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ABSTRACT

Quantized small language models (SLMs) offer a promising approach for deploying advanced natural
language process- ing (NLP) services on resource-constrained edge devices. However, an in-depth examination
of how different quantization configurations influence accuracy and efficiency remains underexplored. This
paper systematically evaluates 72 quantized variants of Llama 3.2 (1B and 3B parameters) and Qwen 2.5 (1.5B
and 3B parameters) across 13 quantization configura- tions, ranging from q2_K to q6_K. We use the
MMLU-Pro benchmark to measure the accuracy (including and excluding random guesses), inference time,
resource utilization, and power consumption on an NVIDIA Jetson Orin Nano. Our findings reveal that low-bit
quantized models often rely heavily on random guessing, with modest accuracy improvements observed when
these are excluded. Furthermore, Qwen 2.5 models generally yield superior accuracy and lower latency than
Llama 3.2, albeit with higher sensitivity to quantization, whereas Llama 3.2 exhibits more consistent
performance across quantization configurations. CPU utilization remains low (approximately 1-4%), with GPU
utilization peaking up to 90% and power consumption ranging from 9.2 W to 11.5 W. Variability across
different domains (computer science, engineering, and math) underscores the importance of selecting the
appropriate model family, parameter size, and quantization configuration for specific applications. We conclude
by outlining future directions for improving on-device NLP, including mixed-precision quantization,

hardware-specific optimizations, and broader assessments covering multilingual or multimodal tasks.
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I . Introduction Simultaneously, the availability of open-source LLMs
such as Meta’s Llama has democratized access to ad-
The emergence of Transformer-based archi- vanced language models, fostering a growing ecosys-

tectures!!! has transformed the field of natural lan- tem for their distribution, deployment, and utilization

guage processing (NLP), giving rise to large language
models (LLMs) that exhibit exceptional performance
in tasks such as language comprehension and
generation. Models like OpenAl ol, GPT-40, Gemini
1.5 Pro, and Claude 3.5 Sonnet have showcased the
ability to produce human-like text, sparking wide-

spread academic interest and commercial applications.

in various services and platforms, including Ollama,
LangChain, vLLM, and Hugging Face.

The utilization of LLMs is hindered by substantial
computational and memory requirements, which poses
significant challenges for deployment on re-
source-constrained edge devices. To mitigate these

challenges, the concept of small language models
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(SLMs) has emerged as a promising alternative for
edge deployment. Based on the literature, SLMs are
often defined as having fewer than one billion parame-
ters” or less than 10 billion parameters™. These
scaled-down models are more suitable for deployment
on resource-constrained edge devices, as they exhibit
reduced computational and memory footprints.

While existing research has examined various char-
acteristics of LLMs, such as inference latency, memo-
ry usage, and accuracy', these studies primarily focus
on high-performance server hardware, neglecting the
distinct constraints of edge devices. Assessments of
small language models specifically designed for edge
deployment remain limited. This gap is crucial, as the
successful integration of SLMs could unlock a diverse
range of NLP applications on edge platforms, includ-
ing ondevice assistants, context-aware IoT systems,
and realtime translation services while maintaining ac-
ceptable performance levels.

Quantization methods™® have demonstrated the
potential to substantially reduce the memory require-
ments and computational complexity of language
models, thereby facilitating the deployment of
large-scale models on resource-constrained edge plat-
forms like the NVIDIA Jetson devices. Previous stud-
ies have investigated the application of quantization
techniques in general neural networks!”! and diverse
NLP applications™. However, the intricate relation-
ship between model scale, quantization approach, and
performance on edge hardware remains an area that
requires further exploration.

Building upon prior research on quantization, mod-
el evaluation, and SLMs, this study extends those in-
sights to edge computing. Specifically, we provide a
comprehensive assessment of quantized SLMs on re-
source-constrained hardware. We evaluate the per-
formance and efficiency-measured in terms of in-
ference time, resource utilization, and power con-
sumption-of 72 quantized models. These models,
which range from 1 billion to 3 billion parameters
and incorporate various quantization configurations,
are designed for deployment on devices such as the
NVIDIA Jetson Orin Nano. Our contributions are
threefold: (1) we assess the viability of deploying
quantized SLMs on edge devices; (2) we investigate

the trade-offs between model accuracy and efficiency
on resource-constrained hardware; and (3) we provide
practical insights for selecting models and quantiza-
tion configurations to support efficient NLP service
deployments on edge devices.

II. Related Work

Small Language Models: Wang et al."® have pro-
vided a detailed survey of small language models,
clarifying their definitions and exploring their use cas-
es in resource-constrained environments. Their work
underscores the potential of SLMs to deliver com-
petitive performance with significantly reduced pa-
rameter counts, laying the groundwork for further ex-
ploration of these models in edge hardware
applications. Our study builds upon these insights by
specifically evaluating quantized SLMs on edge de-
vices, extending the analysis to scenarios with tight
resource budgets.

Quantization Techniques: Jacob et al.”’ demon-

strated the feasibility of integer-arithmetic-only in-
ference through quantization, enabling significant
model size reduction while maintaining acceptable ac-
curacy levels. This pioneering research has influenced
subsequent advancements in quantization techniques.
Building upon this foundation, Gholami et al.”’! pro-
vided a comprehensive survey of various quantization
methods, exploring their applications, challenges, and
effectiveness across a range of scenarios. Lee et al.”!
conducted an extensive evaluation of quantized, in-
struction-tuned LLMs, analyzing models with up to
405 billion parameters. Their research highlights the
trade-offs between quantization methods and model
performance at scale. However, their focus on server-
grade hardware limits the applicability of their find-
ings to edge deployments, where computational re-
sources and memory are constrained.

Model Storage Formats: The development of effi-
cient model storage formats, such as GGUF
(GPT-Generated Unified Format)!'', has been in-
strumental in enabling the deployment of quantized
models on devices with limited resources. GGUF sup-
ports diverse quantization configurations while offer-

ing enhanced metadata storage capabilities. This ex-
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tensibility ensures that models can be seamlessly load-
ed and executed across multiple platforms, facilitating
systematic experimentation and reproducibility. Our
work leverages the GGUF format to manage a variety
of quantization configurations in a unified manner.

. Methodology

3.1 Hardware and Software Setup

Hardware: All experiments were conducted on an
NVIDIA Jetson Orin Nano, which features a
1024-core NVIDIA Ampere GPU with 32 Tensor
Cores, a 6-core Arm Cortex-A78A CPU, and 8GB
of LPDDRS memory.

