
논문 25-50-09-11 The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09
https://doi.org/10.7840/kics.2025.50.9.1433

1433

※ 본 논문은 2025년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.RS-2024-00398379, (총
괄4-세부2) 텔코용 고성능/고가용성 6G 크로스-클라우드 인프라 기술개발)

w First Author : Soongsil University Department of Electronic Engineering, jhyun@dcn.ssu.ac.kr, 학생회원
° Corresponding Author : Soongsil University Department of Electronic Engineering, younghak@ssu.ac.kr, 종신회원
논문번호：202411-286-C-RN, Received November 15, 2024; Revised January 9, 2025; Accepted March 14, 2025

다중 클라우드의 효과적인 스케줄링을 위한 Migration
정책 기반 워크로드 재분배 설계 및 구현

윤 지 혜w, 김 영 한°

A Design and Implementation of Migration Policy Based
Workload Redistribution for Effective Scheduling of

Multi-Cloud System

Jihye Yunw, Younghan Kim°

요 약

멀티 클라우드 환경에서 비용 절감 등을 위해 퍼블릭 클라우드 사용보다 프라이빗 클라우드를 우선적으로 사용

하도록 하는 등 특정 클라우드를 우선적으로 사용하게 하는 스케줄링이 요구된다. 그러나 프라이빗 클라우드 등

해당 클라우드의 사용 가능한 자원 부족 시 스케줄링이 불가능하여 운용자에 의한 별도의 워크로드 재배치 등이

진행되어야 한다. 본 논문에서는 다중 클라우드 환경에서 선호된 클라우드로의 스케줄링이 가능하도록 사전에 정

의된 워크로드 이전 정책(Migration Policy)에 따라 워크로드 재분배를 수행하는 워크로드 자동 이전 제어기

(Migration Controller)를 새롭게 제안하고 구현하였다. 제안된 기능을 통해 원하는 스케줄링의 성공율을 높일 수

있으며 정책에 따라 이전 재배치를 조정할 수 있다. 검증을 위해 실제 다중 클라우드 환경을 구축하고 적용 실험

을 통해 기존 대비 프라이빗 클라우드 등 선호 클라우드의 활용률을 높이고 스케줄링 거절률(Rejection Rate)을

감소시킬 수 있음을 확인하였다.

키워드 : 멀티 클라우드, 비용 절감, 워크로드 재분배, 무중단
Key Words : Multi Cloud, Cost Reduction, Workload Redistribution, Zero Downtime

ABSTRACT

In order to reduce costs in a multi-cloud environment, policy-based scheduling is required to give priority to

specific clouds, such as private clouds over public clouds. However, scheduling is not possible when the

available resources of the cloud, such as the private cloud, are insufficient, and separate workload reallocation,

etc. must be performed by the operator. In this paper, we propose and implement a workload automatic

migration controller that performs workload reallocation according to a predefined workload migration policy to

enable scheduling to a preferred cloud in a multi-cloud environment. We verified that the utilization rate of

preferred clouds such as private clouds is increased, and the scheduling rejection rate can be reduced compared

to existing ones through application experiments by building an actual multi-cloud environment with the

proposed function.



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1434

Ⅰ. 서 론

멀티클라우드환경은프라이빗클라우드와퍼블릭
클라우드를비롯한여러클라우드를함께사용하는환
경을의미한다. 멀티클라우드환경에서민감성이높은

데이터 및 워크로드는 프라이빗 클라우드에서 운용하
고, 일반적인워크로드는퍼블릭클라우드에배치시킴
으로써 보안과 유용성을 함께 얻을 수 있다[1,2]. 또한

비용절감등을위해퍼블릭클라우드사용보다프라이
빗클라우드를우선적으로사용하도록하는등특정클
라우드를우선적으로사용하게하는정책기반스케줄

링이요구된다[3,4]. 그러나프라이빗 클라우드등해당
클라우드의사용가능한자원부족시스케줄링이불가
능하여운용자에의한별도의워크로드재배치등이진

행되어야하고이전되는워크로드에의해제공되던서
비스의연속을위한방법도추가관리해야한다. 예를
들어쿠버네티스의 Preemption과같은기능을활용하

여기존에실행중이던워크로드를삭제하고새로요구
된워크로드를배포할수있다. 그러나이때삭제된워
크로드의서비스는중단되게되어해당서비스의가용

성을떨어뜨린다는문제도 생기게된다[5]. 결과적으로
원하는스케줄링을위해임의의정책기반하에일부워
크로드를 재배치하는 방법이 필요하나 기존의 방법들

은이러한과정이관리자에의해이루어지고있어이를
자동화한 기법이 요구되고 있다.

본논문에서는다중클라우드환경에서선호된클라

우드로의 스케줄링이 가능하도록 사전에 정의된 워크
로드이전정책(Migration Policy)에따라워크로드재
분배를수행하는워크로드자동이전제어기(Migration

Controller)를설계하고구현하였다. 또한선택한워크
로드를다른클라우드로이전할때해당워크로드에서
의서비스가지속될수있도록하는방법을같이설계하

였다. 그림 1에서와같이워크로드재분배기능을타겟
클라우드로의 배치를 희망하는 워크로드를 더 배치할
수 있게 하여 종합적인 워크로드 배치 만족도를 높일

수 있게 할 것이다.

