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Ⅰ. Introduction

Accurate and reliable ball tracking technology

plays a pivotal role in a wide range of industries, in-

cluding screen golf and soccer strategy analysis,

where it is utilized for diverse purposes such as ana-

lyzing player performance and conducting tactical

assessments. Users expect sensors to recognize the

ball’s movement quickly and accurately, and this trust

is directly linked to service satisfaction. However, the

legacy ball tracker operated by the organization that

requested this study for several years has failed to

meet these expectations. Despite being a core asset

to the business strategy, the system has been the sub-

ject of persistent customer complaints due to sporadic

recognition errors in various field-like environments,

leading to a decline in business credibility and direct

operational difficulties.

However, the fundamental difficulty in problem

solving lay in the uncertainty surrounding the legacy

ball tracker system. Existing developers could only

empirically guess that factors such as the various col-

ors of the ball, surrounding objects like golf clubs or

shoes, and external environmental factors like lighting

and sunlight were the causes of errors, but they were

unable to identify the root cause through engineering

principles. As is the reality for many small-sized en-

terprises, development artifacts such as requirements

specifications and design documents for the tracker

were non-existent. Furthermore, with the departure of
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the entire original development team, it was difficult

to grasp the requirements of the system and the origin

intent of the developers. The source code was heavily

reliant on third-party libraries based on complex math-

ematics, making a precise analysis of its behavior

challenging. As the ball tracker system accepted un-

structured data as input, analyzing the cause of errors

between input and output was even more difficult than

for systems that handle structured data.

To find the root cause of the errors in this legacy

ball tracker and improve its performance, this study

applies a data-driven, systematic approach to perform-

ance analysis and enhancement. First, the study em-

ploys a technique called progressive class refinement

to localize the cause of errors. This is a process that

transforms abstract speculation into concrete, da-

ta-based evidence by subdividing an image class

where an error occurs into more specific subclasses

and conducting iterative tests.

Second, to resolve the vulnerabilities identified

through the analysis, the study implements a new ball

tracker based on a DNN, which is robust to excep-

tional situations and external noise. For the develop-

ment of a high-performance DNN, the study strategi-

cally utilizes the refined classes defined during the

error analysis throughout the model’s training and

validation. By paying closer attention to data quality

in the specific classes where errors occur, this study

enhances the model’s robustness. Furthermore, by

measuring performance on a per-class basis during

validation, this study presents a framework that allows

for a detailed analysis of the model’s strengths and

weaknesses in specific situations, moving beyond the

ambiguous metric of "average performance", i.e., the

fallacy of the average.

The contribution of this study can be summarized

as follows:

∙Data-driven error analysis method for black-box

legacy systems: This study proposes a practical

method, ’progressive class refinement’, to system-

atically identify and specify the failure causes of

legacy systems that lack documentation or

information.

∙Error-aware dataset construction and training strat-

egy: This study presents an intelligent strategy for

constructing and utilizing training datasets that lev-

erages the identified error classes to compensate

for the DNN model’s vulnerabilities and enhance

its robustness.

∙Fine-grained performance verification framework:

This study proposes a framework that enables a

multi-faceted verification of the new system’s reli-

ability by deeply analyzing the model’s perform-

ance on a per-class basis, going beyond average

accuracy.

∙Application in a real-world industrial environment:

This study demonstrates the effectiveness of the

progressive class refinement approach by applying

it to solve a problem in an actual industrial setting.

The remainder of this study is organized as follows.

Section 2 reviews existing related work. Section 3 de-

scribes the problem statement and the overall ap-

proach to solving it. Section 4 performs the error anal-

ysis using class refinement, and Section 5 shows the

performance improvement based on this refinement.

Section 6 discusses the findings of this study. Finally,

Section 7 concludes the study.

Ⅱ. Related Work

Traditional pattern recognition algorithms rely on

handcrafted features and conventional machine learn-

ing techniques, making them computationally efficient

and widely adopted in object tracking applications due

to their simplicity and real-time performance[1-3].

Despite their computational advantages, the perform-

ance of these algorithms heavily depends on the qual-

ity of handcrafted features, which may not be optimal

for complex and dynamic scenarios encountered in re-

al-world applications[4]. Wang et al. highlighted these

limitations in their analysis of automatic composition

systems for broadcast sports videos, noting that tradi-

tional approaches fail to maintain consistent perform-

ance across varying environmental conditions[5].

Huang et al. reported that SURF descriptors fail to

provide sufficient discriminative power for small, tex-

tureless objects like balls, particularly in cluttered en-

vironments[6]. The SIFT-based ball tracking system

proposed by Ren et al. degraded significantly when
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dealing with fast-moving objects due to motion blur

and insufficient distinctive features on spherical surfa-

ces[7].

