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저궤도 위성 궤도 정보 기반
Cross-Seam에서의 핸드오버 최적화 기법
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요 약

저궤도(low Earth orbit, LEO) 위성 네트워크의 궤도 간 위성 링크 단절 구간(Cross-Seam)에 인접한 두 궤도의

위성 간 핸드오버가 발생할 때 인접 궤도의 위성 간 링크(inter-satellite link, ISL)가 존재하지 않으므로, 핸드오버

통신 중단시간(interruption time)이 증가하고 라우팅 불안정성이 초래될 수 있다. 본 논문에서는 워커-스타

(Walker-Star) 방식으로 배치된 저궤도 위성 네트워크에서 인접 궤도 간 ISL이 불가능한 cross-seam 핸드오버를

최소화함으로써, 통신 중단시간과 라우팅 불안정성을 줄이는 방법을 제안한다. 제안하는 핸드오버 기법은 위성의

궤도 정보를 활용하여 cross-seam의 중심 경도를 계산하고, 이를 기준으로 핸드오버를 수행하여 cross-seam 핸드

오버를 최소화한다. 시뮬레이션 분석 결과, 제안하는 핸드오버 기법은 cross-seam 핸드오버를 효과적으로 줄여 통

신 중단시간을 감소시킨다.

Key Words : LEO Satellite Network, Handover, Walker-Star Constellation

ABSTRACT

In the cross-seam of a LEO (low Earth orbit) satellite network, when a handover occurs between satellites

in adjacent orbits, the absence of inter-plane ISLs (inter-satellite links) can lead to increased handover

interruption time and routing instability. In this paper, we propose a method to reduce handover interruption

time and routing instability in LEO satellite network in cross-seam regions, where ISLs between adjacent orbits

are unavailable. The proposed handover method calculates the central longitude of the cross-seam using satellite

orbital information and conducts handovers based on this longitude, minimizing changes in the orbits of the

previously connected and newly connected satellites during cross-seam handover. Simulation results show that

the proposed handover method reduces handover interruption time in the cross-seam.
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Ⅰ. 서 론

저궤도(low Earth orbit, LEO) 위성네트워크는광범
위한커버리지와짧은지연시간으로지구전역에통신
서비스를제공할수있어 6G 통신구현에필수적인요

소로주목받고있다. 그러나, 저궤도위성은약 7.8 km/s

의빠른속도로공전하므로, 단일위성으로는특정지역
에대한지속적인서비스가불가능하다. 따라서, 하나의

위성이서비스를종료하기전에다음위성이동일지역
을커버해야하며, 핸드오버과정에서의서비스단절을
최소화하기 위해 다수의 저궤도 위성이 필요하다[1].

상용저궤도위성네트워크에서는워커(Walker) 방
식의배치를보편적으로사용한다. 워커방식의배치는
워커-델타(Walker-Delta)와 워커-스타(Walker-Star)

두가지로분류된다[2]. 워커-델타방식에서는저궤도위
성의 궤도가 0에서 2π 사이의 값을 균등한 간격으로
하여 승교점 적경(Right Ascension of Ascending

Node, RAAN) 값을갖는다. 반면, 워커-스타방식에서
는저궤도위성의궤도가 0에서 π 사이의값을균등한
간격으로하여승교점적경값을갖는다. 워커-스타방

식은일반적으로 90°에가까운궤도경사각을가지며,

지구전역에통신 서비스제공이가능하다. 워커-스타
의저궤도위성배치를사용하는상용저궤도위성네트

워크에는 OneWeb, Iridium 등이 있다[3,4].

저궤도위성은위성간링크(inter-satellite link, ISL)

를 통해 네트워크를 형성한다. ISL에는 동일 궤도 간

ISL(intra-plane ISL)과 인접 궤도 간 ISL(inter-plane

ISL)이 있다. 동일 궤도 간 ISL로 연결된 두 위성은
상대속도및위치변화가적어 ISL이안정적으로유지

될수있다. 반면, 인접궤도간 ISL로연결된두위성은
상대속도및위치변화가크고, 다른궤도의위성으로
부터의간섭이증가하여링크단절(link failure)이발생

할 수 있다.

