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Ⅰ. 서 론

최근드론연구는개별드론에대한제어뿐만아니

라, 여러드론이유기적으로협업하여군집으로임무를

수행하는방향으로변화하고있다 [1-4]. 군집드론은단

순히편대를유지하는작업에서나아가, 정찰, 수색및

구조, 물자운송등고도의협력이요구되는복잡한임

무를 수행하게 되었다 [5-8]. 이러한 발전은 각 드론이
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요 약

무인 항공기(UAV) 네트워크는 높은 이동성과 직선 시야 통신과 같은 장점에도 불구하고 높은 지연과 불안정한

연결성이라는 문제에 직면해 있다. 이를 해결하기 위해 본 논문은 지연과 네트워크 출력을 고려하여 경로를 최적

화하는 전이 학습 기반 그래프 신경망(GNN) 라우팅 방식을 제안한다. 실험 결과, 제안된 방식은 대규모 네트워크

에서 다익스트라 기반 라우팅보다 더 빠른 추론 속도와 높은 정확도를 달성하였으며, UAV 네트워크에서 저지연

및 고출력 솔루션으로서의 가능성을 입증하였다.

키워드 : UAV 네트워크, 그래프 신경망, 라우팅 최적화, 전이 학습, 저지연 통신
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ABSTRACT

Unmanned Aerial Vehicle (UAV) networks, while offering benefits like high mobility and line-of-sight

communication, face significant challenges such as high latency and unreliable connectivity. To overcome these

issues, this paper introduces a Graph Neural Network (GNN)-based routing approach leveraging transfer

learning to optimize path prediction with a focus on both latency and throughput. Experimental results indicate

that the proposed method outperforms Dijkstra-based routing in terms of inference speed and accuracy,

especially in large-scale networks, highlighting its potential as an effective low-latency, high-throughput solution

for UAV networks.
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군집의정보를즉각적으로공유하고활용할수있는네
트워크 기술들이 제안되고 있다[9].

현재드론네트워크는분산라우팅프로토콜이주로

사용되고있다[10,11]. 그러나군집에참여하는드론의수
가증가함에따라분산라우팅프로토콜에는다음과같
은 한계가 존재한다.

첫째, 네트워크규모가커질수록오버헤드가증가하
고 네트워크 출력이 저하된다[12]. 둘째, 경로 설정 시
메시지의교환으로추가적인지연이발생할수있다[13].

셋째, 높은이동성과링크의불안정성으로인해라우팅
의신뢰성이저하될수있다[14]. 특히, 군집드론이 GPS

위치정보와같은단순한벡터값이아니라카메라영상

등고용량데이터를주고받아야하는상황에서는, 분산
라우팅으로는 저지연과 고용량 전송을동시에 만족시
키는 데 한계가 있다[15,16].

따라서드론네트워크의각드론인저지연및고용량
의최적경로를찾기위해서중앙제어형 GCS-Routing

방식을고려할수있다[17]. GCS 라우팅아키텍처는각

드론의경로를제어하는 GCS에서각드론간의라우팅
도담당하는방식이다. 중앙제어형 GCS-Routing은네
트워크장애나오류발생시빠른복구가가능하며, 분

산형라우팅에비해더높은안정성과신뢰성을제공한
다는장점이있다. GCS는 Dijkstra 알고리즘을기반으
로라우팅테이블을생성한다음각 UAV에라우팅테

이블을 배포한다.

본논문에서는그래프신경망 (GNN, Graph Neural

Network)을활용한 GCS 라우팅방식을개선하는방안

을 제안한다. GNN은 네트워크의 구조를 효과적으로
모델링하고, 동적특성을학습하여라우팅결정을내릴
수있는강력한도구로주목받고있다[18-20]. 또한, 전이

학습 (Transfer Learning)을활용하여 GNN 모델의학
습 속도와 정확도를 향상시켰다[21]. 전이 학습을 통해
사전에학습된모델을기반으로새로운네트워크환경

에빠르게적응하여드론군집네트워크환경에서라우
팅테이블생성속도를향상시키고, 적용규모를증가시
키는 결과를 얻을 수 있다.

