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A Case Study on Improving Ball Tracking Performance through
Error Analysis Based on Data Class Refinement

Youngsul Shin®’

ABSTRACT

This study addresses performance issues in a legacy golf ball tracker deployed in industrial applications,
where recognition failures were long suspected to be caused by environmental factors such as ball color,
obstacles, and lighting changes. This study presents a progressive class refinement method to systematically
identify these error sources and leverages the findings to build a reliable, deep learning-based tracker. To
investigate failures on a data-driven basis, this study employed this refinement method to define various
environmental classes and analyze the legacy tracker’s errors within each class. The analysis confirmed that the
tracker’s vulnerability was due to its reliance on a limited feature set (e.g., color, size, shape), making it
susceptible to real-world variations. Based on the detailed classes derived from this analysis, this study trained
a robust Deep Neural Network (DNN) using a comprehensive and well-structured training dataset. The resulting
DNN-based tracker demonstrated significantly higher recognition rates and greater robustness across diverse
environments compared to the legacy system. These results demonstrate that class refinement and data-driven

error analysis significantly contribute to enhancing deep learning model performance.

Key Words : Progressive Class Refinement, Data-Driven Error Localization, Error-Aware Dataset
Construction, Performance Enhancement

I. Introduction

Accurate and reliable ball tracking technology
plays a pivotal role in a wide range of industries, in-
cluding screen golf and soccer strategy analysis,
where it is utilized for diverse purposes such as ana-
lyzing player performance and conducting tactical
assessments. Users expect sensors to recognize the
ball’s movement quickly and accurately, and this trust
is directly linked to service satisfaction. However, the
legacy ball tracker operated by the organization that
requested this study for several years has failed to
meet these expectations. Despite being a core asset
to the business strategy, the system has been the sub-

ject of persistent customer complaints due to sporadic

recognition errors in various field-like environments,
leading to a decline in business credibility and direct
operational difficulties.

However, the fundamental difficulty in problem
solving lay in the uncertainty surrounding the legacy
ball tracker system. Existing developers could only
empirically guess that factors such as the various col-
ors of the ball, surrounding objects like golf clubs or
shoes, and external environmental factors like lighting
and sunlight were the causes of errors, but they were
unable to identify the root cause through engineering
principles. As is the reality for many small-sized en-
terprises, development artifacts such as requirements
specifications and design documents for the tracker

were non-existent. Furthermore, with the departure of
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the entire original development team, it was difficult
to grasp the requirements of the system and the origin
intent of the developers. The source code was heavily
reliant on third-party libraries based on complex math-
ematics, making a precise analysis of its behavior
challenging. As the ball tracker system accepted un-
structured data as input, analyzing the cause of errors
between input and output was even more difficult than
for systems that handle structured data.

To find the root cause of the errors in this legacy
ball tracker and improve its performance, this study
applies a data-driven, systematic approach to perform-
ance analysis and enhancement. First, the study em-
ploys a technique called progressive class refinement
to localize the cause of errors. This is a process that
transforms abstract speculation into concrete, da-
ta-based evidence by subdividing an image class
where an error occurs into more specific subclasses
and conducting iterative tests.

Second, to resolve the vulnerabilities identified
through the analysis, the study implements a new ball
tracker based on a DNN, which is robust to excep-
tional situations and external noise. For the develop-
ment of a high-performance DNN, the study strategi-
cally utilizes the refined classes defined during the
error analysis throughout the model’s training and
validation. By paying closer attention to data quality
in the specific classes where errors occur, this study
enhances the model’s robustness. Furthermore, by
measuring performance on a per-class basis during
validation, this study presents a framework that allows
for a detailed analysis of the model’s strengths and
weaknesses in specific situations, moving beyond the
ambiguous metric of “average performance”, i.e., the
fallacy of the average.

The contribution of this study can be summarized
as follows:

* Data-driven error analysis method for black-box
legacy systems: This study proposes a practical
method, "progressive class refinement’, to system-
atically identify and specify the failure causes of
legacy systems that lack documentation or
information.

* Error-aware dataset construction and training strat-

egy: This study presents an intelligent strategy for
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constructing and utilizing training datasets that lev-
erages the identified error classes to compensate
for the DNN model’s vulnerabilities and enhance

its robustness.

Fine-grained performance verification framework:
This study proposes a framework that enables a
multi-faceted verification of the new system’s reli-
ability by deeply analyzing the model’s perform-
ance on a per-class basis, going beyond average

accuracy.

Application in a real-world industrial environment:
This study demonstrates the effectiveness of the
progressive class refinement approach by applying
it to solve a problem in an actual industrial setting.

The remainder of this study is organized as follows.
Section 2 reviews existing related work. Section 3 de-
scribes the problem statement and the overall ap-
proach to solving it. Section 4 performs the error anal-
ysis using class refinement, and Section 5 shows the
performance improvement based on this refinement.
Section 6 discusses the findings of this study. Finally,
Section 7 concludes the study.

II. Related Work

Traditional pattern recognition algorithms rely on
handcrafted features and conventional machine learn-
ing techniques, making them computationally efficient
and widely adopted in object tracking applications due
to their simplicity and real-time performance.
Despite their computational advantages, the perform-
ance of these algorithms heavily depends on the qual-
ity of handcrafted features, which may not be optimal
for complex and dynamic scenarios encountered in re-
al-world applications™. Wang et al. highlighted these
limitations in their analysis of automatic composition
systems for broadcast sports videos, noting that tradi-
tional approaches fail to maintain consistent perform-
ance across varying environmental conditions®.
Huang et al. reported that SURF descriptors fail to
provide sufficient discriminative power for small, tex-
tureless objects like balls, particularly in cluttered en-
vironments'®. The SIFT-based ball tracking system

proposed by Ren et al. degraded significantly when
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dealing with fast-moving objects due to motion blur
and insufficient distinctive features on spherical surfa-
ces'’.

