10. Correlation between Systems and Storage Types

그림 11. 서비스와 스토리지의 연관도
Fig. 11. Correlation between Service and Storage
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필요예산예측을위한데이터구조는그림 13과같
이과거 1년간의시뮬레이션데이터 366개를사용한다.

데이터는전일과의차분에로그변환적용후전체를

8:2의비율로학습데이터와시험데이터로나누어그림
14처럼 사용한다.

과거참조(look_back) 기간은 90, 180, 270일로시험

한결과그림 15처럼 90일에서가장안정적인결과를
나타냈다. 에포크진행에따라훈련과검증의손실차이
가거의없어과적합이없는안정적인상태로확인된다.

시험에사용한최적의하이퍼파라미터는표 3과같
다. 모델을 4개층으로 구성하고, 과적합 방지를 위해
탈락(Dropout)과 L2정규화를적용하였다. 데이터는과

거 1년간의스토리지증가데이터를사용하며, 옵티마
이저, 활성함수, 배치크기등은 여러 설정으로 시험한
최적의값이다. 시험에사용한소스코드는깃허브[22]에

게시되어 있다.

그림 13. 판다스 데이터프레임 구조
Fig. 13. Pandas DataFrame Structure

그림 14. 학습데이터 및 시험데이터 그래프
Fig. 14. Pandas Graph of Training and Test Dataset

그림 15. 훈련과 검증의 손실 그래프
Fig. 15. Training and Validation Loss Graph

3.6 데이터 재배치
서비스 데이터에서 빈도가 낮아도 삭제할 수 없는

데이터는첨부파일같은콘텐츠파일이다. 콘텐츠파일
은 용량은 크지만, 시간이 지날수록 빈도가 줄어든다.

접근빈도가낮아져미참조상태가된파일은저비용의

스토리지로 재배치하면 저장비용을 더욱 최적화할 수
있다.

운영체제의색인노드(Inode)에는파일의변경, 수정,

접근시간정보가저장되어있다. 파일의접근 90일이
상참조기록이없는파일을장기미참조파일로정의하
고, 저비용스토리지로재배치하여저장비용을최적화

한다. 그림 16은 재배치 에이전트의 역할을나타낸다.

기존의스토리지재배치연구들은주로멀티클라우
드재배치나용량최적화에초점을맞추고있어, 실시간

누적데이터의특성과이벤트성데이터급증과같은복
합적인특성까지통합적으로고려하는데는한계가있
었다. 본연구는복합스토리지재배치모델을통해데

이터수명, 사용빈도, 특성을통합적으로반영하고, 머
신러닝기반예산소모시기예측으로비선형적비용변
동성까지사전에대응할수있는실질적인관리체계를

제안함으로써 차별성을 갖는다.

그림 16. 모니터링 에이전트의 파일 재배치
Fig. 16. File relocation by Monitoring-agent

Parameters Values

Model LSTM(128-64-32-16)

Drop-out 0.3, 0.2, 0.1

Activation relu

Optimizer adam

Loss Func. Mean-Squared_Error

Normalization L2 regularizer

Batch size 16

look-back 90

표 3. LSTM에 사용한 하이퍼파라미터
Table 3. Hyper-Parameters Used in LSTM
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Ⅳ. 구현 및 시험평가

4.1 시험 개요
본연구의성능시험은웹서비스를구성하는 3계층에

서계층별자체생산데이터의특성을활용한다. 중대형

규모의기존시스템환경의스토리지데이터를유형별
로분석한결과는그림 17과같다. 서비스데이터는 DB

파일과콘텐츠파일인첨부파일이큰비율로증가한다.

특히, 복구를대비한 DB 아카이브로그가용량이크지
만, 다음번 로그로 대체되는 특성으로 일정한 용량을
유지하는 것이 확인되었다. 이런 용도와 증가 특성에

맞추어복합스토리지에배치하고, 활용빈도가저하되
는 시점에 재배치를 통해 핀옵스 최적화를 지원한다.

스토리지서비스는용량, 기간, 행위에따라비용이

발생한다. 표 4는구글의스토리지서비스의계층별요
금표이다. 계층에따라비용이다르며특히, 기간미준
수패널티(Early Delete)가있어최소저장기간미준수

시에는 패널티 비용이 발생한다.

단순한스토리지저장비용은식(1)과같이저장된용
량과 작업비용의 연산으로 계산한다.


     ∙  

∙


  
∈   


  

∙    
∙       

∙   

∙    
∙ 

      
∙    

(1)

TCO를최소화하는최적의스토리지를선정하기위

해 최소 저장기간 를 식(2)와 같이 계산한다.


    

  


   

  

∙ 
    

∙ 
       

(2)

마이그레이션 비용은 현재의 저장비용과 잔여기간
에 대한 비용으로 식(3)과 같이 산정한다.


    

 
 ∙  ∙



∙ 
    

(3)

최적의스토리지비용은마이그레이션비용과데이
터의읽기비용, 전송비용을합산하여식(4)와같이최소

비용이 소요되는 스토리지를 선정한다.


  

    ∙  ∙
    ∙



 





∙  

∙       

(4)

위의 과정을 알고리즘 2와 같이 나타낼 수 있다.

재배치는보다복잡한고려가필요하다. 
의저장

데이터의데이터미참조기간이 90일이상이면재배치

대상이되나, 저장비용과전송비용, 기간미준수패널티
를포함한비용이 

 저장비용보다이익일때재배치를

선택하는 식(5)와 같이 수행한다.