따라서본논문에서는드론네트워크에사용되는기
존중앙제어형라우팅프로토콜들의한계를극복하고,

대규모군집드론운용에서요구되는저지연과고용량

데이터전송을동시에만족시키는라우팅방안을제안
한다.

본 논문의 구성은 다음과 같다. 제2장에서는 GNN

기반라우팅테이블생성방식을소개하고, GNN의그
래프입력데이터전처리와학습과정을설명한다. 제3

장에서는중앙제어형라우팅알고리즘인 GCS Routing

기법에대해 GNN을통한개선방안을기존다익스트
라 알고리즘에 기반한 기법과 성능을 비교하고, 전이
학습을통해 GNN 학습성능을향상시키는실험결과

를제시한다[22]. 제4장에서는본논문의결론과함께향
후 연구 방향을 논의한다.

Ⅱ. GNN 기반 라우팅 테이블

2.1 GNN 모델 개념 및 드론 네트워크 환경 적
합성

GNN은 그래프 구조 데이터를 학습하고 처리하기
위한딥러닝모델이다. 통신네트워크는그래프구조를
가진네트워크로, 본논문에서노드는드론, 엣지는드

론간의통신링크를의미한다. FANET 등으로대표되
는드론네트워크는높은이동성과동적토폴로지를가
지며, 이러한환경에서 GNN은다음과같은이유로적

합하다.

첫째, GNN은그림 1과같이네트워크에속한각노
드와엣지의속성을특징행렬(Feature Matrix)로학습

하여네트워크상태(예: 네트워크출력, 지연시간, 연결
상태 등)를 효과적으로 모델링할 수 있다. 또한, 빠른
추론 시간으로 네트워크 속성이 변화하더라도 저지연

으로 대응이 가능하다는 장점이 있다.

둘째, GNN은 네트워크 토폴로지가 변화하더라도
인접행렬(Adjacency Matrix)을업데이트함으로써새

로운환경에적응할수있다. 인접행렬은그래프의구
조를수학적으로표현한것으로, 노드간연결상태를
나타낸다. 드론네트워크환경에서는드론의이동으로

인해네트워크토폴로지가동적으로변화하는데, GNN

은 이러한 변화를 동적으로 처리할 수 있다.

셋째, GNN은인접노드뿐만아니라그래프전체의

전역적정보를학습할수있어, 네트워크전체를고려하
여최적의라우팅경로를생성할수있다. 이때, GNN이
“네트워크전체를고려한다”는의미는, 단순히인접노

그림 1. GNN 및 인접 행렬과 특징행렬
Fig. 1. GNN, Adjacency matrix and Feature matrix
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드간의정보교환에의존하지않고, 네트워크의병목
상태, 혼잡도, 네트워크출력분배등전반적인정보를
반영하여라우팅결정을내릴수있다는점을나타낸다.

이는드론네트워크와같은동적이고복잡한네트워크
환경에서특히유리한특성으로, 네트워크효율성을극
대화하고데이터전송의안정성을높이는데기여할수

있다.

드론네트워크에서의라우팅은단순히최단경로탐
색을넘어, 저지연성과고출력을동시에고려해야하는

복합적인문제다. GNN은이러한다중목표를통합적
으로 최적화할 수 있는 잠재력을 제공한다.

2.2 GNN 기반 라우팅 테이블 생성 프로세스
드론네트워크에서라우팅테이블을생성하기위해

GNN은 다음과 같은 과정을 거친다.

2.2.1 그래프 입력 데이터 전처리

`GNN을 통해 라우팅테이블을 생성하기 위해서는
네트워크그래프를학습가능한데이터로변환하는전

처리과정이필요하다. 각드론은 GPS 위치, 남은배터
리, 처리 가능한 데이터, 네트워크 출력과 같은 상태
정보를포함하는특징벡터로표현된다. 드론간링크는

네트워크출력, 지연시간, 패킷손실률과같은정보를
포함하여 정의된다.