워커-스타방식의저궤도위성배치에서는그림 1과
같이궤도간위성링크단절구간(cross-seam)과극지

역통신제한구간(polar region) 존재한다. Cross-seam

은 인접한 두 궤도의 위성이 반대 방향으로 이동하여
큰상대속도로인해인접궤도간 ISL 형성이불가능하

다. Cross-seam은지구중심을기준으로대칭된두영
역에형성되며, 지구의자전에따라위치가변한다. 한
편, 극지역통신제한구간은위성궤도가교차하는극

점을중심으로형성되며, 이지역에서는궤도간거리가
좁아짐에따라인접한궤도의위성간거리가감소한다.

위성 간 거리가 감소함에 따라 상대 속도 및 간섭이

증가하여 극지역 통신 제한 구간에서는 인접 궤도 간

ISL 형성이 불가능하다[5,6].

Cross-seam에인접한두궤도의위성간핸드오버가
발생할 경우, 큰 핸드오버 통신 중단시간(interruption

time) 및 라우팅 경로에 큰 변화가 발생한다.

Cross-seam에인접한두궤도의위성사이에는직접적
인 ISL이존재하지않으므로, 극점을통해핸드오버를
수행해야하며, 이과정에서핸드오버통신중단시간이

크게발생한다. 또한, 지상국(ground station)과연결된
저궤도 위성의 토폴로지 상 위치 변화가 커짐에 따라
라우팅 경로가 크게 변경된다.

[7]에서는 위치 기반 라우팅 알고리즘인 SAGRW

(Seam-Aware Geographical Random Walk)를제안하
여 cross-seam 경계를인식하는방식으로무작위경로

선택과부하분산을수행하였다. 그러나핸드오버통신
중단시간이나 cross-seam에서 궤도 전환 관리와 같은
연결 연속성에 대한 분석은 포함하지 않았다.

[8]에서는워커모델을기반으로위성세션지속시
간(session duration)을이론적으로분석하고, 핸드오버
주기를 추정할 수 있는 모델을 제시하였다. 그러나

cross-seam으로 인한 핸드오버 실패 가능성이나 라우
팅 경로의 불안정성 문제는 고려하지 않았다.

[9]에서는 워커-델타 궤도 기반 위성망에서의 성능

개선을위해 inter-mesh 링크스케줄링기법을제안하
였으며, BMF(Bellman-Ford) 및 UCS(Uniform Cost

Search) 기반의경량화된라우팅구조를적용하여종단

간 지연(E2E delay), 메모리 사용량, 전력 소모 등의
측면에서 성능 향상을 입증하였다. 하지만 inter-mesh

ISL을구성할수있는워커-델타구조에만적용가능하

며, 워커-스타와같이구조적으로인접궤도간 ISL 형
성이 불가능한 cross-seam에서는 적용이 어렵다.

한편, [10]에서는사용자수요기반의핸드오버최적

화 전략을 통해 전체 핸드오버 횟수를 줄이는 방안을
제안하였다. 그러나 cross-seam에서의연결단절문제

그림 1. 군집 저궤도 위성의 (a) cross-seam과 (b) 극지역
통신 제한 구간
Fig. 1. (a) Cross-seam and (b) polar region in LEO
satellite constellation
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를고려하지않았으며, 이에따른라우팅경로의불안정
성에 대한 분석이 필요하다.

기존 연구들은 주기적으로 반복되는 cross-seam에

서의핸드오버불균형문제를고려하지않았으며, 이는
고위도에서 발생 빈도가 증가하는 cross-seam에서의
핸드오버에 의한 통신 중단시간 문제에 취약하다.