Operating System: Ubuntu 22.04 LTS (64-bit).

LLM Serving Framework: We used the Ollama
framework to serve the quantized LLMs due to its
support for various quantization methods and compati-
bility with edge devices. The Ollama provides pre-
quantized model variants, ensuring efficient execution

on the Jetson device.

3.2 Model and Configuration

The models selected for evaluation comprise
Meta’s Llama 3.2 (1B and 3B) and Alibaba’ s Qwen
2.5(1.5B and 3B). These represent two modern fami-
lies of open-source SLMs. We applied 13 distinct
quantization configurations using the GGUF storage
format to each model to reduce both memory and
computational overhead on edge devices. The config-
urations, denoted as ‘q2_K’, ‘q3_K_L’, ‘q3_K_M’,
‘qQ3_K_S’, ‘q4_0’, ‘q4_I’, ‘qg4_K_M’, ‘qg4_K_S’,
‘q5_0°, ‘q5_1", ‘q5_K_M’, ‘q5_K_S’, and ‘q6_K’, are
explained as follows:

* ’q2’ to ’q6’ (Quantization Bit-Width): The nu-
meral denotes the bit-width used to represent
each weight. For instance, ‘q2’ indicates a 2-bit
precision, while ‘q6’ signifies a 6-bit precision.
Generally, a higher bit-width allows for a more
nuanced representation of the model’s weights,
which can better preserve accuracy but at the

cost of increased resource usage.

* ‘0’ and ‘1’ (Quantization Types): The suffixes
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‘0’ and ‘1’ indicate the quantization type as de-
fined in frameworks like llama.cpp. In ‘type-0’
quantization, each weight is reconstructed as w
= dg, where d is the block scale, and ¢ is the
quantized value. In ‘type-1’ quantization, the re-
construction uses w = dg + m, where m repre-
sents the block minimum. These types differ in
whether an offset (minimum) is used for each
quantization block.

* ‘K’ (Quantization Method): The presence of
a K indicates the use of K-Quantization, a tech-
nique that divides the model’s weights into large
blocks, which are further split into smaller
subblocks. Each sub-block is assigned its scale
and minimum value, which are then quantized
to a limited number of bits based on the target
bitwidth. This approach helps the model main-
tain its performance despite the reduced pre-
cision by capturing distribution differences
within large weight blocks.

e ‘L’, ‘M’, and ‘S’ (Quantization Variants):
These letters denote variant schemes to balance
accuracy and efficiency by adjusting the
bit-widths used for different parts of the model.
In the ‘L’ (Large) variant, critical tensors are
quantized with a higher bit-width to preserve
precision, while all other tensors use the target
bit-width. The ‘M’ (Medium) variant employs
an intermediate bit-width for the critical ten-
sors-lower than that of the ‘L’ variant but higher
than the base target-thus compromising per-
formance and compression. The ‘S’ (Small)
variant uniformly applies the base target
bit-width across all tensors, maximizing quanti-
zation efficiency but potentially sacrificing

some accuracy.

For clarity, Table 1 provides a summary of the
quantization configuration nomenclature and their key
characteristics.

We chose the above models and quantization set-
tings (as provided by the Ollama framework) follow-

ing an initial screening based on prior works™ and
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Table 1. Summary of Quantization Configurations

Configuration Description

q2_K 2-bit K-quantization (ultra-low precision for maximum memory efficiency).

q3_K_L 3-bit K-quantization, Large variant: critical layers at higher quantization to preserve accuracy.
q3_K_M 3-bit K-quantization, Medium variant: critical layers at intermediate precision (trade-off approach).
q3_K_S 3-bit K-quantization, Small variant: uniform 3-bit quantization across all layers (maximum efficiency).
q4_0 4-bit quantization, type-O (block scale only, w= dx g).

q4_1 4-bit quantization, type-1 (block scale + offset, w= dx g+ m).

4_ K M 4-bit K-quantization, Medium variant: 4-bit base with some higher-quantization sub-blocks for key weights.
q4_K_S 4-bit K-quantization, Small variant: uniform 4-bit for all weights.

q5_0 5-bit quantization, type-0.

q5_1 5-bit quantization, type-1.

q5_K_M 5-bit K-quantization, Medium variant: higher than 5-bit for critical parts.

q5_K_S 5-bit K-quantization, Small variant: uniform 5-bit quantization.

q6_K 6-bit K-quantization (highest precision considered in this study under K-quantization).

pilot experiments on the Jetson Orin Nano (8GB
memory). The selection of Llama 3.2 and Qwen 2.5
was motivated by their complementary architectural
and training characteristics, ensuring our findings’
generalizability and robustness. Llama 3.2, introduced
by Meta in September 2024, includes lightweight
models with 1B and 3B parameters and multimodal
variants with 11B and 90B parameters. This study
specifically utilizes the lightweight versions optimized
for efficient deployment on edge devices. The archi-
tecture features enhancements such as Grouped-Query
Attention (GQA), significantly improving inference
scalability. Furthermore, instruction-tuned versions of
Llama 3.2 have been aligned with human preferences
using supervised fine-tuning (SFT) and reinforcement
learning from human feedback (RLHF)™. Qwen 2.5,
developed by Alibaba and also released in September
2024, complements Llama 3.2 by providing an alter-
native architecture pre-trained on an extensive corpus
comprising 18 trillion tokens. Qwen 2.5 excels partic-
ularly in knowledge-intensive and reasoning tasks. Its
variants, fine-tuned for instruction following and
structured outputs, utilize RLHF extensively to en-
hance alignment and model responsiveness'.
Including these two distinct model families-differ-
entiated by Western and Chinese origins, distinct
pre-training datasets, and varying tokenization strat-

egies-strengthens the general applicability of our

study. The comprehensive combination of models and
quantization strategies (2 model families X 2 model
sizes X 13 quantization configurations = 72 variants)
facilitated an in-depth evaluation of how quantization
affects key performance metrics, including storage ef-
ficiency, inference speed, and output accuracy.

3.3 Benchmark Dataset

We used a subset of the MMLU-Pro benchmark*
to evaluate model accuracy, ensuring consistent and
challenging test conditions across different models
and quantization configurations. Specifically, we se-
lected three knowledge domains from MMLU-Pro:
computer science (410 questions), engineering (969
questions), and mathematics (1351 questions).
MMLU-Pro is a more challenging extension of the
MMLU(Massive

Understanding) benchmark!"®!, featuring complex rea-

original Multitask ~ Language
soning questions and an increased number of answer
choices (up to 10) to reduce the chance of correct
guesses by random chance. Each question in these
subsets is multiple-choice with one correct answer and
9 distractors, making naive guessing only 10% likely

to succeed.