DNNs utilize sophisticated deep learning archi-

tectures such as convolutional neural networks, re-

current neural networks, and transformers that auto-

matically learn features from raw data, eliminating the

need for handcrafted features[8]. Vicente-Martínez et

al. focused on a semi-supervised network using

YOLOv7 and DeepSORT for soccer ball detection

and tracking, achieving superior accuracy of 95%

compared to traditional methods[9]. Ahmad et al. em-

phasized the capabilities of DeepSORT as a modern

multi-target tracking algorithm that overcomes occlu-

sion and varying illumination conditions that com-

monly affect traditional tracking systems[10]. Zhang et

al. present PCTrack, a novel real-time object tracking

system for edge devices that achieves 19.4% to 34.7%

accuracy improvements over existing methods to ad-

dress outdated detections, tracking errors, and missed

new objects[11].

Traditional evaluation metrics such as precision, re-

call, and F1-score provide basic performance charac-

terization but often fail to capture the detailed error

causes of ball tracking applications[12,13]. Statistical ap-

proaches to error analysis have gained prominence in

recent years, focusing on probabilistic models of sys-

tem behavior[14,15]. Hoiem et al. categorized each false

positive and false negative into types such as classi-

fication error, localization error, confusion with sim-

ilar object categories, or confusion with back-

ground[16]. Sophisticated mathematical frameworks

enable quantitative prediction of how subsystem un-

certainties propagate through vision pipelines[17].

Stereo vision research adopts parametric sensitivity

analysis to rank contributors to error[18]. While these

methods constitute a data-driven approach for analyz-

ing error causation, they do not provide formal defi-

nitions of the input data conditions that generate

errors.

The uniformity of training data has emerged as a

critical factor affecting the performance and general-

izability of deep learning models. Johnson et al. high-

lighted that effective classification with imbalanced

data is an important area of research, as high class

imbalance is naturally inherent in many real-world ap-

plications[19]. Zhang et al. conducted an empirical

study examining the joint impact of feature selection

and data resampling on imbalanced classification

tasks[20]. Their findings demonstrate that the combina-

tion of appropriate feature selection with strategic re-

sampling significantly improves model performance

on imbalanced datasets. Krawczyk introduced learning

from imbalanced data streams using ensemble meth-

ods, which has been particularly relevant for online

learning scenarios where data distribution may shift

over time[21]. Kumar et al. introduced curriculum

learning with self-paced learning, allowing models to

automatically select training samples based on their

current learning state[22]. Zhou et al. proposed the bi-

lateral-branch network for long-tailed learning, which

uses separate branches for representation learning and

re-balancing[23]. However, these existing methods can-

not improve the uniformity of data within subclasses

that are defined by an arbitrary dimension of interest.

Ⅲ. Overall Approach

This section presents the problems identified in the

legacy ball tracker system and provides a detailed de-

scription of the approach adopted in this study to re-

solve these issues. The proposed approach introduces

an error analysis and performance enhancement

framework based on the progressive refinement of in-

put data classes.

3.1 Problem Statement
The park golf ball tracker is a critical component

that enables virtual park golf in indoor environments.

When a player hits a ball with a club, the tracker ana-

lyzes its movement to compute a motion vector, which

is subsequently used by a park golf simulator to visu-

alize the trajectory of the ball in a virtual space.

This integrated virtual park golf simulation system

was commercialized and operational for several years,

during which customer complaints consistently

emerged regarding inconsistencies between the behav-

ior of the simulated and actual balls. The existing de-

velopment team hypothesized that the ball tracker

within the virtual park golf simulation system was the
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source of error. The developers were guessing at the

cause of the problem solely on the basis of empirical

observations. When tasked with investigating this is-

sue, this study encountered two significant constraints:

1) the original development team responsible

for the implementation of the tracking system had

left the company, and 2) all technical artifacts neces-

sary to understand the intended functionality of the

tracking system, including requirements specifica-

tions, design documents, and test reports, were absent.

This phenomenon is indeed a realistic problem that

many small businesses face.

Despite the lack of formal documentation, system-

level testing confirmed that the simulator received

motion vectors inconsistent with observed physical

behavior, definitively localizing the fault to the

tracker. However, subsequent manual inspection of

the source code did not reveal the specific cause of

the erroneous vector calculations.

3.2 Approach based on Data Class Refinement
A notable characteristic of the tracker’s source code

was its implementation of traditional pattern recog-

nition techniques using the OpenCV library. Given the

mathematical complexity encapsulated in OpenCV

and the inherent sensitivity of pattern recognition sys-

tems to input variations, this study conjectured that

the tracker’s output exhibited significant dependency

on input data characteristics. This study therefore

adopted a data-driven approach to analyze error caus-

es through the examination of the input-output

relationship.