본논문에서는저궤도위성의궤도정보를활용하여
cross-seam에인접한두궤도의위성간핸드오버로인
해발생하는궤도변경을최소화함으로써긴핸드오버

통신중단시간과라우팅경로변화발생을줄이는방안
을제안한다. 제안한기법은 cross-seam 구간에서의핸
드오버발생횟수를최소화하고, cross-seam 핸드오버

통신 중단시간을 감소시키는 것을 확인하였다.

Ⅱ. 시스템 모델

본 논문에서는 워커-스타 방식으로 배치된 저궤도
위성네트워크환경을가정한다. 위성네트워크는궤도

경사각 를갖는       개의궤도로
구성되며각궤도에는      개의
위성이 배치된다. 저궤도 위성은 최소 고도각
(minimum elevation angle, min)을만족하는경우지

상국과통신할수있으며, 시간 에서지상국과의고도
각을 로나타낸다. 지상국에서는최소고도각을

만족하는위성중가장가까운위성으로부터서비스를
제공받는다.

각위성은그림 2와같이동일궤도내인접한 2개의

위성과 동일 궤도 간 ISL을 형성하며, 인접 궤도 내
인접한 2개의위성과인접궤도간 ISL을형성하여총
4개의 ISL을통해위성네트워크를구성한다[11]. 그러

나, cross-seam 및극지역통신제한구간에서는 인접
궤도간 ISL 단절이발생한다. 극지역통신제한구간은
특정 위도를 기준으로 정의되며, 해당 위도보다 높은

위도에서는 인접 궤도 간 ISL에 단절이 발생한다[12].

네트워크의 지연은 전파 지연(propagation delay),

전송 지연(transmission delay), 노드 처리 지연(node

processing delay), 큐잉지연(queuing delay)으로구성
된다. 이중전송지연과노드처리지연은위성의성능
에크게영향을받으며, 큐잉지연은네트워크트래픽

상태에따라변동될수있다. 따라서, 핸드오버로인한
네트워크 성능 변화를 분석하기 위해, 본 논문에서는
전파지연만을고려한다. 따라서, 위성네트워크에서의

지연()은 source에서 destination까지 개의 ISL을
통해 통신이 이루어질 때 다음과 같이 정의한다.

  






 , (1)

는경로를따라연결된 ISL의순서를나타내며, 은

번째 ISL의길이를의미한다. 는빛의속도를나타낸다.

Ⅲ. Cross-seam 핸드오버로 인한 지연
및 경로 변경 문제

저궤도위성을활용한위성네트워크에서는위성의
공전으로인해핸드오버가빈번하게발생한다. 또한, 지

상국과인접한두궤도간거리가작은경우, 두궤도의
위성 간 핸드오버가 빈번하게 발생한다.

Cross-seam 핸드오버는 인접 궤도 간 ISL 단절로

인해핸드오버 과정에서 다수의인접궤도간 ISL 및
동일궤도간 ISL이추가로필요하게된다. 예를들어,

그림 2. 저궤도 위성 네트워크와 위성 간 링크
Fig. 2. LEO satellite network & inter satellite links

그림 3. 저궤도 위성 네트워크의 위성 간 링크 및 토폴로
지, cross-seam 핸드오버 경로
Fig. 3. Inter satellite links & topology with cross-seam
handover route in LEO satellite network
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그림 3에서빨간색으로표시된경로를보면, 원래인접
궤도간 ISL 1개만으로가능했던핸드오버가수십개의
인접궤도간 ISL 및동일궤도간 ISL을경유해야하는

상황이발생한다. 이러한추가적인경로설정은핸드오
버지연증가및네트워크효율저하를초래한다. 특히,

위성의토폴로지가크게변화하면서라우팅경로설정

에영향을미치며, 이에따라라우팅테이블관리의복
잡도가증가한다. 또한, 네트워크내에서불규칙한지연
변동(jitter)이발생하여데이터전송의안정성을저하시

킬뿐만아니라, 전체적인네트워크성능저하를유발한
다. 따라서, cross-seam 핸드오버문제를효과적으로해
결할수있는기법이필요하며, 이를위해지연을최소

화하는 최적의 핸드오버 전략이 요구된다[7,13].

