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ABSTRACT

As cloud adoption proliferates and operational costs increase, interest in Finance and DevOps(FinOps) for
cost management is growing. Existing studies have focused on reducing storage costs through techniques such
as remote relocation and compression, but simple optimization is limited as data and inter-dependencies
increase. This study proposes a hierarchical storage deployment model that uses the services of a single cloud
service provider(CSP) optimized for a 3-tier system consistring of WEB, WAS, and DB components. This
model shows 56% annual cost reduction compared to a single model approach. Recurrent Neural Network
(RNN)-based Long Short-Term Memory (LSTM) machine learning predicts budget overruns with an error rate

of 18%. This study supports cost reduction and effective FinOps in cloud operations.
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Fig. 17. Status of web service related data files
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Table 4. Cost for Storage Service by Google

Cost per GB($)
Type | Code
Save | Read | Early Delete | Transfer
Standard | S 0.02 0 0 0.08
Nearline | N 0.01 | 0.01 0.0005 0.08
Coldline| C | 0.004 | 0.02 0.0003 0.08
Archive | A ]0.0012| 0.05 0.0001 0.08

H|go] 28¥= AERAE AT

G = Coig) + (freaa = Vi o G+ (V. + O
. o
k= argmin Gy 4

¢ frea * Read Frequency
* C,, :Costfor Read, Trans fer

919 e de% 29h 2o vl 4 e,

Algorithm 2 Optimal Storage Tier Selection
Require: ¢ (Storage Duration), Vi (Storage Volume), feqq (Read Frequency)
Require: S (Set of Storage Tiers), Cost Parameters: C¥, Ck, CF Tk, for each
kesS
Ensure: Optimal storage tier k*
k* < None
2: Cyin & 00
for each k € S do
i T ¢ max(0, T, — (tmod T5,))
Compute total cost:

Cligal = (T mig SCE VL) + (frend - CE - Vo) 4 (CL- Vi)

6. if Ck,, < Cmin then
Crin ¢ Gy
8 k* ek
end if
10: end for
return k*
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s
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Service Path = FILEP'(;;h

e Service Path : Service access path ©)
. F]LEW,7 : Updated file location after relocation
4.2 A-I |
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System| Type | Monthiy(GB) | 1Year(GB) | Sizing(GB) Remarks
Web | Accesslog 005 06 1 | Retainedfor 1 Year
WAS WAS Log 1335 1602 161 | Retainedfor 1 Year
Contents 5403 6483 649 | Permanent
. DBfle 11222 13466 1347 | Permanent
Archivelog 193359 58008 5801 | Retained for 3 Months

ag 18. dlelg] 283 AXlx
Fig. 18. Data Consumption Capacity Calculation Table

E 5. dlole] AArE 114739 W HlaE
Table 5. Cost Comparison Table

Type Loaded +1M +6M +12M

Normal $449.44 | $491.70 | $513.27 | $538.33

Proposed $192.03 | $202.60 | $219.63 | $237.35
(Dift.) (-57.4%) | (-58.8%) | (-58.0%) | (-55.9%)

$139.68 | $155.46
(-72.8%) | (-71.1%)

" "

Proposed-agent

Storage Cost Prediction with LSTM (Normal) Storage Cost Prediction Progosed Agent)
‘Actual Daily Cost
= Forecasted Dally Cost

Budget (8005) }

= Actual Daily Cost
s Forecasted Daily Cost
Budget (3005)
Predicted Date

208 cmgr
s

Stor:
]
Storage Cost($)
FI ]

i

Date Date

a2 19. ve] itesd oS A3} 2=
Fig. 19. Budget Reach Prediction Result Graph
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Table 6. Prediction Results using LSTM

Type Result
Mean Absolute Error (MAE) 75.41
Root Mean Squared Error (RMSE) 75.43
Mean Absolute Percentage Error (MAPE) 17.32%
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