This study proposes a data class refinement-based

method for analyzing errors and improving perform-

ance in traditional pattern recognition systems. As il-

lustrated in Fig. 1, the approach comprises two pri-

mary phases: 1) Error Localization via Data Class

Refinement (EL), 2) Performance Improvement via

Refined Data Classes (PI). The EL phase pro-

gressively refines input data classes to identify com-

mon characteristics of error-inducing data through da-

ta-driven analysis. The PI phase uses the refined data

classes to construct training datasets and evaluate

training data quality, thereby facilitating the develop-

ment of high-performance neural networks.

The objective of the EL phase is to identify com-

mon characteristics of input data that cause errors. The

EL phase localizes the characteristics of error-induc-

ing input data by dividing the spectrum of input data

into classes and iteratively refining these classes. The

EL phase comprises the following five steps:

1) Feature Space Definition of Input Data: The input

data accepted by the system can be represented as

a combination of characteristics that compose it.

The ball tracker receives sequential images as input

data, and each image’s characteristics can be ex-

pressed by the objects within the image and the

environment in which the objects are placed.

2) Progressive Class Refinement of Feature Space:

Once the entire feature space is defined, the spec-

trum of values for each characteristic can be div-

ided into multiple classes. Any given class can fur-

ther be subdivided into subclasses. Refined classes

exhibit a hierarchical relationship. The character-

istics of a refined subclass inherit the character-

Fig. 1. Error localization and performance improvement
based on data class refinement.



논문 / A Case Study on Improving Ball Tracking Performance through Error Analysis Based on Data Class Refinement

1385

istics of the class from which it was refined.

Repeating the refinement progressively can lead to

the smallest unit of subclass for which further re-

finement is no longer meaningful.

3) Representative Test Data Construction for Each

Class: If data corresponding to a class are not pre-

defined, data belonging to that class must be

constructed. If a sufficient quantity of data has

been constructed for a refined class, an arbitrary

number of samples can be selected from that re-

fined class. Since the selected arbitrary samples be-

long to the same class, they can be understood as

having the same characteristics. The selected sam-

ples serve as representative test data for each class.

4) Test Execution with Representative Test Data: The

representative test data are fed as input to the sys-

tem under test, and the corresponding outputs are

observed. If an error occurs in the output, the proc-

ess can be repeated from step 2, "Progressive Class

Refinement of Feature Space," to further localize

the error characteristics of the output. The decision

to repeat this loop is determined by a pre-defined

error rate threshold through the test criteria.

Classes with an error rate higher than the threshold

become candidates for refinement. However, even

classes with a very high error rate might not under-

go further refinement if they are understood to be

the core cause of the error occurrence.

5) Common Characteristics Analysis of Error-

Inducing Data: By analyzing the common charac-

teristics of error-inducing data within classes

where refinement has been stopped due to suffi-

ciently high error rates, the characteristics of inputs

that the system under error analysis cannot handle

are identified in a data-driven manner, rather than

relying on developers’ intuition.

The PI phase aims to improve the performance of

an existing system with errors, utilizing the refined

data classes defined in the EL phase. The PI phase

consists of the following three steps:

1) Training Data Construction: To improve the per-

formance of the existing system, it is necessary to

construct data required for DNN training. A com-

mon strategy for building DNN training data is to

build as large a dataset as possible to ensure high

performance of the selected DNN model.

2) Data Quality Verification Based on Refined

Classes: Even if a large amount of data is con-

structed in the previous step, a large quantity of

data does not necessarily represent the quality of

the training data. High-quality training data must

satisfy both sufficient quantity and uniform dis-

tribution across the input data spectrum. The uni-

formity of training data is assessed based on the

refined data classes defined in the EL phase.

Classes with insufficient training data can be iden-

tified using the number of data belonging to the

refined classes.

3) Model Training and Performance Evaluation: This

step involves evaluating the performance of the

trained model. Performance evaluation can also be

conducted for each refined class. Performance

evaluation based on refined classes is a method

that allows for a detailed observation of model per-

formance without falling into the fallacy of the

average.

Ⅳ. Error Localization via Class 
Refinement

This section localizes the errors in the legacy ball

tracker system provided for this case study using the

class refinement method. The spectrum of input data

is progressively divided into finer subclasses through

class refinement, and by iterating this process, the

source of errors is formally identified and described.

4.1 Foundational Definitions
An input image I is modeled as a set comprising

the objects ball, club head, shoe, and human head,

denoted as

Each object is characterized by distinct features, de-

fined as follows:
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where:

∙ cx ∈ 3 : the average color of the region in HSV

color space,

∙ sx ∈ + : the area of the region in pixels,

∙ κx ∈ [0, 1] : circularity, computed as κx = ,

∙ ιx ∈ [0, 1] : a binary indicator of localized illumi-

nation,

∙ αx ∈ + : the estimated absolute luminance.