Ⅳ. 제안하는 Cross-seam 핸드오버 기법

본논문에서는 cross-seam 핸드오버로인한지연및
경로변경문제를해결하는기법을제안한다. 제안하는
핸드오버기법은위성의궤도정보를활용하여불필요

한 cross-seam 핸드오버를 최소화함으로써, 네트워크
성능저하를방지하고핸드오버지연을줄이는데초점
을 맞춘다.

제안하는핸드오버절차는알고리즘 1과같다. 먼저
지상국이 cross-seam에 있는지 확인해야 한다.

Cross-seam은 그림 3과 같이 첫 번째 궤도와 마지막

궤도사이에있으므로, 첫번째궤도와마지막궤도에
속한 위성의 서비스 가능 여부를 확인하고, 지상국과
가장가까운위성이두궤도중하나에속하는지확인한

다. 이를 판단하는 수식은 다음과 같이 정의한다.

 









if  ⊆ and

∈
 

(2)

는시간 에서서비스가가능한위성들이포함
된 궤도의 집합을 의미하며 다음과 같이 정의한다.

     ≥ min (3)

는 시간 에서 지상국과 가장 가까운 위성이
속한 궤도를 의미한다. 는 시간 에서 지상국이
cross-seam에위치하는지를나타낸다. 만일첫번째혹

은 마지막 궤도가 에 포함되며, 가 첫 번째
혹은마지막궤도인경우, cross-seam에속한다고판단

하여 를 1로 정의하고, 그 외의 경우에는 를

0으로 정의한다. 따라서, 가 0인경우 cross-seam
을고려하지않고가장가까운위성이지상국에서비스

를 제공한다.

를 기반으로 지상국이 cross-seam에 존재한다
고 판단되면, 제안하는 핸드오버를 수행하기 위해 첫

번째와마지막궤도중지상국과더가까운거리에있는

궤도를 판단한다. 이를 위해 지상국의 위도()에서
cross-seam의중심경도( )를계산하고, 지상

국의 경도()와 비교하여 지상국과 더 가까운 궤도에
존재하는 위성이 서비스를 제공한다.  는 

에서의 첫 번째 궤도 경도(), 에서의 마지막

궤도경도()를통해계산되며, 계산식은다음과

같다.

 

 

mod  
mod  

 

(4)

계산된  와 를비교하여첫번째궤도와

마지막 궤도 중 더 가까운 궤도의 위성과 연결된다.

 와 를비교를통해위성을 선택하는수식

은 다음과 같다.

   

mod 
(5)
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  
  if    


  

(6)

은연결되는위성을의미하며, 
는 

번째궤도에있는위성중제일가까운위성을의미한
다.

제안하는 cross-seam 핸드오버기법은위성의위치
정보와 단절 구간의 경계 조건을 바탕으로 동작한다.

위성및궤도의위도, 경도정보와지상국의위치정보

만으로핸드오버를수행하며, TLE(Two-Line Element)

기반궤도 정보와 ISL 연결 규칙을 통해 유효한 링크
상태 정보를 계산한다[14]. 또한, 제안하는 알고리즘은

지구자전동안 cross-seam 핸드오버횟수를최대 2회
로제한함으로써라우팅테이블관리의복잡도를줄이
고, 시스템의전반적인제어복잡도도감소시킨다. 따라

서, 제안하는기법은복잡한연산없이도궤도및링크
정보를기반으로단순한조건비교및테이블갱신만으
로가능하며, 실제저궤도위성네트워크운용시스템에

효과적으로 적용될 수 있다.

