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요 약

현대 전자전에서는 다양한 통신 신호에 대해 높은 인식 정확도를 제공하는 딥러닝 기반 자동 변조 인식에 관한

연구가 활발히 진행되고 있다. 이는 통신 기술의 발전으로 전장의 신호 환경이 점차 복잡해짐에 따라, 수신된 통

신 신호의 분석에 많은 어려움이 수반되고 있기 때문이다. 본 논문에서는 1D Swin Transformer 구조를 기반으로

설계된 multi-modal 자동 변조 인식 신경망을 제안한다. 1D Swin Transformer는 계층적 특징 맵과 이동 윈도우

기반 접근을 통해 입력 데이터로부터 다양한 해상도의 특징을 효과적으로 추출한다. 제안하는 모델은 IQ 시계열

신호와 주파수 스펙트럼 정보를 동시에 활용하는 multi-modal 구조로 이루어져 있으며, 각 모달리티의 정보를 추

출하여 1D Swin Transformer에 입력함으로써 통합된 특징을 이용하여 변조 기법을 인식한다. 본 논문에서 제안한

모델은 61.15%의 평균 정확도를 기록하여 기존 신경망보다 우수한 성능을 보였다. 또한 QAM 계열 신호에 대해

서도 평균 57.00%의 높은 인식 정확도를 달성함으로써, 구조적으로 유사한 변조 신호 간의 구분에서도 강점을 보

였다.

키워드 : 자동 변조 인식, 딥러닝, 1D Swin Transformer

Key Words : automatic modulation recognition, deep learning, 1D Swin Transformer

ABSTRACT

In modern electronic warfare, deep learning-based automatic modulation recognition (AMR) systems that

provide high recognition accuracy across a wide range of communication signals have been actively studied.

This trend stems from the growing complexity of signal environments in modern battlefields, resulting from the

rapid evolution of communication technologies, which has significantly increased the difficulty of analyzing

received signals. In this paper, we propose a multi-modal AMR neural network designed based on the 1D

Swin Transformer architecture. The 1D Swin Transformer effectively extracts multi-resolution features from

input sequences through a hierarchical feature representation and a shifted window-based mechanism. The

proposed model employs a multi-modal structure that simultaneously utilizes IQ time-series signals in the time
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Ⅰ. 서 론

현대전자전에서는새로운통신기법의등장으로인
해신호환경이복잡해지며전장에서의정보수집에많
은제약이따르고있다[1]. 이는변화하는전자전환경에

대응하기위한다양한기술개발의필요성을초래하였
다. 특히자동변조인식은적의전자장비로부터방사
된비협조적신호의변조기법을추정하여송신원을식

별및분류함으로써, 아군의전략수립에도움을줄수
있다[2-3]. 이에따라사전정보없이수신된미상통신
신호의 변조 방식을 식별하는 자동 변조 인식 기술의

중요성이 크게 대두되고 있다.

기존의변조인식기법은우도기반기법과특징기
반 기법으로 구분된다[4]. 우도기반기법은다중가설

검정문제를해결함으로써신호의변조기법을추정하
는 방식으로, 우도 함수를 설계하고 적절한 임계값을
설정하는과정을포함한다. 이방식은통계적으로최적

의분류성능을제공할수있으나, 실제사용환경에서
의채널변화나간섭등으로인해성능열화가발생할
수있다[2]. 특징기반기법은수신된신호로부터대표적

인특징을추출하고, 분류기를통해신호의변조방식을
예측하는방법이다. 높은 SNR(signal-to-noise ratio) 환
경에서는특징추출이용이하다는장점을가지고있으

나, 시스템구성의복잡성과경험적검증에대한의존으
로 인해 전문가의 개입이 필요하다는 한계가 있다[5].

