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ABSTRACT

In this letter, we present a symbol timing error
estimation method for SOQPSK-TG modulation,
which is one of the partial response continuous

phase modulation schemes and defined in the

IRIG-106 international telemetry standard. In the
proposed method, we apply the constellation
histogram of the preamble and convolutional neural
network (CNN). The performance of the proposed
method for symbol timing error estimation is

demonstrated via simulation results.

.M 2

-

3571 W Aol A 2] BB mixb
A qavg S Ssl =39 ARE T4 EAS Ea)
A} o]& $]8] IRIG(Inter-Range Instrumenta-
tion Group)-106¢|2l= 4] E3eo] S=31x]o] 9Jrjit,
o] XFoll= dHoly HAEE $15}¢] SOQPSK-TG
(shaped offset quadrature phase shift keying-telemetry
group)2= 93 WHlo] ThE g b5 al Zi
o] gl o] oA dlo|e|e} AL Z= 33}
(ternary) opll 4155 7IHke.R p], 1&xql At
w37} 9l EAlS I—L:r)r

QA AR A% Azge] $A171ol H12)
B22 G5 95 4 _3 el T7)5l= 038 3}
4 718 sholet. o] Fgeliz 412 eloln) oA =
AS Egkshed Zelols 7k 5713} aia-g
o] Far gt} 719 dligl AL Eloln] 24} 4
wh o 223 m|g] ARl A|7F 7FAe 2 AZesle] g
olv {5 ©AI3h= Early-late B}, F 711 o1t
AES A3l Efo]n)-g A4 3]i= Muller-and-Mulle
A Alse) 9] wA ARE RSl §7 3k
Gardner W] 59| ‘3%’01 ol sl 53], Gardner

oﬁ
-‘o
U
fu
i”
o
ol
E
>,
5
>
o 2

2]
e %@(hang -up) EAE L ol =
OQPSK (offset quadrature phase shift keying) W%
218l el BIZEBIA] o A% Elo]] 34717} Al
HAT e A B She we] e

AT e 8 Aol Helds 2eshke AllE

% o] =R 20259 dFEEl ool Ye]

SAlE] A1zl

A& o} FaE AT,

o
¢ First Author: (ORCID : 0009-0005-7647-2375)Korea Maritime and Ocean University, Department of Radio Communication

Engineering, jigui99 @naver.com, SHAA(AAFA), A3

°  Corresponding  Author : (ORCID:0000-0002-1138-4121)Korea
Communication Engineering, kimkim@kmou.ac.kr, A3, A3

Maritime and Ocean University, Department of Radio

* (ORCID:0009-0002-0844-7571)Korea Maritime and Ocean University, Department of Radio Communication Engineering,

babavivi@g kmou.ac.kr, YA, THAY3]9]

** Korea Aerospace Research Institute, jw.han1002@ gmail.com

AT b

T3 1 202505-115-B-LU, Received May 16, 2025; Revised June 2, 2025; Accepted June 2, 2025

1560



=% /SOQPSK-TG Wz H}A]

o] kAL sirk AL £713} elow] 34 Eolli=
121 99 2~ ER] ourlE ARgsle] CNN
(convolutional neural network) 7%= #-&3h= vy
o] A=t o] ML 32 SNR (signal-to-noise
ratlo) ;].7:]01]/11 _SL EJ,],# y_oﬂ;qu]— /\.AIEEJO] 1;(],
< olw|xle]7] wiEel CNN 7Wie] 54 5= s3e|
3] E8ER] odof Ak vlE] At G
AlE H9 2w, OFDM (orthogonal frequency division

multiplexing) %2 $1&+ 70|t} o]l SOQPSK-TG
K45 e ol S Wle] S o}ash A1 Eo]
n o} 22 whye] = gsir)

of el WA Ax EEem AW

SollA

A X
34
5 4 W A

Ao} CNN
eaheich

SOQPSK-TG Al&2] 414
S 0] 23} A glo]n] &
MpbA] el 8742 o] AWG
Gaussian noise) A'd 2 ZAFE =

Ase A

N (additive white
el qe] mel g

SOQPSK-TG Wizl ¥ Lt} oL oAk Wiz u}
H 7kl shelH, ohel A
A% mdleyn gl

s(t) :exp{j27rh§xquc(t—m1},)} )

ADellA T 7 AlEe] Aololn, hi= Wix A5
Z#] SOQPSK-TGA = 052 AHel=]e] glek z, 2
{-1,0,+1} 71| o] ke Zi= 38 AlEEx] Ze
o] EHeolw, o= A dlolE] Fhell ofsf &

1

wh=r) w3k &,(1)01]/({ Qre(t) = S Howla s,
o] IRIG-106 Eoll o5l Ful A5 HH3h

Zolepl.
ARz W sizle] el el e
2 A= o|n|R 5 AH8RIcE 27 1(a)ell= IRIG-106
Foll Aol @ 7px] Zel2 7k 24-bit Zo]<|
% SOQPSK-TG HM]o & Mzslw, A% of A<
FE 16702 3 792] 7 s dehiigick ol
Lq] 33]- M;L Aﬂ/H 0 0]3]_ .:_7] g}‘: o T = 0°% /H;q
shick o714 A Ak sle PRl Al
el A1 SN A R 2 e Al
Aoz Aol viehil 3Eele vl
23 1@l v P A A el o)

-

}:L:‘ 2

m\i

=

(a)

06 2

04

2 02
2

£ o

&2

0.4 10

06

08

Inphase

(b

08

06 | FEEREHA AR

202

£ o

G2

04

06

o
Inphase

(c)

% 1. () HERF AR go|ws Zh= 99 A A
() As A% eolnel w4 e sl
£ {0 10 A% el ) sle Agel A e
QlellA £ miz

Fig. 1. (a) Constellation histogram in case of accurate

symbol timing, (b) Top view of Fig. 1(a), (c) Top view of
constellation histogram with 10-sample symbol timing error
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Table 1. Parameters for CNN

Functi
Layers unction & Values
Parameters
Input layer Input size 32x32x1

Number of filters 16
Filter size and
ide (3x3), (LD
Convolutional
layer 1 Activation function ReLU
Aver.pooling
Pooling (size:2x2,
stride: 2,2)
Number of filters 32
Filter size and
X
nide (3x3), (1,1
Convolutional
layer 2 Activation function ReLU
Aver.pooling
Pooling (size:2x2,
stride: 2,2)
Number of filters 64
Filter size and
nide (3x3), (LD
Convolutional
layer 3 Activation function ReLU
Aver.pooling
Pooling (size:2x2,
stride: 2,2)
Number of filters 128
Filter size and
X
nide (3x3), (1,D)
Convolutional
layer 4 Activation function ReLU
Aver.pooling
Pooling (size:2x2,
stride: 2,2)
Number of filters 256
Filter size and
Convolutional stride (3x3), (1,1
layer 5
Activation function ReLU
Pooling X
Fully Input size 1024
connected
layer Output size 1
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Fig. 2 False detection probabilities according to the

number of CNN convolutional layers
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