Ⅴ. 성능 분석가

5.1 시뮬레이션 환경
본논문에서는 MATLAB Satellite Communications

Toolbox를활용하여 OneWeb의위성배치를기반으로

시뮬레이션을 수행하였으며, cross-seam 구간에서의
공전주기를고려하여 24시간동안발생하는핸드오버
를분석한다. 위성네트워크의세부파라미터는표 1과

같으며, 인접 궤도에 있는 위성 간 위상 차이는 동일
궤도내인접위성간위상차이의절반이되도록인접
궤도위성간위상상수(phasing factor)를 6으로가정

한다[4]. 또한, 극지역통신제한구간은 70° 이상의영역

으로정의하며, 지상국및사용자가위성과연결할수
있는최소고도각은 25°로설정한다. 핸드오버기법에
따른지구의자전주기동안위성네트워크변화를분석

한다.

핸드오버기법따른성능을분석하기위해, 지상국의
위치를적도에서극지역통신제한구간까지 10° 간격

으로 배치하여 cross-seam 핸드오버 발생 횟수,

cross-seam 핸드오버통신중단시간등을분석한다. 또
한, OneWeb의위성배치에서궤도경사각을 95°, 90°,

85°로변경하여 시나리오를 구성한다. 이를 바탕으로,

위성의 궤도 경사각에 따른 중위도(위도 45°)에서
cross-seam 핸드오버중단지연시간을분석하고, 제안

하는핸드오버알고리즘이다양한궤도경사각조건에
도 적용 가능한지 검증한다.

5.2 시뮬레이션 결과 및 분석
제안한 cross-seam 핸드오버기법의성능을검증하

기위해, 제안하는 cross-seam 핸드오버기법과지상국
과가까운위성으로핸드오버를수행하는거리기반기
법을비교한다. 두기법에대해위도에따른 cross-seam

핸드오버 발생 횟수 및 통신 중단시간 등을 분석하여
성능 차이를 확인한다.

그림 4는핸드오버방식에 따른 위도별 cross-seam

핸드오버발생횟수를나타낸다. 기존핸드오버방식은
cross-seam 핸드오버횟수가최대 20회까지증가하며,

평균 8.9회 cross-seam 핸드오버가발생한다. 반면, 제

안하는 핸드오버 방식은 cross-seam 핸드오버 횟수를
2회로 제한함으로써, 기존 핸드오버 방식 대비 평균
77%, 최대 90%까지 cross-seam 핸드오버가감소하는

그림 4. 위도에 따른 cross-seam 핸드오버 횟수 발생 횟수
Fig. 4. Number of cross-seam handover by latitude

Parameters Value

Altitude 1,200 km

Number of total satellites 588

Number of orbits ( ) 12

Number of satellites
in each orbit ()

49

Inclination () 87.9°

Phasing factor 6

Polar region 70°

표 1. 시뮬레이션 파라미터
Table 1. Simulation parameters
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것으로나타난다. 이는위도가증가할수록궤도간거리
가 감소하여 기존 핸드오버 방식에서는 빈번한
cross-seam 핸드오버가 발생하기 때문이다.

그림 5는핸드오버방식에 따른 위도별 cross-seam

핸드오버통신중단시간을나타낸다. 기존핸드오버방
식에서는 위도가 증가할수록 cross-seam 핸드오버 통

신중단시간이 423 ms에서최대 1,268 ms까지증가한
다. 이는위도가높아질수록 cross-seam 핸드오버발생
횟수가증가하여전체통신중단시간이증가하기때문

이다. 제안한핸드오버기법은 cross-seam 핸드오버횟
수를감소시켜, 통신중단시간을 220 ms 이하로유지한
다. 제안한 핸드오버 기법은 위도가 증가할수록

cross-seam 핸드오버에필요한 ISL 수가감소함에따
라, 핸드오버 통신 중단시간이 123 ms까지 감소한다.

높은 위도일수록 제안한 핸드오버 기법이 cross-seam

핸드오버통신중단시간을크게줄이며, 최대 90%까지
통신 중단시간이 감소한다.