최근에는딥러닝기반의자동변조인식연구가활발

하게진행되고있으며, 기존기법과달리전문가의개입
을최소화하면서도높은인식정확도를보인다는장점
이있다. 이러한시스템에서입력신호의표현방식과

특징을효과적으로학습할수있는신경망구조는성능
에핵심적인영향을미치기때문에분류신경망의설계
는매우중요하다. 딥러닝기술의발전으로 CNN(con-

volutional neural network)[6]이나 LSTM(long

short-term memory)[7]을넘어다양한구조의신경망이
제안되고있으며, 그중에서도 Transformer 계열의백본

구조가여러분야에서우수한성능을보이면서주목받
고있다. 그러나 Transformer는구조적으로국소적특

징을효과적으로포착하기어렵다는한계를지닌다. 이
를보완하기위해 Transformer의 multi-head self atten-

tion을 shifted window attention으로 변형한 Swin

Transformer[8]가제안되어비전분야의백본신경망으
로널리사용되고있다. 또한이를시계열데이터에적
합하게변형한 1D Swin Transformer가자율주행및

신호품질평가를위해연구되었으며[9-10], 시계열데이
터에도 Swin Transformer의 계층적 특징 맵, shift-

ed-window partitioning과같은구조적장점과고정된

윈도우크기로인한연산량절감이적용됨을증명하였
다. 그러나 Swin Transformer를통신신호처리분야의
변조 인식 문제에 적용한 사례는 아직 제한적이다.

통신신호는진폭및위상, 주파수스펙트럼등다양
한표현으로변환할수있기때문에다양한입력데이터
를활용한자동변조인식신경망이연구되고있다. 입

력데이터로는시계열형태의 IQ(in-phase, quadrature)

신호가주로사용되며, 주파수스펙트럼이나큐물런트
와같이신호의특징을강조할수있는 1차원데이터를

활용하기도 한다[11]. 또한 성상도(constellation dia-

gram)처럼신호를시각적으로표현한 2차원이미지형
태의데이터를입력으로사용하는경우도있다[12]. 이처

럼기존의변조인식연구는대부분하나의입력모달리
티에만의존하는단일채널입력기반으로이루어져왔
다. 그러나최근에는여러분야에서 multi-modal 학습

을이용하여다른데이터유형의정보를융합하고있다
[13]. 이와같이다양한형태의입력데이터를통합적으
로활용하는 multi-modal 접근법은복잡한환경에서도

견고한변조인식성능을달성할수있는방법으로주목
받고 있다.

이에 본 논문에서는 1D Swin Transformer 구조를

이용하여특징을추출하는 multi-modal 변조인식신경
망을제안하고, 자동변조인식문제에대한 1D Swin

Transformer의성능을분석한다. 제안한모델은 IQ 신

호와 주파수 스펙트럼의 크기를 입력으로 하며, 시간
영역과주파수영역의정보를모두활용함으로써다양
한 변조 방식의 특성을 효과적으로 포착한다. 입력된

신호는우선 VGGNet[14] 구조기반모듈을통해처리되

domain and spectrum information in the frequency domain. By extracting features from each modality and

feeding them into the 1D Swin Transformer, the model performs modulation recognition by leveraging

information from both the time and frequency domains. The proposed model achieved an average accuracy of

61.15% and outperformed conventional models. Furthermore, within the QAM family, the model achieved a

high average recognition accuracy of 57.00% and demonstrated its ability to distinguish between structurally

similar modulation schemes.
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며, 이 과정에서 국소적인 시공간적 특징을 추출하여
데이터의표현력을향상시킨다. 이후시간영역과주파
수도메인의특징을결합한후, Swin Transformer 구조

로 입력함으로써, 제안된 모델은 통신 신호의 국소적,

전역적패턴을동시에학습하게된다. 이때신호의국소
적인 패턴에는 PSK(phase shift keying) 계열의 위상

천이, FSK(frequency shift keying) 계열의 주파수 도
약, QAM(quadrature amplitude modulation) 신호의심
볼 변화 등이 있다. 또한 신호 전체에 적용되는 잡음,

채널 효과와 같은 전역적 특징이 존재한다.

본 논문의 구성은 다음과 같다. 2장에서는 Swin

Transformer 구조와 이를 기반으로 설계한 변조인식

신경망에관해기술한다. 3장에서는통신신호데이터
셋을이용하여제안하는신경망을학습시킨결과에대
해여러관점에서분석하며, 4장에서본논문의결론을

맺는다.

Ⅱ. 본 론

2.1 1D Swin Transformer
Swin Transformer는 CNN과 Transformer의장점을

통합함으로써 이미지 분류, 의미론적 분할 등과 같은

비전 영역에서 널리 사용되고 있는 백본 구조이다[8].