3.4 Evaluation Protocol
For each model variant, we measured several met-
rics: accuracy, inference time, resource utilization, and

power consumption. Accuracy on MMLU-Pro was
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computed as the fraction of questions answered
correctly. We report accuracy under two conditions:
including random guesses and excluding random
guesses. This distinction is made because the evalua-
tion script is designed such that if a model’ s gen-
erated response does not contain a recognizable an-
swer option, a random answer is selected on its behalf
(simulating a guess). Given the benchmark’ s format
of up to 10 choices, a random guess has a 10% chance
of being correct. Including these guesses in accuracy
can inflate the score of very poorly performing
models. Therefore, we also calculate accuracy, ex-
cluding those cases where we remove all questions
where the model failed to produce an answer and a
guess was inserted. The “excluding” accuracy reflects
the model’ s performance on the subset of questions
it meaningfully attempted. By comparing both, we can
gauge how much a model relies on guesswork. We
also recorded the inference time per question
(averaged over all queries in a domain), using Ollama’
s timing logs on the Jetson. CPU and GPU utilization
were monitored via system tools (with GPU utilization
focusing on the Jetson’ s integrated GPU), and power
consumption was measured using the Jetson’ s on-
board power meter, capturing average power draw (in
milliwatts, mW) during inference on each domain.
These measurements allow us to evaluate efficiency
in terms of both computational load and energy usage.
All experiments were run in a controlled setting on
the Jetson (performance mode enabled, consistent am-
bient conditions) to ensure fair comparison across

models and configurations.
IV. Experimental Results

This section presents an in-depth analysis of the
experimental results for the quantized Llama 3.2 and
Qwen 2.5 models. We first discuss accuracy outcomes
(with and without random guess adjustments) across
the different configurations, then examine inference
latency and subsequently analyze the relationship be-
tween model size and performance. Finally, we con-
sider resource utilization patterns and provide qual-
itative insights into the practical usability of these
models.

1368

4.1 Accuracy Analysis

Tables 2 and 3 summarize the accuracy of Llama
3.2 and Qwen 2.5 models on the MMLU-Pro bench-
mark, both including and excluding random guesses.
The highest accuracy in each category is shown in
bold. Each value represents accuracy, while the num-
bers in parentheses indicate the number of questions
answered correctly over the total number of questions
attempted. For instance, in Table 1, Llama 3.2 1B
q2_K achieves 0.115 (47/410) when including random
guesses, indicating 47 out of 410 questions were cor-
rect (i.e., 11.5% accuracy). Excluding random guess-
es, the model’ s accuracy is 0.125 (43/345), meaning
43 out of 345 questions were correct (12.5% accu-
racy). From these figures, we can infer that 65 ques-
tions were randomly guessed, of which 4 were an-
swered correctly. The MMLU-Pro benchmark eval-
uates language models on multiple-choice questions,
with an average of 9.188, 9.583, and 9.771 answer
choices for computer science, engineering, and math,
respectively. This corresponds to probabilities of
0.109, 0.104, and 0.102, respectively, for randomly
selecting the correct answer in each domain.
Conventional MMLU-Pro evaluations include random
guesses when a model’ s response is unextractable,
but this paper examines results both with and without
random guesses to offer deeper insights into model
performance. Excluding random guesses provides a
clearer picture of a model’ s predictive capability, as
random responses can skew accuracy metrics.
Notably, even small quantized models achieve higher
accuracy when random guesses are excluded, under-
scoring their non-trivial predictive abilities.

Tables 2 and 3 reveal significant performance dif-
ferences among categories. Generally, the math cat-
egory exhibits the best performance, followed by com-
puter science and engineering. Moreover, the optimal
quantization technique varies by category. For exam-
ple, Qwen 2.5 3B q4_1 performs best in math and
computer science, yet in engineering it is surpassed
by q5_K_S, which shows 5.9% higher accuracy.
Similarly, for Llama 3.2 3B, the best-performing
quantizer differs across categories. These variations
indicate that even within MMLU-Pro results, it is es-
sential to evaluate model performance by the required
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Table 2. Accuracy of Llama 3.2 models on MMLU-Pro benchmark including and excluding random guesses

Quantization

Llama 3.2 1 B Accuracy

Llama 3.2 3 B Accuracy

including
random guesses

excluding
random guesses

including
random guesses

excluding
random guesses

q2_K
q3_K_L
q3_K_M
q3_K_S
q4_0
q4_1
qg4_K_M
q4_K_S
q5_0
q5_1
qg5_K_ M
q5_K_S
q6_K

0.115 (47/410)
0.210 (86/410)
0.163 (67/410)
0.161 (66/410)
0.183 (75/410)
0.202 (83/410)
0.224 (92/410)
0.217 (89/410)
0.212 (87/410)
0.232 (95/410)
0.207 (85/410)
0.205 (84/410)
0.220 (90/410)

Computer science

0.125 (43/345)
0.215 (85/395)
0.161 (64/398)
0.160 (64/401)
0.186 (74/398)
0.207 (82/396)
0.232 (90/388)
0.221 (87/393)
0.220 (87/396)
0.237 (95/400)
0.215 (85/395)
0.209 (82/392)
0.226 (88/389)

0.185 (76/410)
0.344 (141/410)
0.322 (132/410)
0.285 (117/410)
0.390 (160/410)
0.349 (143/410)
0.378 (155/410)
0.354 (145/410)
0.324 (133/410)
0.368 (151/410)
0.354 (145/410)
0.359 (147/410)
0.359 (147/410)

0.188 (76/405)
0.357 (140/392)
0.335 (130/388)
0.294 (117/398)
0.398 (159/400)
0.359 (142/395)
0.390 (154/395)
0.360 (144/400)
0.333 (133/400)
0.377 (150/398)
0.363 (143/394)
0.369 (146/396)
0.377 (147/390)

q2_K
q3_K_L
q3_K_M
q3_K_S
q4_0
q4_1
qg4_K_ M
q4_K_S
q5_0
q5_1
q5_K_M
q5_K_S

q6_K

0.104 (101/969)
0.155 (150/969)
0.139 (135/969)
0.134 (130/969)
0.146 (141/969)
0.146 (141/969)
0.168 (163/969)
0.169 (164/969)
0.182 (176/969)
0.147 (142/969)
0.155 (150/969)
0.151 (146/969)
0.152 (147/969)