제안된기능을검증하기위해베어메탈서버에오픈
스택을 설치하여 구축한 프라이빗 클라우드와 퍼블릭

클라우드를 함께 활용하여 하이브리드 클라우드를 구
성하고 Linux Foundation의 EMCO(Edge

Multi-Cluster Orchestrator) 프로젝트를활용하여종합

관리 플랫폼을 구축하고 추가적으로 Migration

Controller와 해당동작의 설정 정보를 위한 리소스를
추가 개발하여 구현하였다[6]. 이어 적용 실험을 통해

기존대비프라이빗클라우드등선호클라우드의활용

률을높이고 스케줄링거절률(Rejection Rate)를감소
시킬 수 있음을 확인하였다.

본논문의구조는다음과같다. 제Ⅱ장에서는관련

연구로서기존멀티클라우드환경에서의워크로드스
케줄링방법과이전방법에대해고찰하고, 제Ⅲ장에
서는 제안하는 워크로드 재분배 기능을 위한 제안 구

조와동작절차를설명한다. 제Ⅳ장에서는 제안한시
스템의구현결과와성능을분석하고, 제Ⅴ장에서결
론을 맺는다.

그림 1. 다중 클라우드 시스템에서 스케줄링을 위한 정책기
반 워크로드 재배치
Fig. 1. Policy based Workload Redistribution for
Scheduling over Multi-Cloud System

Ⅱ. 관련 연구

2.1 멀티 클라우드 환경에서의 워크로드 스케줄링 
방법

멀티클라우드환경에서스케줄링을위해서는기본

적으로워크로드의 특성에 따라 요구사항을 만족하는
클라우드를선정하고그중자원상태를포함한여러메
트릭을 활용하여 최적 클라우드로 선정하게 된다.

이와 관련하여 쿠버네티스 기반 클라우드와
KubeEdge와같은엣지클라우드가결합된환경에서의
data-intensive 한애플리케이션을대상으로하는스케

줄링 프레임워크가 제안되었다[7]. 제안된 스케줄러는
AI 모델학습등의관련작업을대상으로엣지와클라
우드중어디서처리할지에대한스케줄링을데이터의

특성에따라 엣지클라우드를 우선적으로 선택하도록
하여엣지리소스의활용율을높이고클라우드사용비
용을줄이는것을목표로하였다. 다만본제안은엣지

클라우드의자원이부족한경우는워크로드재배치없
이 스케줄링이 안 되도록 하여 본 논문 에서와 같은
워크로드 재배치에 의한 최적화는 다루고 있지 않다.

기존클라우드내에존재하는레이블체계를확장하



논문 /다중 클라우드의 효과적인 스케줄링을 위한 Migration 정책 기반 워크로드 재분배 설계 및 구현

1435

여 컴퓨팅 노드의 속성과애플리케이션의 요구사항에
대해 더욱 명확하게 표현함으로써 스케줄링에 사용자
의요구사항을더욱반영할수있게한방법도제안되었

다[8]. 요구사항의 예로는 최소 지연시간, 재생 가능한
에너지를 사용하는 클라우드 사용, 지리적 제약 사항,

배포비용등이포함될수있게하였다. 구체적인구현

구조에서 기존쿠버네티스의 레이블링 체제를 확장하
고 기존 kube-scheduler에서 요구사항의 미세 조정이
가능하도록 했다. 그러나 이러한 개별 클라우드 내의

스케줄러에대한확장방법은다중클라우드환경에단
순히적용할수없는한계가있고나아가워크로드재배
치와같은스케줄링이불가능할경우의해결방법등은

같이 고려되고 있지 않다.

Linux Foundation의 EMCO 프로젝트는멀티클러
스터 간 애플리케이션과 서비스의 배포를 자동화하기

위한 프로젝트이다[6]. EMCO에는 클러스터와 애플리
케이션의 중앙 오케스트레이션 역할을 수행하는
Management 클러스터와실제애플리케이션이배포되

는워크로드클러스터가존재한다. Management 클러
스터에서는멀티클라우드상에존재하는일부멀티클
러스터를논리적집합으로묶어 Logical Cloud를구성

하고, 그내에서애플리케이션스케줄링을수행한다. 이
때 애플리케이션의 리소스 요구사항을 반영하여 해당
요구사항을 충족하는 클러스터로 스케줄링을 수행할

수있다. EMCO에는이러한애플리케이션의스케줄링
을위한다양한리소스가존재하는데, 리소스의종류에
따라 이를 관리하는 개별적인 컨트롤러가 있으며, 각

컨트롤러가 독립적으로 동작하여 필요에 따라 새로운
컨트롤러의확장이용이하도록설계되었다. 그러나현
재까지 스케줄링에 정책적 요구사항을 반영하거나 스

케줄링실패시워크로드재배치를통해특정클러스터
에배포를요구하는워크로드수용방법등은제시되지
못하고 있다.

이외에도다양한환경에서의스케줄링요구사항을
고려하여진행된많은연구가있지만, 대부분의연구들
은워크로드재분배기능과통합된방법은제안되고있

지 않다[9-11].

