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ABSTRACT

In this paper, we propose an efficient reuse method for UL TXOP(Uplink Transmission Opportunity) in
UORA(Uplink OFDMA Random Access) mechanism within IEEE 802.11ax-based OFDMA (Orthogonal
Frequency Division Multiple Access) environments. Unlike 802.11ax standard, our proposed mechanism
enhances performance by providing additional transmission opportunities to other stations when data
transmission completes earlier than the allocated UL TXOP time or when collisions occur, effectively
reallocating these resources. Simulation results demonstrate that the proposed mechanism exhibits superior
performance compared to the standard method in terms of throughput and channel utilization, with particularly

significant performance improvements as the length of the UL TXOP interval increases.
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Algorithm 1 Initialization & STA Classification

Input: Channel access parameters for AP and STAs
Output: Sets of Spain and Seup

1: Phase 1: Initialization

2: AP broadcasts Trigger Frame (TF)

3: Bach ST A; initializes OCW,; = OCWnin

4: Bach ST A; selects random OBO value OBO; € [0, OCW;]
5: Phase 2: STA Classification
6
7
8
9

: AP allocates ngyy Resource Units
: Each ST A; decrements OBO; = OBO; — nry
: STA; determines its type:
: Smain = {STA;JOBO; < 0}
10: Seup = {STA1|OBOL > U}

O3 3. 2713} 2 RU &7 WS 913 a3 oMx
Fig. 3. Flow chart of algorlthm for initialization and RU
classification phase

1412

Algorithm 2 S,,,4in Transmission
Input: Set of S;qin, available RUs
Output: Updated CW and OBO values for S;ain
1: for each STA; € S;nqin do
2 Randomly select RU; from available RUs
3: Transmit on selected RU ;
4 if transmission successful then

5 Reset OCW; = OCWhin

6 Set new random OBO; € [0, OCWpin]

7: Finish transmission early if data is exhausted
8 else

9 OCW; = min(2- OCW; + 1,0CWnax)

10: Set new random OBO; € [0, OCW;]

11:  end if

12: end for

a8 4. Smazn A 1}1’74]—%—_?3 OL—TE]Z’] _"]"]—J—

Fig. 4. Flow chart of algorithm for S, ., transmission
phase
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Algorithm 3 S, Transmission

Input: Set Sgup, available RA-RUs, UL period timing con-
straints
Output: Updated OCW and OBO values for Sgqp
1: for each STA; € Sgyup do
2 Randomly select RU; for carrier sensing
3. Perform carrier sensing on RU;
4 if RU; is idle for Ths;rg period then
5 Calculate required transmission time Tyq44
6 Calculate remaining time Tyemain in UL period
T if Tremain > Tdata + Tpreamble + TBsr then
8 Attempt transmission on RU;
9 if transmission successful then

10: Reset OCW; = OCWiyin

11: Set new random OBO; € [0, OCWpin]|
12: else

13: Mark as ineligible for current UL period
14: end if

15: end if

16: end if
17: end for

a2l 5. S, A% HE 98 duElEe] $A=
Fig. 5. Flow chart of algorithm for S, transmission
phase
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Table 2. Parameters and their values of the simulation

Parameter Value
Number of simulations
(N,) 10,000
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MCS 7
RU size (V) 26 tone

Payload Size(B) [800, 1500] octets

Number of RA-RUs(7,,,) {4, 8}
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(T camne)

BSR duration( 75¢,) 80us
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Fig. 7. Channel utilization comparison with standard
UORA and proposed Multi-UORA according to 7,

(ngy =4, ngy=8)

o= Aol =HY] 7o) ¥l 3 ll4 Multi-UORA
7} Ak A AR TS 80 R 888 4 9l
< AXEEL

v.d B

H =l [EEE 802.11ax 7|4} OFDMA 373
2] UORA H#HYZ0ll4] UL TXOP 77k2] AjAg- v
ok 488k Multi-UORAE A|gtalgich Aeke w7
Y52 STA®] dloJe] Hfo] UH Am=|AL; FEo]
LA 739 i A7 ARE tRE STACA 714
Ql A 713 E AlFFeZH A A1) WdhlE HAa
sl3lc} Al Bl 23k Multi-UORAE Ad &85