Engineering

0.109 (66/608)
0.161 (147/912)
0.141 (132/933)
0.134 (125/934)
0.150 (137/914)
0.152 (137/904)
0.173 (159/921)
0.171 (157/918)
0.188 (173/921)
0.153 (140/916)
0.158 (143/904)
0.151 (139/921)
0.158 (142/900)

0.156 (151/969)
0.228 (221/969)
0.224 (217/969)
0.182 (176/969)
0.253 (245/969)
0.241 (234/969)
0.233 (226/969)
0.237 (230/969)
0.266 (258/969)
0.255 (247/969)
0.238 (231/969)
0.255 (247/969)
0.283 (274/969)

0.156 (149/953)
0.229 (214/935)
0.230 (212/923)
0.186 (174/938)
0.257 (243/945)
0.246 (231/940)
0.234 (223/952)
0.242 (227/939)
0.272 (254/933)
0.259 (242/934)
0.245 (229/934)
0.258 (244/946)
0.288 (270/938)

q2_K
q3_K_L
q3_K_.M
q3_K_S
q4_0
q4_1
qg4_K_M
q4_K_S
q5_0
q5_1
q5_K_.M
q5_K_S
q6_K

0.100 (135/1351)
0.195 (264/1351)
0.198 (267/1351)
0.145 (196/1351)
0.204 (275/1351)
0.212 (286/1351)
0.208 (281/1351)
0.211 (285/1351)
0.238 (321/1351)
0.226 (305/1351)
0.209 (283/1351)
0.226 (305/1351)
0.230 (311/1351)

0.100 (113/1133)
0.211 (240/1140)
0.205 (246/1198)
0.153 (184/1202)
0.212 (244/1151)
0.236 (256/1086)
0.220 (261/1189)
0.223 (261/1170)
0.246 (300/1218)
0.247 (286/1157)
0.226 (268/1187)
0.239 (282/1178)
0.247 (289/1170)

Math

0.201 (271/1351)
0.324 (438/1351)
0.338 (457/1351)
0.286 (387/1351)
0.335 (452/1351)
0.355 (480/1351)
0.360 (487/1351)
0.338 (456/1351)
0.366 (494/1351)
0.331 (447/1351)
0.363 (490/1351)
0.361 (488/1351)
0.356 (481/1351)

0.207 (258/1246)
0.357 (414/1160)
0.376 (430/1144)
0.312 (368/1181)
0.360 (432/1199)
0.384 (465/1210)
0.394 (467/1184)
0.374 (438/1170)
0.396 (468/1182)
0.362 (425/1174)
0.398 (473/1187)
0.402 (468/1165)
0.386 (456/1181)
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Table 3. Accuracy of Qwen 2.5 models on MMLU-Pro benchmark including and excluding random guesses

Quantization

Qwen 2.5 1.5B Accuracy

Qwen 2.5 3B Accuracy

including
random guesses

excluding
random guesses

including
random guesses

excluding
random guesses

q2_K
q3_K_L
q3_K_M
q3_K_S
q4_0
q4_1
qg4_K_M
q4_K_S
q5_0
q5_1
qg5_K_ M
q5_K_S
q6_K

0.127 (52/410)
0.244 (100/410)
0.271 (111/410)
0.205 (84/410)
0.300 (123/410)
0.312 (128/410)
0.302 (124/410)
0.293 (120/410)
0.310 (127/410)
0.322 (132/410)
0.283 (116/410)
0.332 (136/410)
0.324 (133/410)

Computer science

0.135 (49/362)
0.246 (100/406)
0.273 (109/399)
0.205 (83/405)
0.302 (123/407)
0.313 (128/409)
0.303 (124/409)
0.292 (119/408)
0.314 (127/405)
0.323 (131/406)
0.286 (116/406)
0.333 (135/406)
0.327 (133/407)

0.105 (43/410)
0.188 (77/410)
0.190 (78/410)
0.215 (88/410)
0.395 (162/410)
0.398 (163/410)
0.337 (138/410)
0.339 (139/410)
0.368 (151/410)
0.380 (156/410)
0.388 (159/410)
0.346 (142/410)
0.373 (153/410)

0.000 (0/3)
0.193 (77/398)
0.195 (77/395)
0.215 (87/405)
0.398 (162/407)
0.400 (163/408)
0.337 (138/409)
0.340 (139/409)
0.368 (151/410)
0.384 (156/406)
0.391 (159/407)
0.346 (142/410)
0.373 (153/410)

q2_K
q3_K_L
q3_K_M
q3_K_S
q4_0
q4_1
qg4_K_ M
q4_K_S
q5_0
q5_1
q5_K_M
q5_K_S

q6_K

0.111 (108/969)
0.184 (178/969)
0.186 (180/969)
0.164 (159/969)
0.200 (194/969)
0.227 (220/969)
0.187 (181/969)
0.209 (203/969)
0.205 (199/969)
0.200 (194/969)
0.224 (217/969)
0.214 (207/969)
0.203 (197/969)

Engineering

0.112 (101/905)
0.185 (178/961)
0.188 (180/959)
0.163 (155/952)
0.201 (194/963)
0.227 (218/961)
0.188 (181/961)
0.210 (203/965)
0.206 (199/965)
0.200 (194/968)
0.222 (213/959)
0.213 (204/959)
0.204 (197/967)

0.094 (91/969)
0.213 (206/969)
0.201 (195/969)
0.185 (179/969)
0.254 (246/969)
0.273 (265/969)
0.271 (263/969)
0.254 (246/969)
0.293 (284/969)
0.311 (301/969)
0.311 (301/969)
0.332 (322/969)
0.308 (298/969)

0.000 (0/0)
0.214 (206/964)
0.202 (194/961)
0.185 (176/951)
0.258 (245/950)
0.275 (265/964)
0.275 (262/951)
0.259 (246/950)
0.294 (284/965)
0.314 (300/956)
0.312 (299/957)
0.334 (320/959)
0.310 (297/957)

q2_K
q3_K_L
q3_K_.M
q3_K_S
q4_0
q4_1
q4_K_M
q4_K_S
q5_0
q5_1
q5_K_.M
q5_K_S
q6_K

0.097 (131/1351)
0279 (377/1351)
0.281 (379/1351)
0.199 (269/1351)
0315 (425/1351)
0.358 (484/1351)
0.329 (445/1351)
0.319 (431/1351)
0.376 (508/1351)
0.358 (483/1351)
0.370 (500/1351)
0.361 (488/1351)
0.368 (497/1351)