2.2 멀티 클라우드 환경에서의 워크로드 이전 방법
특정클라우드또는클러스터에문제발생시실행

중인 워크로드를 이전하기 위해서는 서비스의 중단을

최소화하기위한전략이필요하며, 워크로드의특성에
따라 추가적인 백업 및 복원 과정이 요구될 수 있다.

머신러닝 워크로드를 대상으로 온프레미스 환경의

리소스가모두소진되었을때다른퍼블릭클라우드로

스케줄링하는 방안이 최근 제시되었다[12]. 제시된
HCS(Hybrid Cloud Scheduler)에서는 초기 워크로드
의 스케줄링은 온프레미스 환경의 쿠버네티스 클러스

터에서 수행되며, 해당 클러스터에서 pending 상태의
워크로드가감지된경우해당워크로드에서필요로하
는모든리소스의합을구하여최소크기의 VM Spec을

계산하여 퍼블릭 클라우드에 클러스터를 동적으로 생
성하고 pending 된머신러닝워크로드를이전하여작업
이수행될수있도록한다. 본연구에서는 pending 되는

워크로드의 종류를 머신러닝 워크로드로 특정하여 해
결방법을제시하고있으나퍼블릭클라우드의인스턴
스를 생성하고 머신러닝워크로드에 특정하고 있어서

본논문에서와같은모든워크로드를대상으로하는것
과워크로드재배치와같은방법은고려되지않고있다.

한편, 서비스의 QoS를고려한워크로드이전에관한

연구로서 워크로드의 초기 배치 이후 지속적으로
SLA(Service Level Agreement)를모니터링한후 SLA

를만족시키지못할경우해당워크로드를다른곳으로

이전하는 방법을 제안하고 있다[13]. 그러나 본 연구는
처음스케줄링이요구된워크로드를선호된클라우드에
스케줄링이안될경우기존워크로드를이전하도록하

는스케줄링과이전기능을결합한본제안모델과는달
리 SLA에따른독립된이전기능만을제안하고있으며
서비스의지속성을위한방법도제시되지못하고있다.

이외에도딥러닝모델을사용하여 CPU 사용량, 메
모리사용량, 네트워크트래픽등의메트릭지표를활용
해임곗값을넘을것으로예측되는 Pod를이전하게한

연구도있었으나이역시워크로드이전만을다루고있
고스케줄링과연동된방법으로제안되고있지않다[14].

또한다양한이전을위한알고리즘은제안되었으나서

비스의중단이나스케줄링과의연동등은고려되고있
지 않다[15,16].

이상과같이대부분의기존연구들은스케줄링과워

크로드이전이독립된영역으로연구되었고본제안과
같이 상호 연동된 방법은 제안되고 있지 않다.

본논문에서는스케줄링과정에서문제발생시사전

정의된여러기준을활용하여이전하기에적합한워크
로드를선택하고서비스의중단없이이를이전하는시
스템을제안한다. 한편세부적인워크로드의이전기술

과관련하여 Stateless 워크로드는단순하지만 Stateful

워크로드의경우기존사용되던최신정보의백업과복
원기술이요구되나해당요소기술들은기존연구결과

들을적용하여해결하였다[17-22]. 이상의제안된상세구
조 및 기능을 다음 장에서 고찰한다.



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1436

Ⅲ. 멀티 클라우드 환경에서의 워크로드 재분배
기능 설계

3.1 제안 구조
본논문에서제안하는멀티클라우드환경및워크로

드재분배기능적용구조는그림 2와같다. 기본적으로
쿠버네티스 기반 클라우드 환경을 가정하여 쿠버네티
스의기본단위인클러스터를대상으로워크로드클러

스터와배포할워크로드에대한중앙관리를수행하는
Management 클러스터가존재하며, 워크로드클러스터
에실제워크로드들이 배포된다. Management 클러스

터의 Cluster Registration Controller는 Cloud Provider

와클러스터를등록하는역할을수행하는데, 이때퍼블
릭클라우드보다프라이빗클라우드를먼저사용할수

있도록하기위해클라우드별선호도를함께저장한다.

Scheduler에서는 배포할 워크로드를 등록하고 클라우
드별선호도를고려한스케줄링을수행한다. 본연구에

서 제안한 Migration Controller는 스케줄링 과정에서
배포를 수행해야 하는 클러스터에 리소스가 부족하여
워크로드재분배가필요하다고판단된경우호출되며,

사전에정의된 Migration Policy와워크로드클러스터
의 Metrics-server로부터 수집한 상황정보를활용하여
이전할 워크로드를 선택하고 선택된 워크로드의 이전

을 수행한다. External Storage는 Stateful 워크로드를
위한 데이터가 저장되는 곳으로, Stateful 워크로드가
다른클러스터로이전되더라도기존상태정보가저장

된 본 Storage를 통해 지속적인 서비스가 가능하도록
하였다.