The ball tracker function T takes an input image

I and returns a set of detected objects:

In an error-free case, Odetected contains only the ac-

tual ball object B or is an empty set if no ball is

present. The internal behavior of the function T con-

sists of two functions as follows:

1) Color filter M: This function applies a mask based

on predefined ball color range . For an object

x with observed color ϕcolor(x), if ϕcolor(x) is within

the range, M(x) = 1; otherwise, M(x) = 0. The ob-

served color ϕcolor(x) is a function of the object’s

intrinsic color cx, and the external light conditions

ιx and αx. The color filter M is defined as:

2) Geometric filter R: After converting the masked

result to grayscale, this function R evaluates the

observed size ϕsize(x) and observed circularity ϕcir-

cul(x) of an object x against a predefined ball size

range Sre and circularity . If they

match, R(x) = 1; otherwise, R(x) = 0. The geo-

metric filter R is defined as:

3) Finally, an object x is recognized as a ball if and

only if x ∈ Odetected ⇐⇒ R(x | M(x) = 1) = 1.

Let E denote the error function. E (I) = 1 if the

ball tracker produces an error, and E (I) = 0 otherwise.

The primary error is false positive, where a non-ball

object, (e.g., club head Cl, shoe Sh, human head H
u) is identified as a ball. Thus, if x ∈ {Cl, Sh, Hu}

and x ∈ T(I), then E (I) = 1.

4.2 Progressive Class Refinement
To identify the sources of errors in the legacy ball

tracker, this study incrementally performed class

refinements. This subsection corresponds to steps 1

through 4 of the five detailed steps of the EL phase,

as shown in Fig. 1.

An example of the progressive refinement process

for data classes is illustrated in Fig. 2. For the sake

of simplicity, this study assumes a two-dimensional

feature space. The horizontal and vertical axes, cx and

sx , denote the color and size values of an object x,

respectively. The blue dots represent data that do not

induce errors, while the red dots represent those that

induce errors.

On the coordinate plane, each rectangular region

containing the dots constitutes a data class. The gray

Fig. 2. Progressive refinement of data classes.
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shade of each region indicates the error rate of the

corresponding subclass; a darker shade signifies a

higher error rate. The initial refinement stage consists

of a single class that encompasses the entire feature

space. As the refinement process continues, the fea-

ture space is partitioned into multiple subclasses. It

can be observed that this gradually reveals subclasses

characterized by higher error rates and smaller, more

specific regions within the feature space.

Let Γ(0) denote the initial set of classes that covers

the entire feature space , such that:

A class Γi is a subset of the entire feature space

, defined by a specific range of feature values.

Formally, an instance I ∈ belongs to a class Γi

if its feature values lie within prescribed intervals:

The progressive refinement process is as follows:

1) At iteration k, start with the current set of classes

2) For each class , select a representative

image dataset .

3) For each image , run the tracker T(I) and

evaluate the error E(I).

4) Calculate the error rate for class :

5) If ErrRate (a predefined error thresh-

old) and the class is not yet granular enough,

refine into a set of mutually exclusive sub-

classes . This refinement

is done by partitioning one or more feature

dimensions.

6) The new set of classes for the next iteration, Γ(k+1),

is formed by the unrefined classes and the newly

created subclasses.

7) This process terminates when it is determined that

the classes of interest have been sufficiently

refined.

4.3 Analysis of Identified Error-Inducing 
Classes

Upon completion of the process of progressive

class refinement, this study obtains a set of refined,

high-error-rate classes, denoted as

. Each element in this set is a collection

of images for which the ball tracker consistently fails

in a similar manner. The subsequent analytical stage

involves formally defining the error characteristics for

each of these classes.

The objective of this stage is to conduct a data-

driven investigation to extract a formal set of con-

ditions, Φq, that accurately describes the common

properties of . This set Φq serves as the formal

explanation for the tracker’s failure in that specific

scenario. For each given error class , this identi-

fication process involves a statistical analysis of the

feature distributions of its constituent images. This

study analyzes the distributions of the misidentified

object’s features as well as the external light

conditions.

The outcome of this analytical process is the formal

definition of the property set Φq. This set is designed

to serve as a robust descriptor for the class, such that

the properties of satisfy the conditions in Φq

.Formally, the process for each is to find a set

of conditions Φq:

Φq: = {condition1, condition2, …, conditionr},

such that:

, the properties of I are consistent with Φq.

Once the set of characteristics Φq is identified, it

provides a data-driven explanation for the tracker’s

failure. The conditions specified in Φq create the pre-

cise circumstances under which a non-ball object x
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satisfies the tracker’s detection logic, T(I) = Odetected

= {x}, by causing its observed color and/or circularity

to fall within the target reference ranges.

It is essential to reiterate that this characterization

is performed independently for each class . The fi-

nal result is a portfolio of distinct error scenarios, {Φ1,
Φ2, …, ΦM}, where each Φq explains a specific and

unique vulnerability of the ball tracker.