2.2.2 GNN 학습

GNN은학습과정을통해그래프데이터를처리하

는데, 이때의핵심은메시지전달(Message Passing) 메
커니즘이다. 메시지전달과정에서각노드는이웃노드
와정보를교환하며, 이를통해자신의상태벡터를업

데이트한다. 이러한과정이반복되면노드와엣지는네
트워크내위치와관계를반영한고차원임베딩을생성
하게된다. 이임베딩은네트워크의현재상태를반영하

며, 라우팅 경로를 예측하는 데 사용된다.

2.2.3 라우팅 테이블 생성

학습된 GNN 모델은라우팅테이블을다음과같은
방식으로생성한다. 출발지노드에서목적지노드로데

이터를전송할최적경로를예측한후, 네트워크출력과
지연시간같은비용을기준으로경로를선택한다. 그
결과, 각 노드에서 나머지 모든 노드에 대한 다음 홉

정보가 포함된 라우팅 테이블이 생성된다.

아래그림 2는전체적인흐름을나타낸프레임워크
로, UAV 배치와이를그래프로나타내고올바른라우

팅테이블을형성한후 GNN으로학습하는전과정을
그린다.

Ⅲ. 성능평가

3.1 실험 목적
본실험은드론네트워크환경에서 GNN 기반라우

팅방식과기존의다익스트라알고리즘기반라우팅방

식을 비교하여, 두 방식의 효율성과 성능을 평가하는
데목적이있다. 구체적으로, GNN 방식이다익스트라
알고리즘과비교하여경로예측의정확성과추론속도

에서얼마나우수한지확인한다. 또한, 전이학습을도
입하여 GNN의학습시간을단축하고성능을개선하는
효과를 실증하고자 한다.

또한, GNN은라우팅테이블을생성하는추론단계
에서다익스트라보다빠른속도를보였으나, 학습시간
이오래걸리는단점이있다. 이를해결하기위해전이

학습을적용하여학습시간을단축하고경로예측의정
확도를높이는추가실험도진행한다. 전이학습적용의
효과를 입증하기 위해 학습 시간의 감소율과 다음 홉

예측의 정확성을 비교 분석한다.

3.2 실험 환경
실험은 Python의 NetworkX 라이브러리를사용하여

네트워크토폴로지를시뮬레이션하였다. 실험환경에

서드론은 10×10 영역내에무작위로배치되며, 임의의
개수의 노드로 구성된다. 각 노드는 가까운 순서대로
최대 4개의노드와연결되며, 연결가능범위는유클리

드거리로계산된다. 임계값내에연결가능한노드가
없을경우, 가장가까운노드하나와강제로연결하여
네트워크의강건성을유지하여그림 3과같은토폴로지

를 구성한다.

각 노드 간의 연결은 지연 시간(delay)과 네트워크
출력(throughput)을주요특성으로가지며, 각각 20ms

에서 50ms과 50Mbps에서 100Mbps 사이의랜덤값으
로설정된다. 다익스트라알고리즘은이두특성을결합

그림 2. GNN기반 라우팅 테이블 전체 프레임워크
Fig. 2. Routing table based GNN Framework
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한비용함수를사용하여최적경로를계산하며, 이를

기준으로초저지연및고용량경로를찾는학습을수행
한다.

비용 함수는 다음과 같은 형태로 정의된다:

(1)

식(1)에서 c1과 c2는 throughput과 delay 간의상대

적 중요도를 조정하는 가중치이며, throughputdijkstra와
delaydijkstra는다익스트라알고리즘을통해계산된기준
값이다. 이수식은특정경로의 throughput 유지정도와

delay 감소 정도를 정량화하며, score 값이 가장 높은
경로가초저지연및고용량을동시에만족하는최적경
로로 평가된다.