본논문에서는워크로드재분배를수행할때다양한

요구사항을반영할수있도록 Migration Controller 내
의세부 자원을 그림 3과같이설계하였다. Migration

Policy에서는워크로드의리소스사용량기반워크로드

선택 또는 마이크로 서비스 간 연결성 기반 워크로드
선택과같이사용자의요구사항에따라다양한알고리
즘이 선택될 수 있으며, 이러한 알고리즘은 계산식에

따라다양한입력데이터를필요로한다. 이러한요구사
항은필요에따라새로운 policy로시스템에적용할수
있는구조를설계하였고또한이에연계된알고리즘을

변경또는신규적용가능할수있게 Algorithm 리소스
를 추가하였다. 또한 Algorithm 리소스에서 사용하는
입력데이터를생성하는 Parameter 리소스를분리하여

설계하였다. 그리고여러알고리즘에서동일한입력데
이터를사용하는경우 Parameter 리소스를재활용하여
계산에활용할수있도록하였다. 이를통해 Algorithm

과 Parameter를사전에정의해놓기만하면 Migration

Policy에서는적용할알고리즘의선택등을정책데이
터로 입력을 통해 상황에 따라 알고리즘을 변경하여

적용할수있도록하였다. 이때여러알고리즘을동시
에적용하는경우에는우선순위에따라순차적으로알
고리즘을 반영하는 order 방식과 알고리즘별 점수를

계산하여최종적으로가장높은점수를받은워크로드
가선택되도록 하는 scoring 방식중선택이 가능하도
록 하였다.

3.2 서비스 중단 없는 워크로드 이전 구조
일반워크로드는이전되더라도문제없으나 Stateful

워크로드의경우별도로연결되었던 volume의관리가
같이요구된다. 기본적으로쿠버네티스에서는 Stateful

워크로드의 이름과 생성 순서를 보장하기 위해
StatefulSet을활용할수있으며, 이전한후에도스토리
지와의연결성을유지하기위해 External Storage를사

용할 수 있다. 그리고 그림 4와 같이 StatefulSet의
volumeClaimTemplates를 사용하여 각 Pod마다 PVC

를생성하도록하고 PV를해당 PVC와연결하면, Pod

의 생성 순서에 따라 원하는 PV에 연결되도록 할 수

그림 2. 멀티 클라우드 환경에서의 워크로드 재분배를 위한
시스템 구조
Fig. 2. System architecture for workload redistribution in
multi-cloud environment

그림 3. Migration Controller 내부 리소스
Fig. 3. Internal resources of migration controller



논문 /다중 클라우드의 효과적인 스케줄링을 위한 Migration 정책 기반 워크로드 재분배 설계 및 구현

1437

있다. 이를통해워크로드를이전한경우에도기존데이
터에 동일하게 접근할 수 있게 된다.

이외에선택한워크로드를서비스중단없이이전하

기위한방법으로는 LoadBalancer를활용하였다. 그림

5에서와같이 LoadBalancer의 IP 주소를사용하여서
비스를등록하였다. 외부에서해당서비스를액세스할

경우 LoadBalancer로접근하게되고기존워크로드가
운용되던곳에서새로이전된곳으로 LoadBalancer에
의해자동연결되게하여서비스연속성을해결하게된

다. 즉 워크로드의 선택이 완료되면 해당 워크로드를
다른 클러스터로 이전하여 준비될 때까지 기다린 후
LoadBalancer에서해당멤버로추가한다. 이후기존워

크로드를삭제하고나면신규이전된워크로드로서비
스 중단 없는 연결이 제공되게 된다.

그림 5. LoadBalancer를 활용한 서비스 등록
Fig. 5. Service registration using LoadBalancer

Ⅳ. 구현 및 성능 분석

4.1 EMCO 내의 구현 구조
본연구에서는제안한시스템의구현을위해 Linux

Foundation의 EMCO 프로젝트를 활용하였다. 그림 6

은멀티클러스터오케스트레이션을위한 EMCO 프로

젝트내에구현한구조로서기존대표적인컴포넌트들
과각컴포넌트가관리하는리소스및추가된기능등을

표현한것이다. Cluster Manager가관리하는리소스에
는 Cluster Provider와 Cluster가있으며, 쿠버네티스클
러스터의 kubeconfig 파일을 이용하여 워크로드 클러

스터를등록한다. Cluster Provider는클러스터가어느
벤더로부터제공되었는지논리적으로구분하는역할을
한다. Orchestrator는배포할워크로드를애플리케이션

단위의패키지형태로등록하고, 스케줄링과정에서필
요에따라다른컨트롤러를호출하며전체스케줄링프
로세스를관리한다. Placement Controller는 Placement

Intent를통해각워크로드의요구사항을표현하며, 이
를만족하는클러스터로스케줄링을수행한다. 그리고
Action Controller는 Action Intent를활용하여스케줄

링이완료된이후함께배포할새로운리소스를추가하
거나워크로드에 customization을수행할수있게한다.

이모든과정이완료되면 Resource Synchronizer를통

해 워크로드 클러스터로 실제 배포가 이루어진다.