T

Z7o]A] 5 UORA t] i 38.7%] - 19
©n, B3] UL TXOP 17k] 71 3H4eM= 2t 2n)

7 Asol MAAE S-S BlE 5 itk

References

[1] D. Bankov, A. Didenko, E. Khorov, and A.
Lyakhov, “OFDMA uplink scheduling in
IEEE 802.11ax networks,” in Proc. IEEE ICC
2018, pp. 1-6, Kansas City, MO, USA, May
2018.
(https://doi.org/10.1109/ICC.2018.8422767)

[2] L. Lanante, C. Ghosh, and S. Roy, “Hybrid
OFDMA random access with resource unit
sensing for next-gen 802.11ax WLANSs,” [EEE
Trans. Mobile Comput., vol. 20, no. 12, pp.
3338-3350, Dec. 2021.
(https://doi.org/10.1109/TMC.2020.3000503)

[31 S. M. Kim, “MAC protocol for reducing
collision probability of uplink channel in IEEE
802.11ax WLANS,” J. KIIT, vol. 20, no. 6,
pp- 77-84, Jun. 2022.
(https://doi.org/10.14801/jkiit.2022.20.6.77)

[4] Y. Zheng, J. Wang, Q. Chen, and Y. Zhu,
“Retransmission number aware channel access
scheme for IEEE 802.11ax based WLAN,”
Chin. J. Electr., vol. 29, no. 2, pp. 351- 360,
Mar. 2020.
(https://doi.org/10.1049/cje.2020.01.014)

[51 G. H. Hwang, “Mulituser OFDMA-based
random access scheme for throughput
enhancement in dense wireless LANs area,” J.
KICIS, vol. 42, no. 12, pp. 2304-2306, Dec.
2017.
(https://doi.org/10.7840/kics.2017.42.12.2304)

[6] Y. Kim, L. Kwon, and E. C. Park, “OFDMA
backoff control scheme for improving channel
efficiency in  the network
environment of IEEE 802.11ax WLANS,”
Sensors, vol. 21, no. 15, p. 5111, Jul. 2021.
(https://doi.org/10.3390/s21155111)

[71 D. Tsolkas, E. Liotou, N. Passas, and L.
Merakos, “A  graph-coloring  secondary

dynamic

resource allocation for D2D communications
in LTE networks,” in Proc. IEEE 17th Int.

1415



The Journal of Korean Institute of Communications and Information Sciences "25-09 Vol.50 No.09

[8]

[9]

1416

Wkshp. Comput.  Aided Model.  Design
Commun. Links Networks (CAMAD 2012), pp.
56-60, Barcelona, Spain, Sep. 2012.
(https://doi.org/10.1109/CAMAD.2012.633537
8)

W. Yin, P. Hu, J. Indulska, M. Portmann, and
Y. Mao, “MAC-layer rate control for 802.11
networks: A survey,” Wireless Netw., vol. 26,
pp. 3793-3830, 2020.
(https://doi.org/10.1007/s11276-020-02295-2)
IEEE, “IEEE

technology—telecommunications and informa-

Standard  for  information
tion exchange between systems local and
metropolitan area networks—specific require-
ments part 11: Wireless LAN medium access
control (MAC) and physical layer (PHY)
specifications amendment 1: Enhancements for
high-efficiency WLAN,” IEEE Std
802.11ax-2021 (Amendment to IEEE Std
802.11-2020), pp. 1-767, May 2021.
(https://doi.org/10.1109/IEEESTD.2021.944242
9)

0l & T (Dongkyu Lee)

202511 8 : AR AHF
Eghy- shAb

2025 9Y~&A] : AE T
ZAFEIH- AAEA

<FAEol> Wi-Fi 7/8, 5G/
6G, UAV networks

[ORCID:0009-0002-1592-3425]

8 & J| (Hoki Baek)

2006 24 : ol AH
4 AFE e b

2008 24 :olFEiE . AHE

st A=l A ddedd
2015 39~2021d 29 : ol hetal ST A|E g
ol el
2021 39~FA B ENISL S
<3]%ek> 5G/6G, Wi-Fi 7/8, Non- terrestrial
networks, UAV networks, Covert Communi-
cations, Tactical  networks, IoT, V2X,
Positioning

[ORCID:0000-0001-9213-7845]