다익스트라알고리즘과위제약조건으로계산된경
로를 기반으로 각 노드의 라우팅 테이블을 생성하고,

이를 GNN 학습의 지도 데이터(Label)로 사용하였다.

GNN 학습은 PyTorch Geometric(PyG)을활용하여
수행되었다. 입력 데이터로는 대상이 되는 각 노드의
위치(x, y 좌표)와 연결 정보가 사용되었으며, 출력은

각노드를시작점으로나머지노드를목적지로하는경
로에대해다음홉(Next Hop)을예측하는방식으로설
계되었다. 학습방법은주어진그래프에대하여다익스

트라 알고리즘과 제약조건을 만족하도록 모든 노드에
대해나머지노드에 대한라우팅 테이블을생성한후,

이를 학습하는 방식으로 진행하였다.

3.3 실험 과정
첫번째실험에서는 GNN 방식과다익스트라알고

리즘기반라우팅의성능을비교하였다. 이를위해 25

대노드부터 400대노드를 10*10 환경에서각각두방

식의라우팅테이블생성속도를측정하여비교하였다.

그결과, 표 1에서 25개의노드로구성된소규모네
트워크에서는 다익스트라 알고리즘이 CPU 기반으로

더빠르게작동하여 GNN보다 우월한성능을 보였다.

이는다익스트라알고리즘이단일프로세스연산에최
적화되어있고, 소규모네트워크에서는복잡한병렬연

산의 이점이 드러나지 않기 때문이다.

반면, 100개이상의노드로구성된대규모네트워크
환경에서는 GNN이 GPU 기반병렬연산의이점을통

해 더 나은 효율성을 발휘하였다. 특히 400개의 노드
환경에서 GNN은다익스트라알고리즘대비약 2.2배
더 빠른 추론 속도를 보이며, 대규모 네트워크에서의

실시간경로계산및예측에더적합한방법임을증명하
였다.

이러한 결과는 기존 알고리즘 기반 라우팅과 GNN

기반라우팅의근본적인차이에서기인한다. 다익스트
라알고리즘은단일최적경로를결정하는데최적화된
방식이며, 계산복잡도는 O(NlogN)으로노드수가증

가할수록 연산 비용이 선형적으로 증가한다. 반면,

GNN 기반라우팅은사전학습된모델을활용하여여
러 경로의 비용을 동시에 추론하는 방식이므로, 일정

규모 이상의 네트워크에서는 GPU 기반 병렬 연산을
통해다익스트라알고리즘보다빠른속도로최적경로
를 탐색할 수 있다.

또한, 본연구에서는학습시간과추론시간을분리
하여평가하였으며, Table 1에서비교한라우팅속도는

학습을완료한후추론단계에서의속도만반영한결과

이다. GNN 기반라우팅은초기학습이필요하지만, 한
번학습이완료되면새로운네트워크토폴로지나변화
된트래픽조건에서도빠르게최적의라우팅을생성할

수 있는 장점을 가진다[23].

두번째실험에서는 GNN의학습속도와성능향상
정도를 측정하기 위해 전이 학습을 적용하였다. 초기

실험에서는 49대노드의네트워크환경에서중심이되
는노드를기준으로 GNN 모델을학습하여사전학습
된 모델(pre-trained model)을 생성하였다. 이후, 주변

노드를입력으로하여 100회의추가학습(fine-tuning)

을 수행하였다. 전이 학습을 적용한 경우와 처음부터

그림 3. 노드 생성 및 그래프 연결 결과
Fig. 3. Node creation and graph connection results

# of nodes Dijkstra (s) GNN (s)
25 0.0000316 0.0001112
49 0.0000614 0.0001143
81 0.0000975 0.0002044

121 0.0001593 0.0001541
169 0.0002165 0.0001605
225 0.0003062 0.0001848
400 0.0006153 0.0002751

표 1. 다익스트라와 GNN라우팅 테이블 생성시간
Table 1. Dijkstra and GNN based routing table creation
time.
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학습을시작한경우의학습시간과경로예측정확성을
비교하여전이학습의효과를평가하였다. 이때, 경로
예측정확성은 GNN 모델로생성된결과와다익스트라

알고리즘으로생성된결과의유사도로모델의예측정
확성이다.