이외 Migration Controller를 추가로 구현하고,

Migration Intent를활용하여각워크로드의이전가능

여부와우선순위를표현하고, Migration Policy를통해
다양한 알고리즘을 활용하여 워크로드를 선택하도록
하였다. 그리고스케줄링시프라이빗클라우드를우선

그림 4. Stateful 워크로드의 데이터 연결성을 유지하여 이
전하는 방법
Fig. 4. Migration strategies while maintaining data
connectivity for stateful workloads

그림 6. EMCO내 구현 구조
Fig. 6. Implementation Architecture on EMCO

그림 7. 클라우드 별 선호도 표현을 위해 확장한 Cluster
Provider 리소스 예시
Fig. 7. Example of an extended Cluster Provider resource
for expressing cloud-specific preferences



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1438

적으로사용할수있도록하기위해그림 7과같이기존
Cluster Provider 리소스의 .spec.priority 필드를 확장
하여 클라우드별 선호도를 표현하고, Placement

Controller에서이를고려하여스케줄링을수행하도록
하였다.

4.2 Migration Controller 동작 예시
본논문에서는 Migration Policy가따로적용되지않

은경우그림 7의선호도정보를활용하여이전할워크
로드를 선택하도록 구현하였다. Migration Intent의
spec.migration 필드가 .spec.app 필드에해당하는워크

로드의 이전 가능 여부를 의미하며, true일 경우
.spec.priority 필드를통해우선순위를표현한다. 그리
고 Migration Policy에서도여러알고리즘을사용하고

자할때에는그림 8과같이우선순위를표현하여우선
순위에 따라 알고리즘을 순차적으로 적용하여 선택하
도록 하였다.

이를실험하기위해두가지알고리즘을사용하였다.

첫번째로서비스의부하가덜한워크로드를선택하기
위해 CPU Utilization을계산하여값이낮은워크로드

를선택하는 CPUUtilization이라는이름의알고리즘을
사용하였고, 두번째로워크로드를이전한후기존대비
마이크로서비스간통신지연시간증가를최소화하기

위해 하나의 애플리케이션을 이루는 마이크로 서비스
의분산정도를계산하여여러클러스터에분산된형태
로 배포되어 있는 워크로드를 선택하기 위한

Dispersion 알고리즘을 사용하였다.

Migration Controller를통한워크로드이전상세절
차는 그림 9와 같다.

그림 9에서 Application 1을 Cluster X에배포해야
하는상황에서 Cluster X에리소스가부족한경우에이
루어지는 절차에 대해 표현하였으며, Migration

Controller를호출하기이전에 Application 1을 Cluster

X에 스케줄링하기까지의 과정은 생략하였다.

Application 1의 배포 요청은 Resource

Synchronizer로 보내지며, Application 1은 Cluster X

그림 8. Migration Policy 예시
Fig. 8. Example of Migration Policy

그림 9. 워크로드 이전 절차
Fig. 9. Workload migration procedure



논문 /다중 클라우드의 효과적인 스케줄링을 위한 Migration 정책 기반 워크로드 재분배 설계 및 구현

1439

에서 pending 상태로 기다리게 된다. 그리고
Orchestrator에의해 Migration Controller가호출된다.

Migration Controller는 Migration Policy 정보를확인

하고, Cluster X에서실행중인모든애플리케이션데이
터를 불러온다. 그리고 해당 애플리케이션들의
Migration Intent를불러와 .spec.migration이 true인것

들만선별하고, 이를 .spec.priority 값에따라정렬한다.

이후 Migration Policy를통해적용된알고리즘을순차
적으로확인하여정렬을수행하며, 앞단계의정렬결과

동일한 값을 가지는 애플리케이션들이 다음 알고리즘
을통해다시정렬된다. 모든알고리즘에대한정렬이
완료되면, Application 1을배포하기위해필요한리소

스를 계산하여 해당 리소스를 만들어줄 수 있을 만큼
이전할 워크로드를 선택한다. Migration Controller의
작업이완료되면이전되는애플리케이션의스케줄링을

위해 Placement Controller가호출되고, 클라우드의선
호도를 고려하여 Cluster X를 제외한 임의의 Cluster

Y로스케줄링이수행된다. 이전하는과정은 Resource

Synchronizer에 의해 이루어지며, Resource

Synchronizer는 애플리케이션 의 모든 Pod가 running

상태가될때까지기다렸다가기존워크로드를삭제한

다. 이를통해 Cluster X에는 Application 1이실행되기
위해필요한충분한리소스가확보되며, pending 상태
에 있던 Application 1이 running 상태로 전환된다.

4.3 실험 및 성능 분석
실험을 위해 온프레미스 클라우드와 AWS 간 site

to site VPN을통해그림 10과같이실험환경을구축하
였다.

온프레미스클라우드에 Management 클러스터를구
축하였으며, 워크로드 클러스터는 마스터 노드 1개와
워커노드 1개로구축하여온프레미스클라우드에서 2

개, AWS 클라우드상에서 1개를 각각 등록하였다.

그리고스케줄링에대한워크로드의요구사항을직

관적으로표현하기위해레이블을활용하였다. 모든경
우의 수를 수용할 수 있도록 하기 위해 표 1과 같이
각클러스터에자기자신이포함된모든레이블을부여

하였다. 여기서 레이블의 각 문자는 Cluster Name의
마지막문자를 의미한다. 예를들어 ABC의레이블을
가지는클러스터에배포될수있는애플리케이션은모

든클러스터에배포될수있음을의미한다. Stateful 워
크로드의데이터저장을위한 External Storage는온프
레미스클라우드의 VM 1개에 NFS 서버를통해구성

하였다.