이구조는데이터에윈도우를적용하고, 그내부의패치
간 attention 연산을수행하며, 계층적특징맵을이용하

여단계에따라연산수행범위를조절한다. 이를통해
연산 효율성을 유지하면서도 다양한 해상도의 특징을
추출할 수 있다. Swin Transformer의 이러한 구조적

장점으로인해시계열데이터에대한확장가능성이제
시되면서, 시계열 데이터에 적합하도록 변형한 1D

Swin Transformer가제안되었다[9]. 여기에서는일반적

인 Swin Transformer와동일하게윈도우범위내에서
self-attention 연산을단계적으로수행하여해상도를점
진적으로 축소한다. 또한 shifted-window partitioning

을사용하여윈도우간연결성을유도할수있도록하
였다.

그림 1은 4개의계층을가지는 Swin Transformer에

대해윈도우와패치간의관계를나타낸예시그림이다.

윈도우크기는 2로고정되며, 블록이깊어질수록패치
크기가두배로확장되어해상도가점차축소된다. 또한

각 단계에서는 윈도우를 한 패치만큼 이동시켜, 인접
패치간의정보를효과적으로통합한다. 또한블록에서
패치간크기불일치가발생하면패딩을적용하여패치

의크기를적절하게조절한다. 이와같은계층적구조를
통해 국소적인 영역에서부터 전역적인 영역까지 점진

적으로 추출 영역을 확장한다.

2.2 자동 변조 인식 신경망 구조
본논문에서는 1D Swin Transformer를기반으로변

조인식을위한신경망구조를설계하였으며, 제안하는

모델의 전체 구조는 그림 2에 제시되어 있다. 제안한
모델은시간영역과주파수영역정보를동시에활용하
는 multi-modal 접근방식으로, 두입력은각각개별적

으로 특징을 추출한 뒤 이후 동일한 1D Swin

Transformer 기반 백본을 통해 통합적으로 처리된다.

시간영역입력은 I, Q 성분으로구성된  × 크

그림 1. 1D Swin Transformer 구조의 윈도우 및 패치 분할
Fig. 1. Windows and patch partitioning of Swin
Transformer architecture.

그림 2. 제안하는 신경망의 구조
Fig. 2. Structure of the proposed neural network.
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기의시계열데이터이며, 주파수영역입력은  ×
길이의 FFT(fast Fourier transform) 시퀀스의 크기를
사용하였다. 각각의입력은 VGGNet 구조를활용한특

징 추출 모듈을 통해 저차원 특징을 학습하며,  × 

크기의컨볼루션필터를 13번사용한다. 이를통해입

력내의지역적특성을학습하며, × 크기의특징
벡터가출력된다. 이렇게추출된두입력의특징벡터는
합산되어 1D Swin Transformer 기반백본에입력된다.

이후 패치 분할 과정을 통해 시계열 데이터를 일정한

길이의패치로나누고, 각패치를저차원임베딩벡터로
변환한다. 이후변환된임베딩벡터는총 4개의단계로
구성된백본네트워크를통과하며, 각단계는패치병합

모듈과 1D Swin Transformer 블록으로이루어져있다.

이러한구조를기반으로통신변조신호의지역적, 전역
적특징을동시에학습하고자하였다. 이후출력특징은

평탄화(flatten)된후, 완전연결층(fully connected lay-

er)을 통해 변조 방식에 대한 최종 분류를 수행한다.

본모델은 CNN 기반의로컬패턴학습과 Transformer

기반의 전역 문맥 학습의 장점을 결합함으로써, 다양
한 변조 방식에 대해 강인하고 정밀한 분류를 가능하
게 한다.

Ⅲ. 모의실험 및 성능평가

3.1 데이터셋
본연구에서는신경망학습을위해통신변조신호

데이터셋인 RadioML2016.10A[15]를사용하였다. 해당
데이터셋은 3종의 아날로그 변조 방식(AM-DSB,

AM-SSB, WBFM)과 8종의 디지털 변조 방식(8PSK,

BPSK, CPFSK, GFSK, PAM4, 16-QAM, 64-QAM,

QPSK)을포함하고있으며, 총 220,000개의신호샘플

로구성되어있다. 신호는 SNR이–20 dB부터 18 dB

까지 2 dB 간격으로분포되어다양한통신환경을모사
하고있다. 각샘플은길이 128의시계열 IQ 데이터이

며, 실제통신환경에서발생할수있는주파수오프셋
및다중경로페이딩과같은열화요소가포함되어있어
신경망의일반화성능을평가하기에적합하다. 그림 3

은각변조방식에대한시계열신호의예시를시각적으
로나타낸것이다. 데이터는학습, 검증, 테스트용도로
각각 176,000개, 22,000개, 22,000개로분할하여사용

하였으며, 학습안정성을확보하기위해학습데이터의
통계값을기반으로평균은 0, 표준편차를 1로정규화
를 수행하였다.