DNNs utilize sophisticated deep learning archi-
tectures such as convolutional neural networks, re-
current neural networks, and transformers that auto-
matically learn features from raw data, eliminating the
need for handcrafted features'™. Vicente-Martinez et
al. focused on a semi-supervised network using
YOLOvV7 and DeepSORT for soccer ball detection
and tracking, achieving superior accuracy of 95%
compared to traditional methods™”. Ahmad et al. em-
phasized the capabilities of DeepSORT as a modern
multi-target tracking algorithm that overcomes occlu-
sion and varying illumination conditions that com-
monly affect traditional tracking systems''”. Zhang et
al. present PCTrack, a novel real-time object tracking
system for edge devices that achieves 19.4% to 34.7%
accuracy improvements over existing methods to ad-
dress outdated detections, tracking errors, and missed
new objects!!.

Traditional evaluation metrics such as precision, re-
call, and F1-score provide basic performance charac-
terization but often fail to capture the detailed error
causes of ball tracking applications!'>". Statistical ap-
proaches to error analysis have gained prominence in
recent years, focusing on probabilistic models of sys-
tem behavior'*!>. Hoiem et al. categorized each false
positive and false negative into types such as classi-
fication error, localization error, confusion with sim-
ilar object categories, or confusion with back-
ground"®. Sophisticated mathematical frameworks
enable quantitative prediction of how subsystem un-
certainties propagate through vision pipelines!”.
Stereo vision research adopts parametric sensitivity
analysis to rank contributors to error’'®. While these
methods constitute a data-driven approach for analyz-
ing error causation, they do not provide formal defi-
nitions of the input data conditions that generate
errors.

The uniformity of training data has emerged as a
critical factor affecting the performance and general-
izability of deep learning models. Johnson et al. high-
lighted that effective classification with imbalanced

data is an important area of research, as high class

imbalance is naturally inherent in many real-world ap-

plications!"”

. Zhang et al. conducted an empirical
study examining the joint impact of feature selection
and data resampling on imbalanced -classification
tasks®. Their findings demonstrate that the combina-
tion of appropriate feature selection with strategic re-
sampling significantly improves model performance
on imbalanced datasets. Krawczyk introduced learning
from imbalanced data streams using ensemble meth-
ods, which has been particularly relevant for online
learning scenarios where data distribution may shift

2 Kumar et al. introduced curriculum

over time
learning with self-paced learning, allowing models to
automatically select training samples based on their
current learning state®. Zhou et al. proposed the bi-
lateral-branch network for long-tailed learning, which
uses separate branches for representation learning and
re-balancing[23]. However, these existing methods can-
not improve the uniformity of data within subclasses

that are defined by an arbitrary dimension of interest.
. Overall Approach

This section presents the problems identified in the
legacy ball tracker system and provides a detailed de-
scription of the approach adopted in this study to re-
solve these issues. The proposed approach introduces
an error analysis and performance enhancement
framework based on the progressive refinement of in-

put data classes.

3.1 Problem Statement

The park golf ball tracker is a critical component
that enables virtual park golf in indoor environments.
When a player hits a ball with a club, the tracker ana-
lyzes its movement to compute a motion vector, which
is subsequently used by a park golf simulator to visu-
alize the trajectory of the ball in a virtual space.

This integrated virtual park golf simulation system
was commercialized and operational for several years,
during which customer complaints consistently
emerged regarding inconsistencies between the behav-
ior of the simulated and actual balls. The existing de-
velopment team hypothesized that the ball tracker
within the virtual park golf simulation system was the
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source of error. The developers were guessing at the
cause of the problem solely on the basis of empirical
observations. When tasked with investigating this is-
sue, this study encountered two significant constraints:
1) the original development team responsible

for the implementation of the tracking system had
left the company, and 2) all technical artifacts neces-
sary to understand the intended functionality of the
tracking system, including requirements specifica-
tions, design documents, and test reports, were absent.
This phenomenon is indeed a realistic problem that
many small businesses face.

Despite the lack of formal documentation, system-
level testing confirmed that the simulator received
motion vectors inconsistent with observed physical
behavior, definitively localizing the fault to the
tracker. However, subsequent manual inspection of
the source code did not reveal the specific cause of

the erroneous vector calculations.

3.2 Approach based on Data Class Refinement

A notable characteristic of the tracker’s source code
was its implementation of traditional pattern recog-
nition techniques using the OpenCV library. Given the
mathematical complexity encapsulated in OpenCV
and the inherent sensitivity of pattern recognition sys-
tems to input variations, this study conjectured that
the tracker’s output exhibited significant dependency
on input data characteristics. This study therefore
adopted a data-driven approach to analyze error caus-
es through the examination of the input-output
relationship.

This study proposes a data class refinement-based
method for analyzing errors and improving perform-
ance in traditional pattern recognition systems. As il-
lustrated in Fig. 1, the approach comprises two pri-
mary phases: 1) Error Localization via Data Class
Refinement (EL), 2) Performance Improvement via
Refined Data Classes (PI). The EL phase pro-
gressively refines input data classes to identify com-
mon characteristics of error-inducing data through da-
ta-driven analysis. The PI phase uses the refined data
classes to construct training datasets and evaluate
training data quality, thereby facilitating the develop-

ment of high-performance neural networks.
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Unknown Error in the Existing Ball Tracking System

l

Error Localization via Data Class Refinement (EL)

Feature Space Definition of Input Data

l

Progressive Class Refinement of Feature Space

l

Representative Test Data Construction for Each Class

I

Test Execution with Representative Test Data
|

Common Characteristics Analysis of Error-Inducing Class

l

Performance Improvement via Refined Data Classes (PI)

Training Data Construction
I
Data Quality Verification Based on Refined Classes
I

Model Training and Performance Evaluation

Fig. 1. Error localization and performance improvement
based on data class refinement.

The objective of the EL phase is to identify com-
mon characteristics of input data that cause errors. The
EL phase localizes the characteristics of error-induc-
ing input data by dividing the spectrum of input data
into classes and iteratively refining these classes. The
EL phase comprises the following five steps:

1) Feature Space Definition of Input Data: The input
data accepted by the system can be represented as
a combination of characteristics that compose it.
The ball tracker receives sequential images as input
data, and each image’s characteristics can be ex-
pressed by the objects within the image and the
environment in which the objects are placed.

2) Progressive Class Refinement of Feature Space:
Once the entire feature space is defined, the spec-
trum of values for each characteristic can be div-
ided into multiple classes. Any given class can fur-
ther be subdivided into subclasses. Refined classes
exhibit a hierarchical relationship. The character-
istics of a refined subclass inherit the character-
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istics of the class from which it was refined.
Repeating the refinement progressively can lead to
the smallest unit of subclass for which further re-
finement is no longer meaningful.