Through this analytical process, this study success-

fully identified and characterized a portfolio of dis-

tinct, high-error-rate classes. After several iterations

of refinement, the process terminated, yielding a set

of 3 final error-inducing classes with error rates

exceeding the predefined threshold of = 0.8. Table

1 presents a selection of the most significant error

classes, detailing their defining characteristics (Φq)

and the specific conditions that lead to false positives.

Fig. 3 shows example images of the error-inducing

classes presented in Table 1. In the images, the red

circle indicates the initial position of the object recog-

nized as a ball, and the two green circles represent

two positions when the object recognized as a ball

moves. The vector connecting the centers of these two

green circles is calculated as the ball’s motion vector.

Fig. 3a shows a metallic club head being recognized

as a ball. Fig. 3b shows a shoe being recognized as

a ball. Fig. 3c shows a person’s head reflected by light

being recognized as a ball.

The non-ball objects of interest-the club head, shoe,

and human head-are characterized by diverse feature

spaces. Under normal circumstances, their intrinsic

properties, such as color, size, and circularity, do not

align with the reference parameters the ball tracker

uses for ball identification. Consequently, these ob-

jects are not expected to be classified as balls.

The analysis of these identified classes provides a

clear, data-driven explanation for the legacy tracker’s

sporadic failures. Each class represents a distinct sce-

nario where a non-ball object’s features are mis-

interpreted by the tracker’s rigid filtering logic.

The analysis reveals that under specific environ-

mental conditions, the observed features of these ob-

jects can be significantly distorted, leading to false

positives. The primary cause of this distortion is the

influence of external illumination, particularly lo-

calized illumination (ιx) and absolute luminance (αx).

For instance, while an object’s intrinsic color may be

dissimilar to that of a ball, high luminance can cause

its observed color, ϕcolor(x), to shift into the reference

range . This mechanism explains how objects that

are fundamentally different from a ball are erro-

neously recognized by the legacy system. Due to the

sensitivity of pattern recognition-based ball tracking

to external light variations, this study concluded that

deep learning-based ball tracking technology is

required.

Class ID Description Key Characteristics (Φq) False Positive Rate

Reflective or metallic club
head under bright and

direct luminance at address.

ιx = 1 (localized illumination),
150 < αx < 200 cd/m2 (high luminance),

0.58 < < 0.7 (low color similarity),

0.74 < < 0.79 (middle size similarity),
0.7 < κx < 0.82 (middle circularity).

92%

White shoe with rounded
front, partially visible in

the frame.

ιx (don’t care),
85 < αx < 120 cd/m2 (high luminance),

0.42 < < 0.5 (low color similarity),

0.91 < < 0.98 (high size similarity),
0.5 < κx < 0.6 (low circularity).

85%

Top of a human head
moving through the

camera’s field of view.

ιx (don’t care),
40 < αx < 50 cd/m2 (low luminance),

0.51 < < 0.65 (low color similarity),

0.8 < < 0.92 (high size similarity),
0.6 < κx < 0.8 (middle circularity).

81%

Table 1. Key error-inducing classes identified through progressive class refinement.
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Ⅴ. Performance Improvement via 
The Refined Classes

In this section, this study develops and evaluates

the performance of a YOLO-based ball tracking sys-

tem trained on an error-aware dataset constructed us-

ing the refined data classes identified in Section 4.

5.1 Error-Aware Dataset Construction via 
The Refined Data Classes

To overcome the limitations of the legacy ball

tracking system, this study implemented a deep learn-

ing approach using YOLO-based architectures. The

key innovation in this section lies in the systematic

construction of the training dataset, which directly lev-

erages the error-inducing classes identified through

the progressive refinement process. The refined

classes revealed that errors in the legacy system were

concentrated in specific and well-defined scenarios.

Based on this insight from the refined classes, this

study developed a strategy for collecting training data

with specific features.

The dataset construction followed these principles:

∙ Error-aware-based sampling: For each refined er-

ror class , this study systematically collected

training samples that exhibited the characteristic

conditions Φq. This ensured that the YOLO models

would be exposed to the specific scenarios where

the legacy system failed.

∙ Balanced representation: To prevent bias in the

learned model, this study ensured equal representa-

tion across all the identified classes. This balanced

approach prevents the model from overfitting to

any particular error scenario while maintaining ro-

bust performance across diverse conditions.

∙ Normal operation coverage: In addition to error-

inducing scenarios, this study included samples

from normal operational conditions where the leg-

acy system performed correctly. This ensures the

YOLO models maintain high performance in

standard scenarios while improving on problematic

cases.

In the progressive class refinement process, 132

classes were defined. A data pool of 115,500 training

samples were subsequently collected, averaging 875

samples per class. The data pool comprises 112,844

normal samples (97.7% of total) and 2,656 abnormal

samples representing critical error classes (2.3% of to-

tal).