그림 6은기존핸드오버방식과제안한핸드오버방

식에따른위도별평균핸드오버통신중단시간변화를
나타낸다. 기존핸드오버방식은위도 40° 이하에서는
평균통신중단시간이약 4.4 ms로일정하게유지되고,

위도 40° 이상부터는점진적으로증가하여최대 6.8 ms

까지증가한다. 반면, 제안하는핸드오버기법은핸드오
버 평균 통신 중단시간이 약 4 ms로 유지된다. 이는

제안하는핸드오버기법이평균핸드오버통신중단시
간을최소 9% 이상감소시키며, 최대 41%까지감소시
킨다.

그림 7은 핸드오버 방식에 따른 위도 별 핸드오버
과정에서필요한중계위성수를나타낸다. 기존핸드오
버방식은 30°를제외하고 위도가증가할수록필요한

중계위성의수역시증가한다. 이는중계위성이필요

한상황이 cross-seam 핸드오버에서발생하며, 위도가
증가할수록 해당 구간에서의 핸드오버 횟수가 증가함

에따라중계위성의요구수가늘어나기때문이다. 그
러나 위도 30°에서는 위도 20°에서와 같은 수의
cross-seam 핸드오버가발생하고, 필요한 ISL 수는감

소한다. 제안하는 핸드오버 기법은 위도에 상관없이
cross-seam 핸드오버가 2번만발생하며, 위도가증가할
수록 ISL 수가 64에서 36까지필요한중계위성수가

감소한다. 따라서제안하는핸드오버기법을사용하는
경우중계위성을최대 339개를감소시키며, 평균 210.9

개에서 51.7개로 감소시킨다.

그림 8은 중위도 지역에서 궤도 경사각에 따른
그림 5. 위도에 따른 cross-seam 핸드오버 통신 중단시간
Fig. 5. Cross-seam handover interruption time by latitude

그림 6. 위도에 따른 핸드오버의 평균 통신 중단시간
Fig. 6. Handover average interruption time by latitude

그림 7. 위도에 따른 cross-seam 핸드오버에 필요한 추가
위성 수
Fig. 7. Number of additional satellites required for
cross-seam handover by latitude
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cross-seam 핸드오버통신중단시간을나타낸다. 분석
결과 95°, 90°, 85°의 궤도 경사각에서 각각 680 ms,

374 ms, 767 ms가감소한다. 따라서, 제안한핸드오버

기법은다양한궤도경사각조건에서도일관된성능을
유지하며, 핸드오버통신중단시간을효과적으로감소
시킨다.

기존핸드오버방식은 cross-seam 핸드오버발생횟
수가많고, 통신중단시간이긴문제점이발생한다. 이
러한통신중단은실시간서비스제공을위한연속적인

데이터전송을불가능하게하며, 패킷손실률증가, 지
연 시간의 불안정성 등의 문제를 발생시킨다. 따라서,

제안한핸드오버기법을통해핸드오버통신중단시간

을줄이는것은사용자의안정적인연결이필요한서비
스나 실시간 응용 서비스 제공이 가능하다.

Ⅵ. 결 론

본논문에서는궤도와위성의위도및경도정보를
활용하여 cross-seam 핸드오버를 수행하는 방법을 제

안하였다. 성능분석결과, 제안한방법이기존방식보
다모든위도에서평균핸드오버통신중단시간을감소
시키는결과를확인할수있었다. 기존방식은위도가

증가함에따라평균핸드오버통신중단시간이증가하
지만, 제안하는 방법은 거의 일정하게 유지되는 것을
확인하였다. 이는위성의이동에따른핸드오버과정에

서라우팅경로변화가적게발생함을시사한다. 또한,

궤도경사각에따른핸드오버통신중단시간을비교하
여다양한궤도경사각조건에서통신성능개선을확인

하였다.

본연구는시뮬레이션기반으로수행되었으며, 실제
위성에서의신호세기, 채널품질변동, 궤도오차등은

고려되지않았다. 향후연구에서는이러한변수들을반
영한핸드오버전략의고도화및 on-board 시스템에서
의 구현 가능성에 대한 검토가 필요할 것이다.
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