3) Representative Test Data Construction for Each
Class: If data corresponding to a class are not pre-
defined, data belonging to that class must be
constructed. If a sufficient quantity of data has
been constructed for a refined class, an arbitrary
number of samples can be selected from that re-
fined class. Since the selected arbitrary samples be-
long to the same class, they can be understood as
having the same characteristics. The selected sam-
ples serve as representative test data for each class.

4) Test Execution with Representative Test Data: The
representative test data are fed as input to the sys-
tem under test, and the corresponding outputs are
observed. If an error occurs in the output, the proc-
ess can be repeated from step 2, “Progressive Class
Refinement of Feature Space,” to further localize
the error characteristics of the output. The decision
to repeat this loop is determined by a pre-defined
error rate threshold through the test criteria.
Classes with an error rate higher than the threshold
become candidates for refinement. However, even
classes with a very high error rate might not under-
go further refinement if they are understood to be
the core cause of the error occurrence.

5) Common Characteristics Analysis of Error-
Inducing Data: By analyzing the common charac-
teristics of error-inducing data within classes
where refinement has been stopped due to suffi-
ciently high error rates, the characteristics of inputs
that the system under error analysis cannot handle
are identified in a data-driven manner, rather than

relying on developers’ intuition.

The PI phase aims to improve the performance of
an existing system with errors, utilizing the refined
data classes defined in the EL phase. The PI phase
consists of the following three steps:

1) Training Data Construction: To improve the per-
formance of the existing system, it is necessary to
construct data required for DNN training. A com-

mon strategy for building DNN training data is to

build as large a dataset as possible to ensure high
performance of the selected DNN model.

2) Data Quality Verification Based on Refined
Classes: Even if a large amount of data is con-
structed in the previous step, a large quantity of
data does not necessarily represent the quality of
the training data. High-quality training data must
satisfy both sufficient quantity and uniform dis-
tribution across the input data spectrum. The uni-
formity of training data is assessed based on the
refined data classes defined in the EL phase.
Classes with insufficient training data can be iden-
tified using the number of data belonging to the
refined classes.

3) Model Training and Performance Evaluation: This
step involves evaluating the performance of the
trained model. Performance evaluation can also be
conducted for each refined class. Performance
evaluation based on refined classes is a method
that allows for a detailed observation of model per-
formance without falling into the fallacy of the

average.

IV. Error Localization via Class
Refinement

This section localizes the errors in the legacy ball
tracker system provided for this case study using the
class refinement method. The spectrum of input data
is progressively divided into finer subclasses through
class refinement, and by iterating this process, the

source of errors is formally identified and described.

4.1 Foundational Definitions
An input image 7 is modeled as a set comprising
the objects ball, club head, shoe, and human head,

denoted as
I={B,Cl,Sh,Hu}.

Each object is characterized by distinct features, de-

fined as follows:

Object x = (cy, Sy, Ky, Ly, Oy ),

1385



The Journal of Korean Institute of Communications and Information Sciences "25-09 Vol.50 No.09

where:
* ¢, € R®: the average color of the region in HSV
color space,

* s € R":the area of the region in pixels,

* xx & [0, 1]: circularity, computed as KX=4_;,% y

* 1, € [0, 1] : a binary indicator of localized illumi-
nation,

* g, € R":the estimated absolute luminance.

The ball tracker function 7 takes an input image
7 and returns a set of detected objects:

Odetected = T(I)-

In an error-free case, Opeeced cONtains only the ac-
tual ball object B or is an empty set @ if no ball is
present. The internal behavior of the function 7 con-
sists of two functions as follows:

1) Color filter M This function applies a mask based

on predefined ball color range C;Z‘If[. For an object
x with observed color @eond(X), if Geoor(%) is within
the range, Mx) = 1; otherwise, Mx) = 0. The ob-
served color ¢.on{x) is a function of the object’s
intrinsic color ¢, and the external light conditions
i, and a, The color filter M is defined as:

1 P if ¢c(}lor(x) € C[ZZ;]
0, Otherwise.

M(x) =

2) Geometric filter R After converting the masked
result to grayscale, this function R evaluates the
observed size ¢g.(Xx) and observed circularity @c;--

«AX) of an object x against a predefined ball size

range Sre S;Z)[C[ and circularity G;ffm,. If they

match, R(x) = 1; otherwise, R(x) = 0. The geo-
metric filter R is defined as:

if (psize (x) € S;izj;l
AN (Pcircul (X) € Grej

circul
0, Otherwise.

)

3) Finally, an object x is recognized as a ball if and
Ol'lly if X € Oerecrea —— Rx/Mx) =1) = 1.

Let E denote the error function. E (/) = 1 if the
ball tracker produces an error, and E () = O otherwise.
The primary error is false positive, where a non-ball
object, (e.g., club head CI, shoe Sh, human head H
u) is identified as a ball. Thus, if x & {Cl, Sh, Hu}
and x € T(J), then E () = 1.

4.2 Progressive Class Refinement

To identify the sources of errors in the legacy ball
tracker, this study incrementally performed class
refinements. This subsection corresponds to steps 1
through 4 of the five detailed steps of the EL phase,
as shown in Fig. 1.

An example of the progressive refinement process
for data classes is illustrated in Fig. 2. For the sake
of simplicity, this study assumes a two-dimensional
feature space. The horizontal and vertical axes, cx and
sx , denote the color and size values of an object x,
respectively. The blue dots represent data that do not
induce errors, while the red dots represent those that
induce errors.

On the coordinate plane, each rectangular region

containing the dots constitutes a data class. The gray

Sy * Sy Sy
o000 o000 e ee00e oeoceceoe e0eeee oecocee
e 00 00 =) =

eee oee ocoo oo es ssijssijse| 000 oo
(X ] o0 (X ] o0 o0 L X

LRI ) CRCRC RN ) LI
L XX ] o000 (XX ] (XX ] (XX ] 00 (XX ] (XX ]
LXJ L X ] o0 o0 o0 o0 LLJ o0

>

CX

[Refinement #0] [Refinement #1]

Fig. 2. Progressive refinement of data classes.
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shade of each region indicates the error rate of the
corresponding subclass; a darker shade signifies a
higher error rate. The initial refinement stage consists
of a single class that encompasses the entire feature
space. As the refinement process continues, the fea-
ture space is partitioned into multiple subclasses. It
can be observed that this gradually reveals subclasses
characterized by higher error rates and smaller, more
specific regions within the feature space.