Type Code
Cost per GB($)

Save Read Early Delete Transfer

Standard S 0.02 0 0 0.08

Nearline N 0.01 0.01 0.0005 0.08

Coldline C 0.004 0.02 0.0003 0.08

Archive A 0.0012 0.05 0.0001 0.08

그림 17. 웹서비스 관련 데이터 파일 현황
Fig. 17. Status of web service related data files

표 4. 구글 클라우드 스토리지 서비스 요금표
Table 4. Cost for Storage Service by Google
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
     

   ∙   ∙



    

   ∙   ∙
    

 


    

  
   ∙

→

  
 ≥   ∙



(5)

재배치되면서비스에새로운스토리지의경로로업

데이트를 요청하여 서비스 품질을 유지한다.

  


∙    
∙ 

     

(6)

4.2 성능비교
분류에사용한중대형기존시스템의스토리지저장

데이터현황은그림 18과같다. 여기에매일의증분과

보존기간 특성을 적용하였다.

현황데이터를바탕으로데이터증가를적용한전환
및소요비용예측은표 5와같다. 단일모델대비복합모

델의 1년후사용비용은약 56% 감소될것으로예측된
다. 장기미참조재배치에이전트를적용하면 3개월부
터큰차이로감소하여 1년후약 71.1%의감소가발생

할 것이다.

LSTM의 비용예측은 단일모델과 복합모델을 대상
으로향후 1년간의비용예측을그림 19처럼수행하였

다. 동일저장용량에대하여좌측의단일모델보다우측
복합모델이 비용 효과적임을 알 수 있다.

머신러닝 결과평가는 표 6과 같다. 평균절대오차

(MAE)와평균제곱근오차(RMSE)의분포가일정하고,

평균절대비율오차(MAPE) 약 18%로활용성이있다고

평가할 수 있다.

성능비교를 통해 제안기법이 클라우드에서 스토리
지를 운영할 때 비용 효과적이며, 서비스 생명주기가

길어질수록더뚜렷한비용절감효과가있다. 또한, 머
신러닝 기술과조합하여 이벤트성 비선형적인 변화를
포함한 비용예측이 가능하고, 예산초과시점을 사전에

확인하여재배치하는등선조치도가능하므로관리및
운영측면의 활용도가 높다.

Ⅴ. 결 론

본연구는클라우드네이티브환경에서핀옵스를달
성하기위한핵심요소중하나인스토리지 TCO 최적

화에관한것이다. 스토리지는초기적재이후지속증
가하는자원으로, 배치단계에서장기적관점의데이터
배치모델최적화없이핀옵스를구현하는데에는한계

가 있다. 기존의 장기 보존비용 절감 연구와 다르게,

본연구는서비스운영데이터의스토리지계층을활용
한 실시간성 최적화에 초점을 맞추고 있다.

중대형규모의기존시스템분석을통해데이터특성
을파악하고, 이를바탕으로컨테이너서비스유형별로
최적의 계층 스토리지를 사용하는 복합모델을 개발하

였다. 제안모델을통해기존중대형데이터를클라우드
로전환후 1년간최소 50% 이상의비용절감이가능하
고, 장기미참조데이터의재배치를통해더효과적인

비용최적화를달성할수있음을증명하였다. 또한, 단
순사용비용이아닌예산의도달시점을예측하여예산
수립과 재배치계획을 지원하는 머신러닝 적용방안도

연구하였다.

Type Loaded +1M +6M +12M

Normal $449.44 $491.70 $513.27 $538.33

Proposed
(Diff.)

$192.03
(-57.4%)

$202.60
(-58.8%)

$219.63
(-58.0%)

$237.35
(-55.9%)

Proposed-agent " "
$139.68
(-72.8%)

$155.46
(-71.1%)

그림 18. 데이터 소요량 계산표
Fig. 18. Data Consumption Capacity Calculation Table

표 5. 데이터 적재부터 1년간의 비용 비교표
Table 5. Cost Comparison Table

그림 19. 미래의 예산도달 예측 결과 그래프
Fig. 19. Budget Reach Prediction Result Graph

Type Result

Mean Absolute Error (MAE) 75.41

Root Mean Squared Error (RMSE) 75.43

Mean Absolute Percentage Error (MAPE) 17.32%

표 6. LSTM을 이용한 미래 비용예측 결과
Table 6. Prediction Results using LSTM
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본연구는클라우드비용중누적증가하는특성을
갖는스토리지데이터로인한비용을절감하고비선형
적인특징변화를반영한비용예측으로, 클라우드환경

에서 핀옵스를 효과적으로 지원하는데 기여할 것으로
기대된다. 특히, 본연구는스토리지의단순한비용절
감에 그치는 것이 아니라, 실시간 데이터 누적 특성,

저장계층별비용구조, 이벤트성증분패턴을통합하여
복합적인최적화및예측체계를제시하였다. 이를통해
기존연구들과차별화된실질적인클라우드핀옵스지

원모델을구축할수있음을입증하였다. 하지만, 실험
은단일시나리오를기반으로진행되었기때문에다양
한 산업군이나서비스 유형을 대상으로하는 일반화에

는한계가있다. 비용평가또한, Google 클라우드의요
금체계를기반으로하여평가하여, 다른 CSP의서비스
체계에따른요금차이및정책이상이할수있어적용

시주의가필요하며최적화효과에서도차이가발생할
수있다. 향후연구에서는데이터의증가특성을중심으
로미디어서비스, 전자상거래, 엣지서비스등다양한

데이터 증분특성을 대상으로 복합 배치모델의 적용성
과한계성을검증할계획이다. 또한, 여러 CSP의서비
스 체계의 요금차이와 다른 예측모델(ARIMA,

Prophet, Transformer 등)의성능차이에대한후속분
석도수행할 예정이다. 아울러, 데이터 재배치에 따른
소스파일의경로자동변경, 중장기저장파일의운영모

델 등에 대한 추가 연구도 필요하다.
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