0.097 (114/1174)
0.283 (366/1295)
0.291 (369/1269)
0.205 (260/1268)
0.321 (416/1297)
0.366 (467/1277)
0.341 (438/1285)
0.325 (423/1300)
0.381 (498/1308)
0.368 (479/1302)
0.380 (490/1290)
0.376 (482/1283)
0.377 (491/1304)

Math

0.116 (157/1351)
0.170 (230/1351)
0.155 (209/1351)
0.216 (292/1351)
0.453 (612/1351)
0.491 (664/1351)
0.340 (459/1351)
0.437 (591/1351)
0.362 (489/1351)
0.346 (467/1351)
0.385 (520/1351)
0.383 (518/1351)
0.397 (536/1351)

0.000 (0/0)
0.174 (226/1301)
0.157 (186/1188)
0.217 (287/1323)
0.464 (601/1295)
0.514 (656/1276)
0.352 (452/1283)
0.453 (584/1288)
0.368 (486/1321)
0.364 (458/1257)
0.390 (517/1324)
0.389 (516/1328)
0.408 (531/1303)
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category.

When comparing Tables 2 and 3, Qwen 2.5 outper-
forms Llama 3.2 according to the highest accuracy
criteria. In the math category, Qwen 2.5 3B q4_1 ach-
ieves 51.4%, notably higher than Llama 3.2 3B
q5_K_S at 40.2%. However, Qwen 2.5 exhibits con-
siderable performance variability across quantization
configurations, particularly at low bit configurations
(‘q2_K’, ‘q3_K_S’, ‘q3_K_M’, ‘q3_K_L’). Notably,
Qwen 2.5 3B g2_K failed to extract any answers in
engineering and math, and only three were extractable
in computer science-all of which were incorrect, as

shown in Table 2.

4.2 Inference Time Analysis

Tables 4 to 7 present the inference times for Llama
3.2 1B, Llama 3.2 3B, Qwen 2.5 1.5B, and Qwen
2.5 3B models across various quantization
configurations. Each reported value is the mean, with

parentheses showing the standard deviation. The in-
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Fig. 1. Inference time distribution for computer science
using Llama 3.2 (‘L’) models. ‘1B‘ and ‘3B’ refer to
number of parameters, while ‘q2_K’, ‘q3_K_S’, and
‘a4 K_M’ specify the quantization methods.

ference time varies substantially by MMLU-Pro cat-
egory, typically increasing from computer science to
engineering and then math. Many outliers emerge at
lower bit configurations: in Qwen models, q2_K on
both 1.5B and 3B is particularly affected, while in
Llama models, q3_K_S, q3_K_M, and q3_K_L on the
3B model exhibit notable outliers.

Figures 1 and 2 provide a more granular view of
inference times per question for selected quantization
settings (q2_K, q3_K_S, q4_K_M). Fig. 1 displays
Llama 3.2 1B and 3B results for computer science,
while Fig. 2 shows Qwen 2.5 1.5B and 3B in the
same domain. Each dot represents the inference time
for a single question, and the red dashed line indicates
the average. For Qwen 2.5 1.5B and 3B, q2_K incurs
very high inference times (23.366 and 137.915, re-
spectively), attributable to numerous values exceeding
100. As quantization configurations increase, in-

ference times become more consistent.
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Fig. 2. Inference time distribution for computer science
using Qwen 2.5 (‘Q’) models. ‘1.5B° and ‘3B’ refer to
number of parameters, while ‘q2_K’, ‘q3_K_S’, and
‘a4_K_M’ specify the quantization methods.

1371



The Journal of Korean Institute of Communications and Information Sciences "25-09 Vol.50 No.09

Table 4. Inference time (s) of Llama 3.2 1B models across quantization configurations

Quantization Computer science Engineering Math Total
q2_K 11.462(23.551) 9.263(21.571) 10.538(22.432) 10.224(22.317)
q3_K_L 11.071(17.746) 17.564(21.967) 22.353(32.947) 18.959(27.776)
q3_K_M 9.895(16.827) 16.565(23.753) 22.497(33.928) 18.499(28.858)
q3_K_S 8.888(17.215) 12.539(21.681) 21.891(35.115) 16.619(29.159)
q4_0 9.354(14.871) 23.973(26.178) 20.747(28.456) 20.181(26.458)
q4_1 6.443(11.731) 15.107(20.641) 16.733(26.279) 14.611(22.934)
q4_K_M 8.963(15.910) 17.565(22.026) 18.672(26.841) 16.821(24.040)
q4_K_S 7.584(13.510) 15.039(19.683) 19.195(27.591) 15.976(23.615)
q5_0 7.972(11.936) 17.304(20.068) 17.335(25.609) 15.918(22.362)
q5_1 8.306(11.161) 17.671(19.107) 19.853(26.900) 17.344(22.843)
q5_K_M 8.397(12.939) 15.766(17.636) 17.657(25.445) 15.595(21.583)
q5_K_S 7.714(11.305) 15.763(18.159) 17.760(26.042) 15.542(21.989)
q6_K 8.813(14.254) 17.931(20.068) 19.285(27.803) 17.232(23.852)

Table 5. Inference time (s) of Llama 3.2 3B models across quantization configurations

Quantization Computer science Engineering Math Total
q2_K 11.374(23.145) 13.306(21.043) 30.060(55.294) 21.307(42.733)
q3_K_L 23.590(41.897) 42.906(55.409) 44.929(67.010) 41.007(60.249)
q3_K_M 20.084(35.182) 39.949(50.903) 45.832(68.397) 39.877(59.136)
q3_K_S 24.303(42.731) 41.209(57.042) 54.763(81.317) 45.378(69.411)
q4_0 14.563(24.193) 26.293(32.452) 30.409(43.701) 26.568(37.892)
q4_1 14.759(25.690) 27.733(34.375) 29.476(42.281) 26.647(37.800)
q4_K_M 18.207(30.425) 36.060(42.961) 35.125(50.195) 32.916(45.600)
q4_K_S 16.205(26.174) 35.918(41.811) 34.012(48.779) 32.014(44.111)
q5_0 19.761(32.906) 35.688(42.242) 34.912(49.827) 32.912(45.335)
q5_1 17.219(28.820) 33.025(41.639) 34.715(49.298) 31.487(44.490)
q5_K_M 21.813(36.426) 38.027(46.302) 35.727(49.826) 34.454(47.097)
q5_K_S 19.626(32.493) 34.875(43.101) 34.594(49.660) 32.446(45.469)
q6_K 22.257(37.381) 41.805(49.517) 40.804(57.350) 38.374(52.478)

Table 6. Inference time (s) of Qwen 2.5 1.5B models across quantization configurations