All images were annotated using the CVAT[24]. A

team of four trained annotators performed the labelng,

and a two-stage verification process was implemented

to ensure high-quality, consistent annotations across

the entire dataset. Due to the proprietary nature of

the data collected from commercially operating screen

park golf booths, this study are unable to make the

dataset publicly available but have strived to trans-

(a) metalic club head.

(b) white shoe.

(c) human head.

Fig. 3. Example of error-inducing classes: (a) metalic
club head, (b) white shoe, (c) human head.
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parently report the proposed method.

5.2 Model Training and Evaluation
To validate the effectiveness of the proposed er-

roraware method, this study conducted a compre-

hensive comparative analysis.

This study implemented two distinct dataset con-

struction strategies: a generic approach and the pro-

posed error-aware approach. Both strategies draw

from the same initial data pool and result in training,

validation, and test sets of identical sizes to ensure

fair and direct comparison.

5.2.1 Test Set

To ensure unbiased final evaluation, a test set was

isolated from the total pool before any training com-

menced as follows:

∙ Split ratio: 10% of the total data pool.

∙ Sampling method: Stratified random sampling to

maintain the original distribution of normal and

abnormal data.

∙ Final test set composition:

- Total size: 11,550 images.

- Normal images: 11,284.

- Abnormal images: 266.

This test set is identical for all experiments and

was not exposed to any model during the training or

validation phases.

5.2.2 Generic Training and Validation Sets

This approach simulates a standard development

process where the developer has no prior knowledge

of the specific error-inducing data classes. The princi-

ple underlying this strategy is to form training and

validation sets through random sampling from the

available pool as follows:

∙ Validation set (10%): 11,550 images are randomly

sampled from the 103,950-image pool.

∙ Training set (80%): The remaining 92,400 images

are used for training.

The abnormal data proportion in this training data-

set will be similar to the overall pool ratio, approx-

imately 2.3% (2,390 / 103,950). The expected number

of abnormal samples in the training set is approx-

imately 2,124 (92,400 ￗ 2,390 / 103,950). This dataset

construction approach represents a realistic "naive"

data construction method commonly used in practice.

On average, approximately 266 critical abnormal sam-

ples (2,390 - 2,124) are likely to be excluded from

the training process, potentially limiting the model’s

exposure to important failure cases.

5.2.3 Error-aware Training and Validation

Sets

This approach strategically leverages the insights

gained from the error analysis to ensure the model

learns from its most critical weaknesses. The dataset

is deliberately constructed to guarantee that all known

failure cases are used for training, thereby maximizing

the model’s exposure to critical data as follows:

∙ Validation set (10%): To achieve this principle, the

11,550-image validation set is randomly sampled

exclusively from the normal images in the pool.

∙ Training set (80%): The 92,400-image training set

is composed of:

- All 2,390 abnormal images from the pool.

- The remaining 90,010 images, randomly sam-

pled from the normal images.

This strategy guarantees that the model is trained

on every identified failure case, directly targeting the

system’s vulnerabilities for improvement.

5.2.4 Models and Training Configuration

Considering real-time performance, accuracy, com-

putational complexity, industrial application cases,

and deployment feasibility, this study selected

YOLOv5l and YOLOv7 as the experimental object

detection models. Both models demonstrate excellent

balance among real-time performance, accuracy, and

computational complexity[25,26]. However, the

YOLOv5 series has relatively more industrial deploy-

ment cases and offers greater ease of deployment[25,26].

The performance is compared against five key

benchmarks:

∙ Legacy system: The original ball tracker based on

pattern recognition.

∙ Baseline YOLOv5l: A standard YOLOv5l model
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trained on a generic dataset.

∙ Proposed YOLOv5l: A more advanced YOLOv5l

model trained using the error-aware dataset.

∙ Baseline YOLOv7: A standard YOLOv7 model

trained on a generic dataset.

∙ Proposed YOLOv7: A more advanced YOLOv7

model trained using the error-aware dataset.

All DNN models were trained on an NVIDIA RTX

3090 GPU. Training parameters were optimized for

industrial ball tracking requirements:

∙ Training epochs: 300 epochs with early stopping

(patience=50).

∙ Batch size: 32 images per batch.

∙ Learning rate: Initial learning rate of 0.01 with co-

sine annealing.

∙ Image size: 384×384 pixels to maintain real-time

performance.

∙ Optimizer: SGD with momentum=0.937 and

weight decay=0.0005.

5.2.5 Performance on Error-Inducing Classes

This study evaluated the performance specifically

on the three critical error-inducing classes , and

. Table 2 presents the false positive rate for each

system. While the baseline DNN models show a sig-

nificant improvement over the legacy system, they

still struggle with these specific, challenging scenar-

ios, exhibiting false positive rates between 15.2% and

25.1%. In contrast, the models trained with the pro-

posed error-aware approach demonstrate a dramatic

reduction in these errors. For the metalic club head

error class , the proposed YOLOv5l reduces the

false positive rate from the baseline’s 18.5% down

to just 2.1%. This proves that the performance gain

is not merely from using a DNN, but from the strate-

gic way the DNN is trained.