첫번째실험에서는 StatefulSet과 PV를통해워크로
드를이전한후에도 Pod의순서와스토리지간연결성

이보장될수있음을보였다. replicas를 2로설정하여
각각의 Pod가고유의 PV에바인딩되도록설정하였고,

NFS 서버의 공유 디렉토리를 마운트하여 pod-0과

pod-1이각각의저장소와일관된연결을유지하는지확
인하였다. 이를위해두개의 PV(pv1, pv2)를 NFS 서
버의 각기 다른 공유 디렉터리(/mnt/shared1,

/mnt/shared2)와연결하였다. 공유디렉터리에는웹페
이지 파일인 index.html을 위치시키고, shared1과
shared2를구분할수있도록 index.html을수정하였다.

PVC는 StatefulSet의 volumeClaimTemplates를 통해
생성하고, 생성된 PVC가사전에정의된 PV와바인딩
되도록하였다. 그리고 Statefulset과 PV를다른클러스

터로이전하여 Pod와스토리지의연결성을확인하였다.

Cluster
Location

Cluster
Name

Cluster
Specification

Applied
Label

Master Node 1
(2 vCPUs, 4GiB

Memory)
Worker Node 2
(8 vCPUs, 6GiB

Memory)

ABC, AC,
AB, A

Master Node 1
(2 vCPUs, 4GiB

Memory)
Worker Node 2
(8 vCPUs, 6GiB

Memory)

ABC, AB,
BC, B

Master Node 1
(2 vCPUs, 4GiB

Memory)
Worker Node 2
(8 vCPUs, 6GiB

Memory)

ABC, AC,
BC, C

표 1. 워크로드 클러스터 사양 및 레이블
Table 1. Workload cluster specifications and labels

그림 10. 온프레미스 클라우드와 AWS를 활용한 실험 환경
Fig. 10. Experiment environment using on-premise cloud
and AWS



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1440

실험 결과 그림 11에서 워크로드를 이전하기 전과
후에 모두 pod-0은 pv1과 마운트 되었으며, pod-1은
pv2와 마운트 되었다. 이를 통해 Stateful 워크로드를

이전한후에도 Pod의순서및스토리지와의연결성이
변함없이 유지됨을 확인할 수 있다.

이후실험에서는본논문에서제안한 Migration 기

능과 Cloud Preference를적용한스케줄링방법의성능
을분석하기위한실험을진행하였다. 실험을위해표
2와같이 1~3개의마이크로서비스로이루어진 15개의

애플리케이션을 사용하였으며, 각 마이크로 서비스에
랜덤하게 CPU와 메모리 Request를 부여하였다.

본실험에서는 Migration과 Cloud Preference를적

용한 경우와 그렇지 않은 경우의 워크로드 배포 수에
따른 프라이빗 클러스터와 퍼블릭 클러스터의 리소스
점유율을비교하였다. 배포하는워크로드의수를 5개씩

증가시키면서 클러스터 별 리소스 점유율을 측정하였
으며, 워크로드의스케줄링요구사항을임의로변경하
면서워크로드의배포를 5회반복한후리소스점유율

의 평균값을 계산하였다.

실험 결과 그림 12, 13과 같이 Migration과 Cloud

Preference를 적용하지 않은 경우 5개, 10개, 15개를

배포한모든경우에프라이빗과퍼블릭에서비슷한리
소스 점유율을 보였지만, Migration과 Cloud

Preference를적용한경우 5개, 10개의워크로드를배

포하는동안은 프라이빗 클러스터의 리소스 점유율이
퍼블릭클러스터의 리소스 점유율보다 월등히 높음을
알수있다. 이후 15개를배포했을때퍼블릭클러스터

의리소스점유율이급격히올라간것은프라이빗클러
스터의 리소스가 소진되었음을 의미한다. 이를 통해
Migration과 Cloud Preference를 적용한 경우 프라이

빗클라우드의활용률을높여불필요한퍼블릭클라우
드의사용을줄일수있음을확인할수있다. 또한, 종합
리소스점유량을비교했을때 5개와 10개를배포한상

그림 12. Migration과 Cloud Preference를 적용하지 않은
경우
Fig. 12. In case Migration and Cloud Preference are not
applied

그림 13. Migration과 Cloud Preference를 적용한 경우
Fig. 13. In case Migration and Cloud Preference are
applied

Number of
microservices

Count
Resource

Requirements
Scheduling

Requirements

1 10 (1 to 5) cores,
(2000 ~ 7000)
MiB memory

request
per microservice

Scheduling on
clusters with

specific labels
2 3

3 2

표 2. 배포할 애플리케이션 종류
Table 2. Type of application to be distributed

그림 11. Stateful 워크로드를 이전하기 전과 후의 Pod와
스토리지 연결성
Fig. 11. Connectivity between Pods and storage before
and after migrating stateful workloads



논문 /다중 클라우드의 효과적인 스케줄링을 위한 Migration 정책 기반 워크로드 재분배 설계 및 구현

1441

황에서는두가지경우에모두동일한종합리소스점유
량을 보이지만, 15개를 배포했을 때는 Migration과
Cloud Preference를적용한경우에리소스점유량이더

높음을 확인하였다. 이는 Migration을 수행하지 않은
경우에클러스터의리소스부족으로인해배포되지못
한 워크로드가 있음을 의미하며, Migration을 수행한

경우에는워크로드재분배를통해더많은워크로드가
배포된 것이다.