Let T denote the initial set of classes that covers

the entire feature space .#, such that:
F(O) = Fall where Fall =Z.

A class I'; is a subset of the entire feature space
%, defined by a specific range of feature values.
Formally, an instance 7 € .# belongs to a class I';

if its feature values lie within prescribed intervals:
Li={l € 7 |Vk: v € [vir,veal }-

The progressive refinement process is as follows:

1) At iteration k; start with the current set of classes
k) (k k
r® — o ¥ )

2) For each class l"_(ik) S F<k), select a representative

image dataset D_(ik) - F.(ik) .

(k)

3) For each image I € D;

, run the tracker 7{/) and
evaluate the error E(J).

4) Calculate the error rate for class F_(,k):

X, pwE)
ErrRate(T" ~k)) e M
’ i
J

5) If ErrRate (F;k)) > O (a predefined error thresh-

old) and the class Fﬁ-k) is not yet granular enough,

. k) . .
refine FE) into a set of mutually exclusive sub-

classes F(/k;r 1)7r§lf;r 1)7 ~~7F5‘Ij,:1)

. This refinement

is done by partitioning one or more feature
dimensions.

6) The new set of classes for the next iteration, TV,

is formed by the unrefined classes and the newly
created subclasses.

7) This process terminates when it is determined that
the classes of interest have been sufficiently

refined.

4.3 Analysis of |dentified Error-Inducing
Classes

Upon completion of the process of progressive
class refinement, this study obtains a set of refined,
high-error-rate classes, denoted as Q{i’,’“’: {QT7Q§7

1. Each element Q:; in this set is a collection
of images for which the ball tracker consistently fails
in a similar manner. The subsequent analytical stage
involves formally defining the error characteristics for
each of these classes.

The objective of this stage is to conduct a data-
driven investigation to extract a formal set of con-
ditions, ®@g, that accurately describes the common
properties of vl e QZ. This set ®g serves as the formal
explanation for the tracker’s failure in that specific
scenario. For each given error class Q;, this identi-
fication process involves a statistical analysis of the
feature distributions of its constituent images. This
study analyzes the distributions of the misidentified
object’s features as well as the external light
conditions.

The outcome of this analytical process is the formal
definition of the property set ®g. This set is designed
to serve as a robust descriptor for the class, such that
the properties of VI e Q satisty the conditions in &g
.Formally, the process for each Q) is to find a set

of conditions g

®g: = {condition;, condition,, ..., condition,},
such that:

VI €9y the properties of 7 are consistent with ®g.

Once the set of characteristics ®g is identified, it
provides a data-driven explanation for the tracker’s

failure. The conditions specified in ®qg create the pre-

cise circumstances under which a non-ball object x
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Table 1. Key error-inducing classes identified through progressive class refinement.

Class ID Description

Key Characteristics ()

False Positive Rate

Reflective or metallic club
Qf head under bright and
direct luminance at address.

x = 1 (localized illumination),
150 < a, < 200 cd/m’ (high luminance),

0.58 < 8(ct.Cj)) < 0.7 (low color similarity), 2%
0.74 < 8(s0.S1%) < 0.79 (middle size similarity),
0.7 < K < 0.82 (middle circularity).

White shoe with rounded
Q3 front, partially visible in
the frame.

i (don’t care),
85 < ay < 120 cd/m2 (high luminance),

042 < S(chCIZZ{[) < 0.5 (low color similarity), 85%
091 < 8(s:,5)%7) < 0.98 (high size similarity),
0.5 < ki < 0.6 (low circularity).

Top of a human head
Q; moving through the
camera’s field of view.

% (don’t care),
40 < ox < 50 cd/m2 (low luminance),

0.51 < S(Cx-,CZZIf/) < 0.65 (low color similarity), 81%
0.8 < 8(s,557) < 092 (high size similarity),
0.6 < x < 0.8 (middle circularity).

satisfies the tracker’s detection logic, 7(J) = Ouesected
= {x}, by causing its observed color and/or circularity
to fall within the target reference ranges.

It is essential to reiterate that this characterization
is performed independently for each class Q:; The fi-
nal result is a portfolio of distinct error scenarios, {®,
®,, ..., Dy}, where each Og explains a specific and
unique vulnerability of the ball tracker.

Through this analytical process, this study success-
fully identified and characterized a portfolio of dis-
tinct, high-error-rate classes. After several iterations
of refinement, the process terminated, yielding a set
of 3 final error-inducing classes Q{f,’l’;"’ with error rates
exceeding the predefined threshold of 6,,- = 0.8. Table
1 presents a selection of the most significant error
classes, detailing their defining characteristics (D)
and the specific conditions that lead to false positives.

Fig. 3 shows example images of the error-inducing
classes presented in Table 1. In the images, the red
circle indicates the initial position of the object recog-
nized as a ball, and the two green circles represent
two positions when the object recognized as a ball
moves. The vector connecting the centers of these two
green circles is calculated as the ball’s motion vector.
Fig. 3a shows a metallic club head being recognized
as a ball. Fig. 3b shows a shoe being recognized as
a ball. Fig. 3c shows a person’s head reflected by light

being recognized as a ball.
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The non-ball objects of interest-the club head, shoe,
and human head-are characterized by diverse feature
spaces. Under normal circumstances, their intrinsic
properties, such as color, size, and circularity, do not
align with the reference parameters the ball tracker
uses for ball identification. Consequently, these ob-
jects are not expected to be classified as balls.

The analysis of these identified classes provides a
clear, data-driven explanation for the legacy tracker’s
sporadic failures. Each class represents a distinct sce-
nario where a non-ball object’s features are mis-
interpreted by the tracker’s rigid filtering logic.