Quantization Computer science Engineering Math Total
q2_K 23.366(41.708) 20.377(38.791) 30.265(47.524) 25.720(43.980)
q3_K_L 10.696(16.927) 12.802(20.240) 21.131(29.700) 16.608(25.406)
q3_K_M 12.388(23.365) 13.187(22.379) 24.353(36.741) 18.593(30.989)
q3_K_S 10.879(21.321) 16.445(32.183) 21.860(40.491) 18.289(35.539)
q4_0 7.201(9.839) 8.789(10.291) 15.383(22.818) 11.814(17.960)
q4_1 6.231(6.174) 9.585(10.740) 18.462(22.360) 13.474(17.879)
q4_K_M 8.030(9.604) 10.405(12.910) 18.450(25.701) 14.029(20.485)
q4_K_S 7.079(8.855) 8.818(10.160) 17.114(22.846) 12.662(18.068)
q5_0 9.266(12.052) 11.518(11.455) 18.857(22.226) 14.812(18.150)
q5_1 7.888(10.743) 8.911(7.879) 16.121(20.971) 12.326(16.469)
q5_K_M 7.945(10.031) 9.510(8.849) 19.724(24.862) 14.330(19.431)
q5_K_S 8.220(10.942) 9.006(7.553) 18.944(24.531) 13.806(19.025)
q6_K 9.282(12.119) 10.741(7.607) 20.629(26.712) 15.415(20.556)
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Table 7. Inference time (s) of Qwen 2.5 3B models across quantization configurations

Quantization Computer science Engineering Math Total
q2_K 137.915(71.527) 50.104(63.342) 12.707(12.517) 45.206(64.297)
q3_K_L 19.481(39.276) 29.959(38.045) 33.287(54.477) 30.036(47.289)
q3_K_M 18.699(38.964) 26.585(40.064) 29.027(51.892) 26.609(46.288)
q3_K_S 21.644(51.973) 21.542(38.120) 25.178(54.540) 23.357(48.957)
q4_0 16.034(15.441) 43.807(28.396) 38.215(28.779) 36.868(28.549)
q4_1 20.170(17.618) 44.744(26.949) 39.754(32.522) 38.584(29.881)
q4_K_M 8.202(12.565) 45.633(34.546) 11.927(20.739) 23.332(30.585)
q4_K_S 14.526(16.620) 45.047(31.467) 30.979(28.547) 33.502(30.013)
q5_0 14.962(17.719) 37.918(33.953) 17.002(24.819) 24.120(29.435)
q5_1 13.016(16.715) 40.227(29.497) 15.406(22.890) 23.857(27.535)
q5_K_M 17.617(17.876) 36.754(27.205) 19.859(26.641) 25.519(27.055)
q5_K_S 15.071(18.829) 30.236(28.956) 19.586(24.741) 22.688(26.220)
q6_K 20.242(22.045) 51.754(34.798) 21.533(28.985) 32.066(33.646)

4.3 Relationship Between Accuracy, Inference
Time, and Model Size
Figure 3 illustrates the relationship between accu-
racy and inference time, while Figure 4 shows how
accuracy varies with model size. Figure 5 depicts the
relationship between inference time and model size.
In this context, “accuracy” refers to the average per-
formance across computer science, engineering, and

math domains, including random guesses. In Figures

3 and 4, Qwen 2.5 3B q4_1 achieves the highest over-
all accuracy at 40%, surpassing Qwen 2.5 3B ¢5 and
g6. For Llama 3.2 3B model, the q6_K configuration
yields the highest accuracy at 33.04%. For Llama 3.2
3B, q3_K_S, q3_K_M, and q3_K_L configurations
result in higher inference times while maintaining fair
accuracy. In contrast, the same configurations applied
to Qwen 2.5 3B lead to moderate inference times but
lower accuracy. Additionally, Qwen 2.5 3B models
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Fig. 3. Relationship between accuracy and inference time across all models and quantization configurations.
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Fig. 4. Relationship between accuracy and model size across all models and quantization configurations.

using the q4_K_S, q4_0, and q4_1 configurations ex-
hibit higher accuracy with longer inference times,
whereas q2_K configuration produces very low accu-
racy with longer inference times. Comparing Qwen
2.5 1.5B and Llama 3.2 1B models, Qwen 2.5 1.5B
generally shows lower inference times and higher ac-
curacy across most quantization configurations-even
though it has more parameters than Llama 3.2 1B.
Similarly, Qwen 2.5 3B often outperforms Llama 3.2
3B in terms of both accuracy and inference speed.

We also revealed distinct clustering patterns as pre-
sented in Figures 4 and 5: Llama models are relatively
well-clustered, whereas Qwen models exhibit great
dispersion. This variability suggests that selecting the
optimal quantization configuration for Qwen models
is necessary and requires extensive experimentation.
For example, even though Qwen 2.5 1.5B q6_K and
Qwen 2.5 3B q2_K configurations have similar sizes,
Qwen 2.5 1.5B q6_K significantly outperforms Qwen
2.5 3B g2_K in both accuracy and inference time.

4.4 Resource Utilization and Power Consumption
Analysis

Deploying models on edge devices requires raw in-
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ference time and understanding of how they utilize
hardware resources (CPU/GPU) and how much power
they draw. During our tests, we monitored CPU load,
GPU load, and power usage on the Jetson Orin Nano.
Tables 8 to 11 present the resource utilization and
power consumption for the Llama 3.2 and Qwen 2.5

models under each quantization configuration.

* Llama 3.2 1B Models: CPU utilization ranges
from 1.726% to 3.587%, while GPU utilization
peaks at 90.094%. Power consumption varies
between 9825.426 mW and 11311.145 mW.
Highbit configurations exhibit elevated power
consumption despite reduced CPU load, likely
due to increased GPU activity.