3.2 신경망 및 학습 파라미터
제안하는모델은데이터의특성및하드웨어성능에

따라신경망의파라미터를조절할수있으며, 본논문에
서 수행한 모의실험에서는 표 1에제시된파라미터를

사용하였다. 신경망은표 2의하이퍼파라미터를사용
하여 학습하였으며, 검증 손실이 10 에포크 연속으로
감소하지않으면학습을조기종료하였다. 테스트시에

는학습과정에서가장낮은검증손실을기록한시점의
모델 파라미터를 사용하였다.

그림 3. RadioML2016.10A 데이터 예시 (SNR = 18 dB)
Fig. 3. Examples of RadioML2016.10A (SNR = 18 dB).

Number of stages 4

Number of Swin Transformer
blocks per stage

2, 2, 6, 2

Initial patch size 16

Window size 31

표 1. 모의실험에 사용된 신경망의 파라미터
Table 1. Parameters of the Swin Transformer used in the
simulation.
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Loss function Cross-entropy

Optimizer Adam[16]

Batch size 128

Initial learning rate 

Learning rate scheduling
Decreased by 20% every

5 epochs

표 2. 신경망 학습에 사용된 하이퍼 파라미터
Table 2. Hyperparameter used in neural network training.

3.3 성능 분석
본논문에서는신경망에대한성능평가척도로 SNR

에 따른 변조 인식 정확도와 혼동행렬(confusion ma-

trix)을사용하였다. 그림 4는 SNR 범위에따른혼동행

렬을 나타낸 것으로, 그림 4 (a)는 전체 SNR 범위에

대한결과이고, 그림 4 (b)는높은 SNR 환경에서의결
과를보여준다. 그림 4 (a)에서는잡음의영향으로인해
타변조기법을 AM-SSB로오분류하거나, 16-QAM과

64-QAM 간의혼동이발생하는것을확인할수있다.

반면 그림 4 (b)에서는 대부분의 변조 방식에서 매우
우수한분류성능을보이며, AM-SSB에대한오분류가

줄어들고 QAM 계열신호의인식성능이향상된것을
알 수 있다.

낮은 SNR 환경에서는 잡음 신호의 I, Q 성분이

AM-SSB 신호와유사한패턴을보이기때문에, 다양한
신호가 AM-SSB로잘못분류되는현상이발생하는것
으로분석된다. 또한 16-QAM과 64-QAM은진폭과위

상을함께변조하는방식으로, 변조기법의특성상유사

한성상도를가진다. 특히변조차수가증가할수록심볼
간의간격이좁아지기때문에잡음이나채널왜곡에매
우민감해진다. 이러한이유로자동변조인식분야에서

QAM 계열의인식성능을향상시키는것이중요한과
제로 여겨진다.

이에 따라 본 연구에서는 QAM 계열 변조 방식

(QPSK, 16-QAM, 64-QAM)에대한다양한모델들의
분류성능을비교하여제안모델의성능을보다구체적
으로분석하였다. 표 3에서 SNR −20 dB~18 dB 구간

에서 세 가지 디지털 변조 신호에 대한 모델별 분류
정확도 및 평균 정확도를 제시하며, 비교 대상으로는
CNN, VGGNet, LSTM, CGDNet, Transformer를 사

용하였다. 본논문에서제안하는모델(Proposed)은평
균 57.00%를기록하여다른모델대비우수한인식성
능을입증하였다. 특히각변조기법에대해높은분류

성능을가지면서도, QPSK, 16-QAM, 64-QAM 모두에
서 55%, 52%, 64%로고른성능을보였다. 반면국소적
특징 추출에 강점을 가지는 CNN과 VGGNet의 경우

각각 16-QAM과 64-QAM으로인식결과가치우치는
것을볼수있다. 이는전역적특징추출의미비함으로
인해신호전체에걸쳐있는고차 QAM 신호의심볼의

분포를 효과적으로 학습하지 못했기 때문으로 해석할
수있다. 이러한결과를 통해 Swin Transformer 기반
모델은 shifted window를기반으로데이터의국소적패

턴을정밀하게인식하고, 계층적인구조를통해전역적
인특징과의관계를함께학습함으로써, 고차변조방식
간의미세한차이를효과적으로구분할수있음을확인

하였다.