The analysis reveals that under specific environ-
mental conditions, the observed features of these ob-
jects can be significantly distorted, leading to false
positives. The primary cause of this distortion is the
influence of external illumination, particularly lo-
calized illumination (z,) and absolute luminance (o).
For instance, while an object’s intrinsic color may be
dissimilar to that of a ball, high luminance can cause
its observed color, ¢woior(X), to shift into the reference
range ‘Kt{iﬁ. This mechanism explains how objects that
are fundamentally different from a ball are erro-
neously recognized by the legacy system. Due to the
sensitivity of pattern recognition-based ball tracking
to external light variations, this study concluded that
deep learning-based ball tracking technology is
required.
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(a) Q1 metalic club head.

(c) Q3 human head.

Fig. 3. Example of error-inducing classes: (a) €1 metalic
club head, (b) €5 white shoe, (c) 3 human head.

V. Performance Improvement via
The Refined Classes

In this section, this study develops and evaluates
the performance of a YOLO-based ball tracking sys-
tem trained on an error-aware dataset constructed us-

ing the refined data classes identified in Section 4.

5.1 Error-Aware Dataset Construction via
The Refined Data Classes
To overcome the limitations of the legacy ball
tracking system, this study implemented a deep learn-
ing approach using YOLO-based architectures. The

key innovation in this section lies in the systematic
construction of the training dataset, which directly lev-
erages the error-inducing classes identified through
the progressive refinement process. The refined
classes revealed that errors in the legacy system were
concentrated in specific and well-defined scenarios.
Based on this insight from the refined classes, this
study developed a strategy for collecting training data
with specific features.

The dataset construction followed these principles:

* Error-aware-based sampling: For each refined er-
ror class Qj], this study systematically collected
training samples that exhibited the characteristic
conditions @, This ensured that the YOLO models
would be exposed to the specific scenarios where
the legacy system failed.

* Balanced representation: To prevent bias in the
learned model, this study ensured equal representa-
tion across all the identified classes. This balanced
approach prevents the model from overfitting to
any particular error scenario while maintaining ro-
bust performance across diverse conditions.

* Normal operation coverage: In addition to error-
inducing scenarios, this study included samples
from normal operational conditions where the leg-
acy system performed correctly. This ensures the
YOLO models maintain high performance in
standard scenarios while improving on problematic

cases.

In the progressive class refinement process, 132
classes were defined. A data pool of 115,500 training
samples were subsequently collected, averaging 875
samples per class. The data pool comprises 112,844
normal samples (97.7% of total) and 2,656 abnormal
samples representing critical error classes (2.3% of to-
tal).

All images were annotated using the CVAT?, A
team of four trained annotators performed the labelng,
and a two-stage verification process was implemented
to ensure high-quality, consistent annotations across
the entire dataset. Due to the proprietary nature of
the data collected from commercially operating screen
park golf booths, this study are unable to make the
dataset publicly available but have strived to trans-
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parently report the proposed method.

5.2 Model Training and Evaluation

To validate the effectiveness of the proposed er-
roraware method, this study conducted a compre-
hensive comparative analysis.

This study implemented two distinct dataset con-
struction strategies: a generic approach and the pro-
posed error-aware approach. Both strategies draw
from the same initial data pool and result in training,
validation, and test sets of identical sizes to ensure

fair and direct comparison.

5.2.1 Test Set

To ensure unbiased final evaluation, a test set was
isolated from the total pool before any training com-
menced as follows:

* Split ratio: 10% of the total data pool.

» Sampling method: Stratified random sampling to
maintain the original distribution of normal and
abnormal data.

* Final test set composition:

- Total size: 11,550 images.
- Normal images: 11,284.
- Abnormal images: 266.

This test set is identical for all experiments and
was not exposed to any model during the training or

validation phases.

5.2.2 Generic Training and Validation Sets
This approach simulates a standard development
process where the developer has no prior knowledge
of the specific error-inducing data classes. The princi-
ple underlying this strategy is to form training and
validation sets through random sampling from the
available pool as follows:
* Validation set (10%): 11,550 images are randomly
sampled from the 103,950-image pool.
* Training set (80%): The remaining 92,400 images

are used for training.
The abnormal data proportion in this training data-

set will be similar to the overall pool ratio, approx-
imately 2.3% (2,390 / 103,950). The expected number

1390

of abnormal samples in the training set is approx-
imately 2,124 (92,400 T 2,390 / 103,950). This dataset
construction approach represents a realistic “naive”
data construction method commonly used in practice.
On average, approximately 266 critical abnormal sam-
ples (2,390 - 2,124) are likely to be excluded from
the training process, potentially limiting the model’s

exposure to important failure cases.

5.2.3 Error-aware Training and Validation

Sets

This approach strategically leverages the insights
gained from the error analysis to ensure the model
learns from its most critical weaknesses. The dataset
is deliberately constructed to guarantee that all known
failure cases are used for training, thereby maximizing
the model’s exposure to critical data as follows:

* Validation set (10%): To achieve this principle, the
11,550-image validation set is randomly sampled
exclusively from the normal images in the pool.

* Training set (80%): The 92,400-image training set
is composed of:

- All 2,390 abnormal images from the pool.
- The remaining 90,010 images, randomly sam-
pled from the normal images.

This strategy guarantees that the model is trained
on every identified failure case, directly targeting the

system’s vulnerabilities for improvement.

5.2.4 Models and Training Configuration

Considering real-time performance, accuracy, com-
putational complexity, industrial application cases,
and deployment feasibility, this study selected
YOLOVS] and YOLOvV7 as the experimental object
detection models. Both models demonstrate excellent
balance among real-time performance, accuracy, and

(25261 However, the

computational  complexity

YOLOVS series has relatively more industrial deploy-

ment cases and offers greater ease of deployment™?,
The performance is compared against five key

benchmarks:

* Legacy system: The original ball tracker based on
pattern recognition.

* Baseline YOLOVS5I: A standard YOLOvVS5] model
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trained on a generic dataset.

* Proposed YOLOVSIL: A more advanced YOLOVS5I
model trained using the error-aware dataset.

* Baseline YOLOv7: A standard YOLOv7 model
trained on a generic dataset.

* Proposed YOLOv7: A more advanced YOLOv7

model trained using the error-aware dataset.

All DNN models were trained on an NVIDIA RTX
3090 GPU. Training parameters were optimized for

industrial ball tracking requirements:

.