Llama 3.2 3B Models: CPU utilization remains
low (1.201%-2.398%), but GPU utilization fluc-
tuates significantly, from 62.607% to 85.782%.
Power consumption spans 9547.107 mW to
11458.084 mW. The q4_K_S configuration
demonstrates the highest power draw, while
g3_K_S balances lower GPU utilization with re-
duced energy consumption.
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Table 8. Resource utilization and power consumption of Llama 3.2 1B models across quantization configurations

Quantization CPU Utilization (%) GPU Utilization (%) Power Consumption (mW)
q2_K 2.852 83.706 9962.771
q3_K_L 2.564 85.131 10190.147
q3_K_.M 2.658 82.492 10052.843
q3_K_S 2.428 83.708 9825.426
q4_0 3.587 79.850 10231.300
q4_1 3.543 78.055 10052.620
q4_K_M 1.874 90.094 11217.783
q4_K_S 3.460 79.364 10648.455
q5_0 3.553 79.697 10778.045
q5_1 3.557 80.015 10715.291
q5_K_.M 3.309 79.040 10893.187
q5_K_S 3.372 80.730 10959.560
q6_K 1.726 89.405 11311.145

Table 9. Resource utilization and power consumption of Llama 3.2 3B models across quantization configurations

Quantization CPU Utilization (%) GPU Utilization (%) Power Consumption (mW)
q2_K 1.637 79.311 10235.359
q3_K_L 1.282 76.252 9888.316
q3_K.M 1.374 85.782 10556.523
q3_K_S 1.559 76.015 9547.107
q4_0 2.146 78.249 11005.015
q4_1 2.398 67.443 10024.660
q4_K M 2.106 69.784 10513.422
q4_K_S 1.840 81.614 11458.084
q5_0 1.201 73.463 10876.795
q5_1 2.032 68.757 10229.257
q5_K.M 1.909 67.834 10634.820
q5_K_S 1.952 69.566 10676.829
q6_K 1.788 62.607 10016.592

Table 10. Resource utilization and power consumption of Qwen 2.5 1.5B models across quantization configurations

Quantization CPU Utilization (%) GPU Utilization (%) Power Consumption (mW)
q2_K 3.106 82.347 9784.272
q3_K_L 2.886 84.696 9842.946
q3_K.M 3.147 80.150 9625.500
q3_K_S 2.739 81.000 9447.782
q4_0 3.959 74.864 9835.472
q4_1 4.288 74.966 9576.185
q4_K M 3.721 79.055 10432.955
q4_K_S 4.144 74.196 10163.166
q5_0 3.388 78.705 10457.940
q5_1 3.746 69.554 9570.465
q5_K.M 3.751 75.448 10432.320
q5_K_S 3.851 78.718 10331.470
q6_K 2.295 80.678 10515.761
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Table 11. Resource utilization and power consumption of Qwen 2.5 3B models across quantization configurations

Quantization CPU Utilization (%) GPU Utilization (%) Power Consumption (mW)
q2_K 3.383 84.773 10080.404
q3_K_L 1.372 77.756 9622.810
q3_K_.M 1.844 78.777 9505.850
q3_K_S 2.478 78.393 9194.816
q4_0 2.561 69.440 9555.400
q4_1 2.569 74.382 9929.643
q4_K M 2.739 68.165 9785.233
q4_K_S 2.733 80.807 10667.693
q5_0 2.163 71.740 10045.034
q5_1 2.773 71.190 10151.950
q5_K_.M 2.440 64.571 9973.136
q5_K_S 2.554 63.123 9723.113
q6_K 2.029 72.238 10316.134

* Qwen 2.5 1.5B Models: CPU utilization ranges
from 2.295% to 4.288%, with GPU utilization
between 69.554% and 84.696%. Power con-
sumption peaks at 10515.761 mW and drops to
9447.782 mW, indicating that lower-bit quanti-

zations enhance energy efficiency.

Qwen 2.5 3B Models: CPU utilization is modest
(1.372%-3.383%), but GPU utilization varies
widely, from 63.123% to 84.773%. Power con-
sumption ranges from 9194.816 mW to
10667.693 mW. The q4_K_S configuration in-
curs the highest power cost, while q3_K_S ach-

ieves the lowest.

These findings underscore that one must align the
quantization configuration with deployment priorities
when optimizing for edge deployment. If the priority
is energy efficiency, one might avoid configurations
that cause long tail latencies or GPU thrashing (even
if they save memory), because they can consume more
power. If the priority is maximum accuracy, one might
choose a higher bit-width and accept a moderate in-
crease in power. Our analysis provides concrete data
for these trade-offs. Such data can guide decisions de-
pending on whether an application (say, a bat-
tery-powered IoT device vs. a plugged-in smart kiosk)

values efficiency over accuracy or vice versa.
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4.5 Qualitative Evaluation and Use Cases

While the above quantitative results shed light on
performance metrics, it is equally important to consid-
er qualitative aspects and the usability of these quan-
tized models in real application scenarios. Ultimately,
an edge-deployed language model must deliver useful
responses to end-users within acceptable time frames.
Here, we discuss some qualitative observations and
the practical implications of our findings.

Firstly, the user-perceived quality of answers can
degrade in non-obvious ways when models are heav-
ily quantized. For configurations like q2_K or q3_K_S
that showed very low accuracy, the content of their
outputs often reflected confusion or failure. For exam-
ple, in our trials, Qwen 2.5 3B with q2_K frequently
produced irrelevant or malformed answers, or no an-
swer at all, for many questions. This aligns with the
quantitative result that it answered zero questions
correctly. This model would be unusable in a practical
setting such as an on-device engineering Q&A assis-
tant a user would receive either incorrect answers or
an “I don’ t know” far too often. In contrast, a model
with slightly higher precision (say Qwen 2.5 3B g4_1)
might produce mostly correct and fluent answers in
the same scenario, resulting in a dramatically better
user experience. This highlights that beyond accuracy
percentages, there is a threshold of quality below
which a model’ s outputs may be nonsensical or un-
helpful to a human. Our results suggest that quantiza-
tion beyond 4-bit for complex QA tasks crosses that



¥/ Analyzing Quantized Small Language Models for Efficient Edge Deployment

45 @ Llama3.2 Lr3Ba2 K L-3B-q3_K_S
A Qwen25
L-3B-q3_K_L
1L-38%3_K_M
40 .,1§/ b - SB.qS -
2038040
= ® Qa/q4 K_s .L(-@B-qstM
-3B-q5_0
= @3B-a4 KM B0 3pg K
Q 0_.38 q4_K_S L3B SA
-3B-q3_K_L o
E 30 A8 K 73B-q5_1
3 Q-3B-93_K_M 1-3B-q4_1
8 25 ‘Q_1'5B-Q27K A ekt A 93B-a5_K M
o -3B- Q-3B-q5_1
0} AQ-3B-G3_K_S aﬁq“—"—’v‘ _%»qshﬁ g
£ Lo L-3B-q2_K "Q3B-q5_K_S
£ L-1B-q3 K_L Q-1.5B-93_K_M @L3B-a2_ 3B-q5_K_
20 L1B-g3K Q-1.5B-43K_S
|_>1qu3\;}<\5 AKK KM L1B-g5 1 1-18-96 K
o
C. * /_,L~18=q5 K_M Q/—j,,SB-qG_K
15 L-1B- q4/ 95K = " Q15B-q5_ KM
L 1B f Q Fsa"q —Q-15B-95_K_S
_ —_ O°T5B-g4_K_M
-1B- ] Q-T5B-g4_K_S —
10 o-"B2K o ishqa0 T QT5B-g5_1
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Model size (GB)

Fig. 5. Relationship between inference time and model size across all models and quantization configurations.

threshold for these models.