그림 4는전이학습을적용하였을때의학습속도와

성능이향상된결과를보여준다. 여기서노드 25와노
드 18은 GNN 학습에서 노드 임베딩에 의해 할당된
번호를의미한다. 노드임베딩은노드의 x, y 좌표값을

기준으로 정렬하여 번호를 매긴 방식으로, 값이 작은
노드부터 순서대로 번호를 부여한다. 노드 25와 노드
18은 물리적으로 서로 근접한 노드로 선정하였다.

첫번째그래프는노드 25에서사전학습을수행한
후, 노드 18에서미세조정을진행한결과를보여준다.

이과정에서학습속도가빨라졌으며, 더높은정확도

상한에 도달하였다. 미세 조정 과정에서는 학습 초기
단계부터성능이빠르게개선되었고, 최종적으로더높
은정확도를달성하였다. 이는사전학습을통해 GNN

이 네트워크의 구조적 특성을 잘 학습하였고, 새로운
환경에서도 빠르게 적응할 수 있었음을 보여준다.

두번째그래프는노드 18에서사전학습을수행하

고, 같은노드에서미세조정을진행한결과를나타낸
다. 이경우에도미세조정을통해학습속도가빨라졌

으며, 최종적으로 더 높은성능을기록하였다. 이러한
결과는전이학습이새로운노드나환경에서빠르게적
응하고성능을높이는데효과적인방법임을증명한다.

특히노드 25에서의 사전 학습이 근접한 노드인 노드
18에서의학습효율과최종성능을크게향상시켰음을
보여준다.

이는 사전 학습 모델 생성에 사용된 GNN 모델인
GCN(Graph Convolution Network)의 특성으로 인해
전이 학습 모델에서 정확도 개선이 이루어졌다. GCN

은한번의학습이수행될때마다이웃한노드의특성을
집합하여학습하는구조를가진다. 이러한특성을바탕
으로노드 25와노드 18은인접한노드이므로, 노드 25

를학습한뒤노드 18을추가학습하면한홉을더깊이
있게학습할수있기때문에사전학습한모델이보다
풍부한 정보를 가진 초기 표현을 바탕으로 학습할 수

있어 성능이 향상되었다.

Ⅳ. 결 론

본논문에서는 UAV 네트워크에서발생하는라우팅
문제를해결하기위해 GNN 기반라우팅방식을제안
하였다. GNN은 네트워크의 그래프 구조를 활용하여

각노드간의최적경로를예측하고, 지연시간과네트
워크출력을고려하여다중목표최적화를가능하게한
다. 특히, 전이학습을적용하여 GNN 모델의학습시간

을 단축하고 새로운 환경에 빠르게 적응할 수 있도록
하였다.

실험결과, GNN은대규모네트워크환경에서다익

스트라알고리즘 대비 더빠른추론속도를보였으며,

전이 학습을 통해 초기 학습 시간 단축과 경로 예측
정확도를효과적으로개선하였다. 이러한결과는 GNN

기반라우팅방식이다중 UAV 네트워크와같은동적
이고복잡한환경에서저지연성과고용량데이터전송
을 동시에 만족하는 데 유용함을 입증한다.

향후연구에서는 UAV 네트워크에서발생할수있
는실시간장애복구와에너지효율성문제를해결하기
위해 GNN 모델의확장성과적응성을더욱개선할필

요가있다. 또한, 실제네트워크환경에서의실시간라
우팅성능평가를통해본연구에서제안한방식의실용
성을 검증하는 것이 필요하다.
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