그림 14에서는 Migration을수행했을때어느정도

로 Rejection Rate가 감소하는지를 알아보기 위해
Cloud Preference를 적용한 상태에서 Migration의 수
행여부에따른배포요청의 Rejection Rate를비교하였

다. 이를위해워크로드의스케줄링요구사항을임의로
변경하면서 전체 워크로드의 배포를 5회 반복한 후
Rejection Rate의 평균값을 측정하였다. 실험 결과

Migration을 수행한 경우 기존 대비 약 50%가량

Rejection Rate를 줄일 수 있음을 확인하였다.

마지막실험에서는이전되는워크로드수에따른재
분배수행시간을분석하였다. 이전되는워크로드를실

행하기위해필요한컨테이너이미지는모두다운로드
되어있지않은상태에서수행하였으며, 배포하는워크
로드의리소스 요구사항을 증가시키면서 이전되는 워

크로드의 수가 증가하도록 실험하여 이전되는 워크로
드수에따른재분배및각단계의소요시간을측정하
였다.

실험결과그림 15에서와같이워크로드를이전하는
과정에서 이미지 다운로드로 인해 이전하는 워크로드
수가증가할수록시간이조금씩늘어남을확인하였다.

Ⅴ. 결 론

본 논문에서는 멀티 클라우드 환경에서 비용 절감

등을위해퍼블릭클라우드사용보다프라이빗클라우
드를우선적으로사용하도록하는등특정클라우드를
우선적으로사용하게하는정책기반스케줄링과해당

클라우드의 사용 가능한 자원 부족 시 자동 워크로드
재배치를 통해 요구된 워크로드를 배포할 수 있는 기
능을 통합한오케스트레이션기능을 설계하고구현하

였다.

설계된시스템은베어메탈서버에오픈스택을설치
하여 구축한 프라이빗 클라우드와 퍼블릭클라우드를

함께활용하여하이브리드클라우드를구성하고 Linux

Foundation의 EMCO(Edge Multi-Cluster

Orchestrator) 기반 위에 Migration Controller를 추가

하고기존컴포넌트및리소스일부를확장하여구현하
였다. 특히 이전되는 워크로드의 서비스 유지를 위한
구조를같이구현하였고운용실험을통해스케줄링 re-

jection rate를 줄이면서 원하는 클라우드의 활용성을
높이게함을비교검증하였다. 이러한다중클라우드환
경에서워크로드재배치기능은최종적인워크로드배

치성공율을높일수있어기존시스템보다나은스케줄
링성공율을얻게하였다. 또한제안된시스템은실제
다중클라우드환경에서사용자가원하는다양한정책

적 클라우드 선택 요구사항을 간단히 추가 배포할 수
있게설계되어다양한워크로드배포정책을실현할수
있게 할 수 있을 것이다.

References

[1] J. Lei, Q. Wu, and J. Xu, “Privacy and

security-aware workflow scheduling in a

그림 14. Migration을 수행한 경우와 수행하지 않은 경우의
Deployment Rejection Rate
Fig. 14. Deployment Rejection Rate with and without
Migration

그림 15. 이전되는 워크로드 수에 따른 재분배 수행 시간
Fig. 15. Redistribution execution time based on the
number of migrated workloads



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1442

hybrid cloud,” Future Generation Computer
Syst., vol. 131, pp. 269-278, Jun. 2022.

(https://doi.org/10.1016/j.future.2022.01.018)

[2] Z. Sun, H. Huang, Z. Li, C. Gu, R. Xie, and

B. Qian, “Efficient, economical and energy-

saving multi-workflow scheduling in hybrid

cloud,” Expert Syst. with Appl., vol. 228, no.

120401, Oct. 2023.

(https://doi.org/10.1016/j.eswa.2023.120401)

[3] B. Wang, C. Wang, Y. Song, et al., “A

survey and taxonomy on workload scheduling

and resource provisioning in hybrid clouds,”

Cluster Comput, vol. 23, pp. 2809-2834, Feb.

2020.

(https://doi.org/10.1007/s10586-020-03048-8)

[4] L. Cheng, A. Kalapgar, A. Jain, et al.,

“Cost-aware real-time job scheduling for

hybrid cloud using deep reinforcement

learning,” Neural Comput. and Appl., vol. 34,

pp. 18579-18593, Jun. 2022.

(https://doi.org/10.1007/s00521-022-07477-x)

[5] Kubernetes-main document, Pod priority pree
mption, 2024, from https://kubernetes.io/docs/c

oncepts/scheduling-eviction/pod-priority-preem

ption/

[6] EMCO-main document, 2024, from https://proj

ect-emco.io/

[7] J. Luo, B. Tang, and J. Zhang, “Container

scheduling in hybrid cloud-edge collaborative

system,” GLOBECOM 2022, pp. 5662-5667,

Rio de Janeiro, Brazil, Dec. 2022.

