=i 25-50-10-04 The Journal of Korean Institute of Communications and Information Sciences ’25-10 Vol.50 No.10
https://doi.org/10.7840/kics.2025.50.10.1524

Swin Transformer 7%= 7|utoe = 3F Multi-Modal
e Wz A AR

A, A1 s, A8

LB

Multi-Modal Automatic Modulation Recognition Network
Based on the Swin Transformer Architecture

Da-Min Shin®, Min-Wook Jeon®, Hyoung-Nam Kim"

A} A Tl B4l Alsel] el e <14 g Algshs deld Jk A% Wa Ale] W
A7) s] AT ole) o B4l ]%e] wdow A4 A5 o] A kel wel, 4418
Al Alse] el we oledge] ke AL gl7] wiite|ek £ =EelA= 1D Swin Transformer 735 7]1{}0
ZAA1E multi-modal AF5 ¥z 91A] Al7dwRS- Alekglcl 1D Swin Transformers Al%% &4 w3} o]% 2
7HF AES Ed o1 doleEEE vkl diiwe] EAL aaprlew FE3I) Algkshs 2l 1Q 1]7:]]
Alzoh Folge 2AER AHE FAlo -83h= multi-modal TEE o] FoH glom, 7t mtelEe] HuE
%3}9] 1D Swin Transformere] 312j3Ho 2 Eq% 54 ol4slo] Wz /[P AFTh B =Tola] Ak
2L 61.15%°] HF AHIEE 7)E3le] 7|E AARRD} 58 A5 Bk 3k QAM Al Al5o ﬂ%sﬂ
A% FIF 57.00%2] =2 Q] AHIEE dAsto g2 FxrAo fAlE W A% 7ke| TR E FHE B
ik

okn
lﬂl oft ¢St

01' -l)l: s -10

7|1R1E ¢ As HZE 214 El2{d, 1D Swin Transformer
Key Words : automatic modulation recognition, deep learning, 1D Swin Transformer

ABSTRACT

In modern electronic warfare, deep learning-based automatic modulation recognition (AMR) systems that
provide high recognition accuracy across a wide range of communication signals have been actively studied.
This trend stems from the growing complexity of signal environments in modern battlefields, resulting from the
rapid evolution of communication technologies, which has significantly increased the difficulty of analyzing
received signals. In this paper, we propose a multi-modal AMR neural network designed based on the 1D
Swin Transformer architecture. The 1D Swin Transformer effectively extracts multi-resolution features from
input sequences through a hierarchical feature representation and a shifted window-based mechanism. The

proposed model employs a multi-modal structure that simultaneously utilizes IQ time-series signals in the time
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domain and spectrum information in the frequency domain. By extracting features from each modality and

feeding them into the 1D Swin Transformer, the model performs modulation recognition by leveraging

information from both the time and frequency domains. The proposed model achieved an average accuracy of

61.15% and outperformed conventional models. Furthermore, within the QAM family, the model achieved a

high average recognition accuracy of 57.00% and demonstrated its ability to distinguish between structurally

similar modulation schemes.
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Table. 3. Model-wise accuracy (-20 dB ~ 18 dB) for the QAM family of modulation schemes.

Modulation Average recognition
scheme QPSK 16-QAM 64-QAM

Model accuracy
CNN' 30 % 46 % 25 % 33.67 %
VGG 55 % 21 % 61 % 45.67 %
LSTM!® 53 % 51 % 50 % 51.33 %
CGDNet!"”! 51 % 48 % 40 % 46.33 %
Transformer!'®! 56 % 53 % 49 % 52.67 %
Proposed 55 % 52 % 64 % 57.00 %
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