This substantial improvement is not limited to

YOLOv5l. When the error-aware approach is applied

to the YOLOv7 architecture, it similarly slashes the

false positive rate from the baseline’s 15.2% to 1.9%.

These results demonstrate the potential for broad ap-

plicability of the error-aware dataset construction

method and its capability to enhance the robustness

of diverse model architectures.

5.2.6 Overall System Performance

Beyond the specific error classes, this study eval-

uated the overall system performance across all the

refined classes. This study evaluated the overall per-

formance of the models. Table 3 presents the compre-

hensive metrics. The baseline YOLOv5l achieves a

respectable F1-score of 0.915. However, the proposed

YOLOv5l raises this score to 0.980, primarily by im-

proving recall and significantly reducing the overall

false positive rate from 6.8% to 1.2%. This demon-

strates that the proposed error-aware approach suc-

cessfully corrects the model’s key weaknesses in the

critical error-inducing classes , and without

compromising its general performance.

Furthermore, the comparison with YOLOv7 con-

firms the proposed error-aware approach’s value.

While the Baseline YOLOv7 is inherently more pow-

erful than the Baseline YOLOv5l with F1-scores of

0.938 versus 0.915, the error-aware approach elevates

its performance even further, achieving a final

F1-score of 0.988. The consistent performance gap be-

tween the baseline and proposed models across both

architectures shows that the error-aware training strat-

egy, not just the choice of a newer model, is the pri-

mary driver of the enhanced robustness and reliability.

Error Class

False Positive Rate (%)

Legacy System YOLOv5l YOLOv7

Generic Error-Aware Generic Error-Aware

(Metalic club head) 92.0 18.5 2.1 15.2 1.9

(White shoe) 85.0 21.8 3.2 17.5 2.8

(Human head) 81.0 25.1 1.8 21.3 1.5

Table 2. Performance comparison on the critical error-inducing classes ( ).
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Ⅵ. Discussion

The experimental results presented in Section 5 of-

fer substantial evidence for the efficacy of the pro-

posed approach. This section provides an inter-

pretation of these results, discusses the broader im-

plications of the method, and addresses its

generalizability.

6.1 Granular Analysis of Performance on 
Critical Error Classes

This study shows that strategically constructed

training datasets significantly outperform generically

assembled datasets, especially in handling critical er-

ror cases. The comparison between the generic base-

line model and the proposed error-aware model high-

lights this clearly. The generic dataset represents a

typical development scenario in which developers lack

prior knowledge of specific failure cases, thus ran-

domly distributing critical error samples between

training and validation sets. Consequently, some crit-

ical error cases inevitably remain unseen by the model

during training, leaving it susceptible to predictable

failures.

In contrast, the error-aware dataset, informed by

detailed error analysis via progressive class refine-

ment, strategically incorporates all identified critical

error scenarios into the training set. This intentional

approach ensures maximum exposure to the most

challenging data points, effectively reducing the false

positive rates in specific error classes , and .

While the baseline models trained on generic datasets

exhibit substantial improvement over the legacy sys-

tem, their performance on these abnormal classes re-

mains notably limited. However, the error-aware mod-

els dramatically reduced the false positive rates from

between 15.2%-25.1% down to below 3.2%, under-

scoring the need for targeted training strategies.

These findings expose the fallacy of relying solely

on overall average accuracy metrics, which mask sig-

nificant deficiencies in model performance on critical,

though infrequent, scenarios. These findings expose

the fallacy of relying solely on overall average accu-

racy metrics, which mask significant deficiencies in

model performance on critical, though infrequent,

scenarios. True model performance, particularly in re-

al-world applications, is better reflected by metrics

specifically tailored to challenging cases. Thus, the

approach advocates a shift in focus from general accu-

racy to targeted error reduction, thereby enhancing

practical robustness and user trust in AI systems.

6.2 Generalizability
The core contribution of this study is not the appli-

cation of a specific YOLO model, but rather the estab-

lishment of a systematic approach for diagnosing and

correcting failures in black-box vision systems. This

approach is generalizable and consists of two key

stages.

First, the progressive class refinement process acts

as a data-driven method for reverse-engineering a sys-

tem’s implicit requirements. It transforms vague de-

veloper assumptions into a formal specification of

failure modes, called error-inducing classes. This

process is analogous to creating a requirement docu-

ment written in the language of data, making it univer-

sally applicable to any vision system regardless of its

underlying architecture.