(https://doi.org/10.1109/GLOBECOM48099.20

22.10001714)

[8] L. F. Altran, G. Galante, and M. S. Oyamada,

“Label-affinity-scheduler: Considering business

requirements in container scheduling for

multi-cloud and multi-tenant environments,”

2022 XII Brazilian Symp. Comput. Syst. Eng.
(SBESC), pp. 1-8, Fortaleza/CE, Brazil, Nov.

2022.

(https://doi.org/10.1109/SBESC56799.2022.996

4784)

[9] J. P. M. Vilaça, “Orchestration and

distribution of services in hybrid cloud/edge

environments,” M.S. Thesis, Universidade do

Minho, 2022.

[10] R. Bi, T. Peng, J. Ren, X. Fang, and G. Tan,

“Joint service placement and computation

scheduling in edge clouds,” 2022 IEEE ICWS,

pp. 47-56, Barcelona, Spain, Jul. 2022.

(https://doi.org/10.1109/ICWS55610.2022.0002

2)

[11] S. Long, W. Wen, Z. Li, K. Li, R. Yu, and

J. Zhu, “A global cost-aware container

scheduling strategy in cloud data centers,” in

IEEE Trans. Parall. and Distrib. Syst., vol.

33, no. 11, pp. 2752-2766, Nov. 2022.

(https://doi.org/10.1109/TPDS.2021.3133868)

[12] J. Kieley, “A hybrid cloud kubernetes

scheduler for machine learning workloads,”

M.S. Thesis, Arizona State University,

ProQuest Dissertations Publishing, Aug. 2021.

[13] K. Kaur, F. Guillemin, and F. Sailhan, “Live

migration of containerized microservices

between remote Kubernetes clusters,” IEEE
INFOCOM 2023, pp. 1-6, Hoboken, NJ, USA,

May 2023.

(https://doi.org/10.1109/INFOCOMWKSHPS5

7453.2023.10225858)

[14] T. Heo, J.-H. An, and Y. Kim, “Design and

implementation of migration manager between

cloud edge platforms,” in Proc. Int. Conf.
RACS '20, pp. 142-145, New York, NY, USA,

Oct. 2020.

(https://doi.org/10.1145/3400286.3418279)

[15] S. A. Khan, M. Abdullah, W. Iqbal, M. A.

Butt, F. Bukhari, and S.-U. Hassan,

“Automatic migration-enabled dynamic

resource management for containerized

workload,” in IEEE Syst. J., vol. 17, no. 2, pp.

2378-2389, Jun. 2023.

(https://doi.org/10.1109/JSYST.2022.3204748)

[16] K. Kaur, F. Guillemin, and F. Sailhan, “A

microservice migration approach to controlling

latency in 5G/6G networks,” IEEE ICC 2023,

pp. 4912-4917, Rome, Italy, May-Jun. 2023.

(https://doi.org/10.1109/ICC45041.2023.102791

78)

[17] J. Kim and E. Jeong, “Restore schedule

operator for automating cluster to cluster

https://doi.org/10.1016/j.future.2022.01.018
https://doi.org/10.1016/j.eswa.2023.120401
https://doi.org/10.1007/s10586-020-03048-8
https://doi.org/10.1007/s00521-022-07477-x
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://project-emco.io/
https://project-emco.io/
https://doi.org/10.1109/ICC45041.2023.10279178
https://doi.org/10.1109/ICC45041.2023.10279178


논문 /다중 클라우드의 효과적인 스케줄링을 위한 Migration 정책 기반 워크로드 재분배 설계 및 구현

1443

recovery in Kubernetes,” Summer Annual
Conf. IEIE, pp. 2329-2332, Jeju Island, Korea,

Jun. 2023.

[18] Velero-main document, 2024, from https://vele

ro.io/

[19] Kubernetes-main document, Volume-snapshots,

2024, from https://kubernetes.io/docs/concepts/

storage/volume-snapshots/

[20] M. Gundall, J. Stegmann, M. Reichardt, and

H. D. Schotten, “Downtime optimized live

migration of industrial real-time control

services,” 2022 IEEE 31st ISIE, pp. 253-260,

Anchorage, AK, USA, Jun. 2022.

(https://doi.org/10.1109/ISIE51582.2022.98316

01)

[21] K. Govindaraj and A. Artemenko, “Container

live migration for latency critical industrial

applications on edge computing,” 2018 IEEE
23rd Int. Conf. ETFA, pp. 83-90, Turin, Italy,

Sep. 2018.

(https://doi.org/10.1109/ETFA.2018.8502659)

[22] P. Souza Jr., D. Miorandi, and G. Pierre,

“Good shepherds care for their cattle:

Seamless pod migration in geo-distributed

Kubernetes,” 2022 IEEE 6th ICFEC, pp.

26-33, Messina, Italy, May 2022.

(https://doi.org/10.1109/ICFEC54809.2022.000

11)

윤 지 혜 (Jihye Yun)

2022년 2월 :안양대학교 정보
전기전자공학과 학사

2024년 8월 :숭실대학교 정보
통신공학과 석사

<관심분야> 멀티 클라우드 오

케스트레이션, 스케줄링, 쿠
버네티스, CI/CD

김 영 한 (Younghan Kim)

49권 9호, pp. 1306-1314, 9월 2024 참조

https://velero.io/
https://velero.io/

	11 윤지혜202411-286-C-RN
	책갈피
	_Hlk187320545