Training epochs: 300 epochs with early stopping
(patience=50).

Batch size: 32 images per batch.
* Learning rate: Initial learning rate of 0.01 with co-

sine annealing.

Image size: 384x384 pixels to maintain real-time

performance.

Optimizer: SGD with momentum=0.937 and
weight decay=0.0005.

5.2.5 Performance on Error-Inducing Classes

This study evaluated the performance specifically
on the three critical error-inducing classes 7, €5 and
Q3. Table 2 presents the false positive rate for each
system. While the baseline DNN models show a sig-
nificant improvement over the legacy system, they
still struggle with these specific, challenging scenar-
ios, exhibiting false positive rates between 15.2% and
25.1%. In contrast, the models trained with the pro-
posed error-aware approach demonstrate a dramatic
reduction in these errors. For the metalic club head
error class €2}, the proposed YOLOVS] reduces the
false positive rate from the baseline’s 18.5% down
to just 2.1%. This proves that the performance gain
is not merely from using a DNN, but from the strate-

gic way the DNN is trained.

This substantial improvement is not limited to
YOLOVSIL. When the error-aware approach is applied
to the YOLOV7 architecture, it similarly slashes the
false positive rate from the baseline’s 15.2% to 1.9%.
These results demonstrate the potential for broad ap-
plicability of the error-aware dataset construction
method and its capability to enhance the robustness

of diverse model architectures.

5.2.6 Overall System Performance

Beyond the specific error classes, this study eval-
uated the overall system performance across all the
refined classes. This study evaluated the overall per-
formance of the models. Table 3 presents the compre-
hensive metrics. The baseline YOLOVSI achieves a
respectable Fl-score of 0.915. However, the proposed
YOLOVSI raises this score to 0.980, primarily by im-
proving recall and significantly reducing the overall
false positive rate from 6.8% to 1.2%. This demon-
strates that the proposed error-aware approach suc-
cessfully corrects the model’s key weaknesses in the
critical error-inducing classes Q7 Q5 and Q3 without
compromising its general performance.

Furthermore, the comparison with YOLOvV7 con-
firms the proposed error-aware approach’s value.
While the Baseline YOLOvV7 is inherently more pow-
erful than the Baseline YOLOvV51 with Fl-scores of
0.938 versus 0.915, the error-aware approach elevates
its performance even further, achieving a final
Fl-score of 0.988. The consistent performance gap be-
tween the baseline and proposed models across both
architectures shows that the error-aware training strat-
egy, not just the choice of a newer model, is the pri-
mary driver of the enhanced robustness and reliability.

Table 2. Performance comparison on the critical error-inducing classes (Q*).

False Positive Rate (%)

Error Class Legacy System YOLOVS5I1 YOLOvV7
Generic Error-Aware Generic Error-Aware
QT (Metalic club head) 92.0 18.5 2.1 15.2 1.9
QF (White shoe) 85.0 21.8 32 17.5 28
Q3 (Human head) 81.0 25.1 1.8 213 L5
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VI. Discussion

The experimental results presented in Section 5 of-
fer substantial evidence for the efficacy of the pro-
posed approach. This section provides an inter-
pretation of these results, discusses the broader im-
plications of the method, and addresses its
generalizability.

6.1 Granular Analysis of Performance on
Critical Error Classes

This study shows that strategically constructed
training datasets significantly outperform generically
assembled datasets, especially in handling critical er-
ror cases. The comparison between the generic base-
line model and the proposed error-aware model high-
lights this clearly. The generic dataset represents a
typical development scenario in which developers lack
prior knowledge of specific failure cases, thus ran-
domly distributing critical error samples between
training and validation sets. Consequently, some crit-
ical error cases inevitably remain unseen by the model
during training, leaving it susceptible to predictable
failures.

In contrast, the error-aware dataset, informed by
detailed error analysis via progressive class refine-
ment, strategically incorporates all identified critical
error scenarios into the training set. This intentional
approach ensures maximum exposure to the most
challenging data points, effectively reducing the false
positive rates in specific error classes 27, €5 and Q3.
While the baseline models trained on generic datasets
exhibit substantial improvement over the legacy sys-
tem, their performance on these abnormal classes re-
mains notably limited. However, the error-aware mod-

els dramatically reduced the false positive rates from
between 15.2%-25.1% down to below 3.2%, under-
scoring the need for targeted training strategies.
These findings expose the fallacy of relying solely
on overall average accuracy metrics, which mask sig-
nificant deficiencies in model performance on critical,
though infrequent, scenarios. These findings expose
the fallacy of relying solely on overall average accu-
racy metrics, which mask significant deficiencies in
model performance on critical, though infrequent,
scenarios. True model performance, particularly in re-
al-world applications, is better reflected by metrics
specifically tailored to challenging cases. Thus, the
approach advocates a shift in focus from general accu-
racy to targeted error reduction, thereby enhancing

practical robustness and user trust in Al systems.

6.2 Generalizability

The core contribution of this study is not the appli-
cation of a specific YOLO model, but rather the estab-
lishment of a systematic approach for diagnosing and
correcting failures in black-box vision systems. This
approach is generalizable and consists of two key
stages.

First, the progressive class refinement process acts
as a data-driven method for reverse-engineering a sys-
tem’s implicit requirements. It transforms vague de-
veloper assumptions into a formal specification of
failure modes, called error-inducing classes. This
process is analogous to creating a requirement docu-
ment written in the language of data, making it univer-
sally applicable to any vision system regardless of its
underlying architecture.

Second, the error-aware dataset construction lever-
ages these findings to guide the training process
intelligently. This study’s philosophy is rooted in

Table 3. Overall performance comparison across all the refined classes.

Metric Legacy System Baseline YOLOvS! Proposed YOLOvSl Baseline YOLOv7 Proposed YOLOv7
Precision 0.743 0.921 0.975 0.942 0.985
Recall 0.896 0.909 0.986 0.934 0.991
Fl-score 0.812 0.915 0.980 0.938 0.988
mAP@0.95 0.683 0.854 0.958 0.891 0.965
False Positive Rate 18.3% 6.8% 1.2% 51% 1.0%
Inference Time (ms) 12.5 38.7 38.7 29.5 29.5
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quality and focus over sheer quantity. While a dataset
of 2,656 abnormal images, representing 2.3% of the
total data pool, might seem small in the context of
deep learning, these are not just random samples.
They are the most valuable data points, each repre-
senting a confirmed failure case. By strategically en-
suring these samples are included in the training set,
this study forces the models to confront and learn
from their most critical weaknesses. The performance
gap between the baseline and proposed models,
trained on identical-sized datasets, demonstrates the
effectiveness of this strategic approach.