Second, the error-aware dataset construction lever-

ages these findings to guide the training process

intelligently. This study’s philosophy is rooted in

Metric Legacy System Baseline YOLOv5l Proposed YOLOv5l Baseline YOLOv7 Proposed YOLOv7

Precision 0.743 0.921 0.975 0.942 0.985

Recall 0.896 0.909 0.986 0.934 0.991

F1-score 0.812 0.915 0.980 0.938 0.988

mAP@0.95 0.683 0.854 0.958 0.891 0.965

False Positive Rate 18.3% 6.8% 1.2% 5.1% 1.0%

Inference Time (ms) 12.5 38.7 38.7 29.5 29.5

Table 3. Overall performance comparison across all the refined classes.
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quality and focus over sheer quantity. While a dataset

of 2,656 abnormal images, representing 2.3% of the

total data pool, might seem small in the context of

deep learning, these are not just random samples.

They are the most valuable data points, each repre-

senting a confirmed failure case. By strategically en-

suring these samples are included in the training set,

this study forces the models to confront and learn

from their most critical weaknesses. The performance

gap between the baseline and proposed models,

trained on identical-sized datasets, demonstrates the

effectiveness of this strategic approach.

The proposed approach holds substantial promise

beyond ball tracking. It can be easily adapted to di-

verse industrial domains experiencing unexplained er-

rors in legacy vision systems. For instance, in medical

imaging, the approach could systematically identify

subtle but critical image conditions causing diagnostic

AI systems to fail in detecting specific pathologies.

Similarly, in manufacturing, it can pinpoint precise

conditions leading to incorrect quality control deci-

sions, thereby improving the overall reliability of the

system.

6.3 Limitations and Future Directions
While the proposed approach achieved significant

improvements, several limitations warrant discussion.

Understanding these constraints is essential for con-

textualizing the contribution of this study and identify-

ing directions for future research.

The current implementation of progressive class re-

finement relies on manual analysis to identify and

characterize error patterns. This process requires do-

main expertise and significant human effort to exam-

ine failure cases and define class boundaries.

Automating this process through clustering algorithms

or anomaly detection could reduce human effort and

enable broader adoption.

Additionally, the proposed framework assumes rel-

atively stable error patterns over time. In practice, en-

vironmental conditions and error characteristics may

evolve due to seasonal changes, equipment aging, or

facility modifications. Dynamic environments where

error characteristics shift rapidly may require online

learning extensions to the methodology, enabling con-

tinuous adaptation to emerging error patterns.

Ⅶ. Conclusion

The progressive class refinement method success-

fully identified and characterized the root causes of

errors in the legacy ball tracker system, revealing that

the failures were not random but concentrated in spe-

cific and well-defined scenarios. This data-driven ap-

proach to error analysis provides a systematic frame-

work that can be generalized beyond ball tracking

applications.

The findings reveal that environmental factors, par-

ticularly illumination conditions, play a more sig-

nificant role in system failures than previously

recognized. The formal characterization of error con-

ditions provides actionable insights for system

designers.

The error-aware dataset construction strategy based

on the refined classes enabled the evaluation of data

quality and facilitated the construction of a high-qual-

ity training dataset. By systematically sampling error-

inducing scenarios identified through progressive re-

finement, this study ensures that the deep learning

model receives sufficient exposure to edge cases that

would otherwise be underrepresented. This targeted

approach proved more effective than traditional data

augmentation techniques, as evidenced by the model’s

robust performance across all identified error classes.

This study makes four significant contributions to

the field of industrial computer vision and systematic

performance improvement:

1) Progressive class refinement: Unlike traditional de-

bugging methods that rely on manual inspection

or ad-hoc testing, the progressive refinement proc-

ess provides a novel systematic method for identi-

fying and characterizing error patterns through iter-

ative data subdivision. This method is general-

izable to other computer vision applications that

require systematic error identification and

resolution.

2) Formal error characterization framework: The

mathematical formalization of error conditions

through characteristic sets provides a rigorous

foundation for understanding system failures. This
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framework enables:

∙ Precise documentation of failure modes.

∙ Reproducible error analysis across different

systems.

∙ Systematic validation of proposed solutions.

3) Error-aware dataset construction strategy: This

study demonstrates that leveraging the results of

the error analysis for the construction of training

data significantly improves the performance of the

deep learning model. This approach addresses a

critical gap in the machine learning pipeline by es-

tablishing the connection between error analysis

and dataset design. The results show that balanced

representation across error classes is more im-

portant than overall dataset size for addressing spe-

cific system vulnerabilities.

4) Generalizable framework for legacy system im-

provement: Beyond the specific application to ball

tracking, this study provides a template for mod-

ernizing legacy industrial vision systems. The com-

bination of systematic error analysis, targeted data

collection, and deep learning deployment offers a

cost-effective path for organizations seeking to im-

prove existing systems without complete

replacement.

Future research directions encompass developing

automated tools for error pattern discovery and char-

acterization, and researching transfer learning strat-

egies for applying error patterns across similar in-

dustrial applications.
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