Secondly, consider application scenarios like onde-
vice virtual assistants, real-time translators, or voice-
the

Introduction). Such applications require accuracy, re-

controlled IoT devices (as mentioned in
al-time interaction constraints, and user satisfaction
considerations. For instance, a real-time translator de-
ployed on a mobile device must generate translations
quickly and accurately. Suppose we were to deploy
Llama 3.2 1B g3_K_S (3-bit, small variant) to such
an application. In that case, a user might experience
very fast responses (due to the small model and ag-
gressive quantization), but the translations could be
garbled or incorrect, rendering the service ineffective.
On the other hand, using Llama 3.2 3B q5_0 (5-bit,
type-0) might yield slower responses but much more
reliable translations. User feedback in such a case
would likely favor the slightly slower but more accu-
rate model. This trade-off between speed and output
quality must be tuned to the use case: for a casual
chatbot that doesn’t require high factual accuracy, a
highly quantized small model might suffice, and the
occasional nonsensical answer might be acceptable or

even humorous. However, for a critical task (say, a

medical information assistant on an edge device), one
would choose the configuration that maximizes an-
swer correctness, even if it means using more power
or time.

We did not perform a formal user study, but qual-
itatively, we found that excluding random guesses
from the evaluation (as discussed earlier) is a proxy
for removing bogus answers. Users in a real scenario
effectively “exclude” random guesses themselves by
disregarding nonsensical responses. Our observation
that excluding guesses modestly boosts measured ac-
curacy suggests that some model outputs -especially
from low-bit models-are essentially random. Thus,
from a usability standpoint, those configurations have
a high rate of unacceptable outputs. For practical de-
ployment, one might implement safeguards such as
confidencebased answer rejection. Indeed, one could
design the system to detect when the model is likely
guessing (e.g., low likelihood scores) and either
prompt the user again or offload the query to a larger
model in the cloud if possible. This difference could
affect user trust; users might prefer a system that occa-
sionally says “I’'m not sure” (an understandable re-

sponse) over one that returns gibberish. In summary,

1371
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our practical evaluation suggests that there is a floor
on quantization for real-world use beyond which the
user experience degrades sharply. In our experiments,
4-bit quantization (especially with type-0/ 1 or K with
some higher-precision variant) tended to be the lowest
precision that still maintained reasonably coherent
outputs across all domains. Configurations at 2-bit or
3-bit often led to outputs that would not meet user
expectations in many applications. Therefore, devel-
opers targeting edge deployment should consider the
qualitative behavior of models. Additionally, one can
ensure better user satisfaction by aligning model
choice with the application. These qualitative insights
complement the quantitative metrics, reinforcing that
the “best” configuration depends on the context of

use, not just on raw performance numbers.

V. Conclusions

This study presents the first systematic evaluation
of quantized SLMs for deployment on resourcecon-
strained edge devices, focusing on the NVIDIA Jetson
Orin Nano. By analyzing 72 quantized models of
Llama 3.2 (1B and 3B parameters) and Qwen 2.5
(1.5B and 3B parameters) across 13 quantization con-
figurations (q2_K to q6_K), we demonstrate the po-
tential and limitations of these models for edge
deployment. Our findings indicate that Qwen 2.5
models generally achieve higher accuracy and lower
latency than Llama 3.2 models of similar size. Still,
Qwen models are also more sensitive to aggressive
quantization (suffering steep accuracy drops at low
bit-widths). Excluding random guesses from evalua-
tion improves the measured accuracy, while low-bit
configurations (e.g., Qwen 2.5 3B q2_K) rely heavily
on guessing due to the failure of answer extraction.
We also observed that accuracy and inference time
vary significantly across domains (computer science,
engineering, and math), highlighting the importance
of domain-specific model selection and quantization
tuning. Resource utilization analysis shows that CPU
utilization remains low (1-4%), while GPU was the
main workhorse, reaching up to 90% utilization.
Power consumption ranged from 9.2 W to 11.5 W
under load. These results underscore the need to bal-
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ance computational efficiency and energy con-
sumption when deploying quantized models on edge
devices.

Although our experiments were conducted on a
specific hardware platform (Jetson Orin Nano), the in-
sights are also relevant to other edge platforms. The
qualitative trends we observed are likely to generalize
across different hardware architectures. For edge de-
vices that lack a GPU and rely on CPUs, quantization
would remain crucial for fitting models in memory,
though such devices may experience overall slower
inference; the relative performance differences be-
tween, say, 4-bit and 6-bit models might be similar,
but absolute latencies would increase. One could po-
tentially deploy slightly larger models or use higher
precision without exceeding resource limits on more
capable edge accelerators or devices with greater
memory (for example, a Jetson AGX Orin). Still, the
same trade-off between efficiency and accuracy would
apply. We expect that the optimal quantization strat-
egy (e.g., choosing 4-bit vs. 8-bit) might shift with
hardware - some processors are optimized for certain
bit-widths- yet the core finding stands: moderate
quantization offers big wins with tolerable impact on
accuracy, whereas extreme quantization risks making
the model ineffective. Our discussion on hardware
generalizability is necessarily qualitative; verifying
these hypotheses on diverse edge hardware (GPUs,
CPUs, NPUs, DSPs across different vendors) is an
important avenue for future work.

In addition to extending across hardware, future
work should examine mixed-precision quantization
strategies, where different layers of the model are
quantized to different bit levels based on their
sensitivity. Hardware-specific optimizations could fur-
ther improve performance. Moreover, expanding eval-
uations to include multimodal and multilingual tasks
will be valuable, especially since models like Llama
3.2 and Qwen 2.5 are inherently multilingual and
some have vision or audio capabilities. We also sug-
gest that future research incorporate user-centric eval-
uations (e.g., human feed-back on output quality, us-
ability studies in actual edge applications) to comple-
ment quantitative metrics - addressing the gap be-
tween benchmark performance and real-world user
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satisfaction. By tackling these areas, the community

can build on the findings of this work to enable more

robust and energy-efficient NLP services on the next

generation of resource-constrained edge devices.
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