The proposed approach holds substantial promise
beyond ball tracking. It can be easily adapted to di-
verse industrial domains experiencing unexplained er-
rors in legacy vision systems. For instance, in medical
imaging, the approach could systematically identify
subtle but critical image conditions causing diagnostic
Al systems to fail in detecting specific pathologies.
Similarly, in manufacturing, it can pinpoint precise
conditions leading to incorrect quality control deci-
sions, thereby improving the overall reliability of the

system.

6.3 Limitations and Future Directions

While the proposed approach achieved significant
improvements, several limitations warrant discussion.
Understanding these constraints is essential for con-
textualizing the contribution of this study and identify-
ing directions for future research.

The current implementation of progressive class re-
finement relies on manual analysis to identify and
characterize error patterns. This process requires do-
main expertise and significant human effort to exam-
ine failure cases and define class boundaries.
Automating this process through clustering algorithms
or anomaly detection could reduce human effort and
enable broader adoption.

Additionally, the proposed framework assumes rel-
atively stable error patterns over time. In practice, en-
vironmental conditions and error characteristics may
evolve due to seasonal changes, equipment aging, or
facility modifications. Dynamic environments where
error characteristics shift rapidly may require online

learning extensions to the methodology, enabling con-

tinuous adaptation to emerging error patterns.

VI. Conclusion

The progressive class refinement method success-
fully identified and characterized the root causes of
errors in the legacy ball tracker system, revealing that
the failures were not random but concentrated in spe-
cific and well-defined scenarios. This data-driven ap-
proach to error analysis provides a systematic frame-
work that can be generalized beyond ball tracking
applications.

The findings reveal that environmental factors, par-
ticularly illumination conditions, play a more sig-
nificant role in system failures than previously
recognized. The formal characterization of error con-
ditions provides actionable insights for system
designers.

The error-aware dataset construction strategy based
on the refined classes enabled the evaluation of data
quality and facilitated the construction of a high-qual-
ity training dataset. By systematically sampling error-
inducing scenarios identified through progressive re-
finement, this study ensures that the deep learning
model receives sufficient exposure to edge cases that
would otherwise be underrepresented. This targeted
approach proved more effective than traditional data
augmentation techniques, as evidenced by the model’s
robust performance across all identified error classes.

This study makes four significant contributions to
the field of industrial computer vision and systematic
performance improvement:

1) Progressive class refinement: Unlike traditional de-
bugging methods that rely on manual inspection
or ad-hoc testing, the progressive refinement proc-
ess provides a novel systematic method for identi-
fying and characterizing error patterns through iter-
ative data subdivision. This method is general-
izable to other computer vision applications that
require systematic error identification and
resolution.

2) Formal error characterization framework: The
mathematical formalization of error conditions
through characteristic sets provides a rigorous
foundation for understanding system failures. This

1393



The Journal of Korean Institute of Communications and Information Sciences "25-09 Vol.50 No.09

3)

4

=

framework enables:
* Precise documentation of failure modes.
* Reproducible error analysis across different
systems.
* Systematic validation of proposed solutions.
Error-aware dataset construction strategy: This
study demonstrates that leveraging the results of
the error analysis for the construction of training
data significantly improves the performance of the
deep learning model. This approach addresses a
critical gap in the machine learning pipeline by es-
tablishing the connection between error analysis
and dataset design. The results show that balanced
representation across error classes is more im-
portant than overall dataset size for addressing spe-
cific system vulnerabilities.
Generalizable framework for legacy system im-
provement: Beyond the specific application to ball
tracking, this study provides a template for mod-
ernizing legacy industrial vision systems. The com-
bination of systematic error analysis, targeted data
collection, and deep learning deployment offers a
cost-effective path for organizations seeking to im-
prove  existing without

systems complete

replacement.

Future research directions encompass developing

automated tools for error pattern discovery and char-

acterization, and researching transfer learning strat-

egies for applying error patterns across similar in-

dustrial applications.

(1]

[2]

References

V. Pallavi, J. Mukherjee, A. K. Majumdar,
and S.
detection and tracking in broadcast soccer
videos,” IEEE Trans. Multimedia, vol. 10, no.
5, pp. 794-805, 2008.
(https://doi.org/10.1109/TMM.2008.922869)

G. Chen, W. Lian, F. Hu, et al., “Research on

intelligent target recognition method based on

Sural, “Graph-based multiplayer

pattern recognition and deep learning,” in
Second Target Recognition and Artificial
Intell. Summit Forum, vol. 11427, T. Wang, T.

1394

(3]

[4]

[5]

[6]

[7]

8]

[9]

Chai, H. Fan, and Q. Yu, Eds., Int. Soc. Opt.
Photon. SPIE, 2020.
(https://doi.org/10.1117/12.2550783)

C. N. Oztirk ve,

“Comparison of object tracking methods and

E. Musaodlu and v.

performance analysis of kernelized correlation
filter with different appearance models,” in
2021 29th Signal Process. and Commun. Appl.
Conf. (SID), pp. 1-4, 2021.
(https://doi.org/10.1109/STU53274.2021.947794
9)

Y. Ji, P. Yin, X. Sun, K. Hawari Hawari Bin
Ghazali, and N. Guo, “A comparative study
and simulation of object tracking algorithms,”
in Proc. 2020 4th ICVIP, pp. 161-167, Xi’an,
China, 2021, ISBN: 9781450389075.
(https://doi.org/10.1145/3447450.3447476)

Y. Dong, J. Zhang, X. Chang, and J. Zhao,
“Automatic sports video genre categorization
2012 Visual
Commun. and Image Process., pp. 1-5, 2012.
(https://doi.org/10.1109/VCIP.2012.6410850)
C.-L. Huang, H.-C. Shih, and C.-Y. Chao,
“Semantic analysis of soccer video using
dynamic bayesian network,” [EEE Trans.
Multimedia, vol. 8, no. 4, pp. 749-760, 2006.
(https://doi.org/10.1109/TMM.2006.876289)

J. Ren, J. Orwell, G. A. Jones, and M. Xu,
“Real-time modeling of 3-D soccer ball

for broadcast videos,” in

trajectories from multiple fixed cameras,”
IEEE Trans. Circuits and Syst. for Video
Technol., vol. 18, no. 3, pp. 350-362, 2008.
(https://doi.org/10.1109/TCSVT.2008.918276)

Y.-C. Huang, I.-N. Liao, C.-H. Chen, T.-U. Ik,
and W.-C. Peng, “TrackNet: A deep learning
net work for tracking high-speed and tiny
objects in sports applications,” arXiv preprint
arXiv:1907.03698, 2019.