(a) (b)

그림 4. 혼동행렬 (a) 전체 SNR(-20~18 dB) (b) 높은 SNR(0~18 dB)
Fig. 4. Confusion matrix : overall SNR region (-20~18 dB) (b) high SNR region (0~18 dB).



논문 / Swin Transformer 구조를 기반으로 한 Multi-Modal 자동 변조 인식 신경망

1529

그림 5는모든변조기법에대해다양한 SNR에따른
분류정확도를나타낸것으로각각의변조방식의잡음
에대한강건도를보여주고있다. 대부분의변조기법은

SNR이증가함에따라정확도가증가하여 99.00% 이상
의 정확도로 수렴하지만, AM-SSB, 16-QAM,

64-QAM는 약 80~90%, WBFM은 40%로 수렴한다.

WBFM이다른변조기법에비해낮은정확도로수렴
하는것은대역폭이넓고, 복잡한신호패턴을가지고
있기 때문이다[19].

그림 6은 SNR 변화에 따른 제안한 신경망과 기존
신경망의변조인식의정확도를보여준다. 여기에서는
신경망의성능을비교하기위해서 SNR 별로모든변조

기법에대한정확도의평균값을인식정확도로사용하
였으며, 다양한잡음환경에서의성능차이를종합적으
로확인할수있다. SNR이증가함에따라모든모델에

서분류정확도가향상되며, 제안한모델은 -5 dB 이상
부터기존기법보다확연히높은정확도를가진다. 또한

SNR 5 dB 이상의높은 SNR 구간에서도제안모델은
90% 내외의정확도를안정적으로유지하는반면, 비교

모델들은 상대적으로 낮은 정확도로 수렴하는 경향을
보인다. 이는본모델이다양한환경과변조방식에강
건함을 의미한다.

Ⅳ. 결 론

본논문에서는통신신호변조인식을위해 1D Swin

Transformer 기반의 multi-modal 신경망을 제안하였
다. 제안된모델은시계열형태의 IQ 신호와주파수영
역의주파수스펙트럼에서추출한특징을결합하여 1D

Swin Transformer의 입력으로 활용한다.

RadioML2016.10A 데이터셋을사용하여모델을학습
하였으며, SNR에따른정확도와혼동행렬을사용하여

Modulation
scheme

Model
QPSK 16-QAM 64-QAM

Average recognition
accuracy

CNN[6] 30 % 46 % 25 % 33.67 %

VGG[14] 55 % 21 % 61 % 45.67 %

LSTM[6] 53 % 51 % 50 % 51.33 %

CGDNet[17] 51 % 48 % 40 % 46.33 %

Transformer[18] 56 % 53 % 49 % 52.67 %

Proposed 55 % 52 % 64 % 57.00 %

표 3. QAM 계열에 대한 모델별 정확도 (-20 dB ~ 18 dB)
Table. 3. Model-wise accuracy (-20 dB ~ 18 dB) for the QAM family of modulation schemes.

그림 5. 변조 기법별 SNR에 따른 분류 정확도
Fig. 5. Classification accuracy by modulation scheme
across different SNR levels.

그림 6. 신경망 모델별 변조 방식 인식 정확도 비교
Fig. 6. Comparison of modulation recognition accuracy
across neural network models.
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성능 분석을 수행하였다. 제안한 모델은 평균 정확도
61.15%, 최고정확도 91.09%로기존모델과비교하여
우수한 성능을 기록하였다. 이를 통해 Swin

Transformer 구조가비전영역에국한되지않고, 시계
열 데이터 기반의 자동 변조 인식 영역에서도 뛰어난
성능을 보임을 확인하였다. 또한 혼동행렬 분석 결과,

구조적으로 유사한 QAM 계열에 대해서도 57.00%의
인식정확도를달성하여기존신경망에비해혼동확률
이줄어드는양상을보였다. 이러한분석결과는제안된

모델이잡음이나채널효과가존재하는환경에서도변
조기법의특징을효과적으로학습하고정확하게구분
할수있음을명확히보여준다. 향후연구에서는각입

력모달리티로부터추출한특징을더욱정교하게융합
할수있는도메인간통합전략및 attention 기반결합
기법에 대해 추가적인 분석을 수행할 예정이다.
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