J. Vicente-Martinez, M. Marquez-Olivera, A.
Garcia, and V. Hernandez, “Adaptation of
yolov7 and yolov7_tiny for soccer-ball multi-
detection with deepsort for tracking by semi-
supervised system,” Sensors, vol. 23, p. 8693,
Oct. 2023.



=/ A Case Study on Improving Ball Tracking Performance through Error Analysis Based on Data Class Refinement

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(https://doi.org/10.3390/s23218693)

F. Ahmad, A. Chauhan, and P. Singh, “Multi
object tracking system form video streaming
using yolo,” in 2023 4th IEEE GCAT, pp. 1-6,
2023.
(https://doi.org/10.1109/GCAT59970.2023.103
53400)

X. Zhang, H. Xu, C. Yu, and G. Tan,
“Pctrack: Accurate object tracking for live
video analytics on resource-constrained edge
devices,” IEEE Trans. Circuits and Syst. for
Video Technol., vol. 35, no. 5, pp. 3969-3982,
2025.
(https://doi.org/10.1109/TCSVT.2024.3523204)
K. Bernardin and R. Stiefelhagen, “Evaluating
multiple object tracking performance: The
clear mot metrics,” J. Image Video Process.,
vol. 2008, Jan. 2008, ISSN: 1687-5176.
(https://doi.org/10.1155/2008/246309)

J. Luiten, A. Osep, P. Dendorfer, et al., “Hota:
A higher
multi-object tracking,” Int. J. Comput. Vision,
vol. 129, no. 2, pp. 548-578, Feb. 2021, ISSN:
0920-5691.
(https://doi.org/10.1007/s11263-020-01375-2)
C. Guo, G. Pleiss, Y. Sun, and K. Q. Wein-
berger, “On calibration of modern neural net-
works,” in Proc. 34th ICML’17, vol. 70, pp.
1321-1330, Sydney, NSW, Australia, 2017.
Y. Ovadia, E. Fertig, J. Ren, et al., “Can you

order metric for evaluating

trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift,” in
Proc. 33rd Int. Conft NIPS, NY, USA, 2019.
D. Hoiem, Y. Chodpathumwan, and Q. Dai,
“Diagnosing error in object detectors,” in
Proc. 12th ECCV 2012, vol. Part III, pp.
340-353, Florence, 2012, ISBN:
978-3-642-33711-6.
(https://doi.org/10.1007/978-3-642-33712-3_25)
H. Huang, J. Liu, S. Liu, P. Jin, T. Wu, and
T. Zhang,
vision-based tube measurement system,” Mea-
surement, vol. 157, p. 107659, 2020, ISSN:
0263-2241.
(https://doi.org/10.1016/j.measurement.2020.10

Italy,

“Error analysis of a stereo-

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

7659)

M. Yang, Y. Qiu, X. Wang, J. Gu, and P.
Xiao, “System structural error analysis in
binocular vision measurement systems,” J.
Marine Sci. and Eng., vol. 12, no. 9, 2024,
ISSN: 2077-1312.
(https://doi.org/10.3390/jmse12091610)

J. Johnson and T. Khoshgoftaar, “Survey on
deep learning with class imbalance,” J. Big
Data, vol. 6, p. 27, Mar. 2019.
(https://doi.org/10.1186/s40537-019-0192-5)

C. Zhang, P. Soda, J. Bi, et al., “An empirical
study on the joint impact of feature selection
and data resampling on imbalance classi-
fication,” Applied Intell., vol. 53, no. 5, pp.
5449-5461, Jun. 2022, ISSN: 0924-669X.
(https://doi.org/10.1007/s10489-022-03772-1)

B. Krawczyk, “Learning from imbalanced
data: Open challenges and future directions,”
Progress in Artificial Intell, vol. 5, Apr. 2016.
(https://doi.org/10.1007/s13748-016-0094-0)

M. P. Kumar, B. Packer, and D. Koller, “Self-
paced learning for latent variable models,” in
Proc. 24th Int. Conf. NIPS’10, vol. 1, pp.
1189-1197, Vancouver, Canada, 2010.

B. Zhou, Q. Cui, X.-S. Wei, and Z.-M. Chen,
“BBN: with
cumulative learning for long-tailed visual
recognition,” in 2020 IEEE/CVF Conf. CVPR,
pp. 9716-9725, 2020.
(https://doi.org/10.1109/CVPR42600.2020.0097
4)

OpenVINO Toolkit Team, CVAT: Computer
Vision Annotation Tool, https:/fwww.cvat.ai/,
Accessed: 2025-01-06, 2025.

O. E. Olorunshola, M. E. Irhebhude, and A. E.

Evwiekpaefe, “A comparative study of yolov5

Bilateral-branch  network

and yolov7 object detection algorithms,” J.
Computing and Soc. Inf, vol. 2, no. 1, pp.
1-12, Feb. 2023.
(https://doi.org/10.33736/jcsi.5070.2023)
Ultralytics, Ultralytics models documentation,
https://docs.ultralytics.com/ko/models/, Accessed:
2025-01-27, 2025.

1395



The Journal of Korean Institute of Communications and Information Sciences "25-09 Vol.50 No.09

Youngsul Shin

2005 : B.Eng. degree, Kyungpook
National University

2007 : M.Sc. degree, Kyungpook
National University

2012 : Ph.D. degree, Kyungpook

National University

<Research Interests> software
testing, artificial intelligence, digital twin
[ORCID:0000-0001-8730-6288]

1396



