
논문 25-50-09-04 The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09
https://doi.org/10.7840/kics.2025.50.9.1364

1364

Ⅰ. Introduction

The emergence of Transformer-based archi-

tectures[1] has transformed the field of natural lan-

guage processing (NLP), giving rise to large language

models (LLMs) that exhibit exceptional performance

in tasks such as language comprehension and

generation. Models like OpenAI o1, GPT-4o, Gemini

1.5 Pro, and Claude 3.5 Sonnet have showcased the

ability to produce human-like text, sparking wide-

spread academic interest and commercial applications.

Simultaneously, the availability of open-source LLMs

such as Meta’s Llama has democratized access to ad-

vanced language models, fostering a growing ecosys-

tem for their distribution, deployment, and utilization

in various services and platforms, including Ollama,

LangChain, vLLM, and Hugging Face.

The utilization of LLMs is hindered by substantial

computational and memory requirements, which poses

significant challenges for deployment on re-

source-constrained edge devices. To mitigate these

challenges, the concept of small language models

※ This research was supported by the 2024 KNUDP(Korea National University Development Project) funded by the Ministry of
Education(MOE, Korea) and National Research Foundation of Korea(NRF)

w First Author : Hanbat National University, Department of Computer Engineering, syjang@hanbat.ac.kr, 종신회원
° Corresponding Author: Hanbat National University, Department of Computer Engineering, cbchoi@hanbat.ac.kr, 정회원
* Hanbat National University, Department of Urban Engineering, sh.yang@hanbat.ac.kr
논문번호：202501-012-A-RN, Received January 6, 2025; Revised March 7, 2025; Accepted April 11, 2025

Analyzing Quantized Small Language Models for Efficient Edge
Deployment

Sooyoung Jangw, Seungho Yang*, Changbeom Choi°

ABSTRACT

Quantized small language models (SLMs) offer a promising approach for deploying advanced natural

language process- ing (NLP) services on resource-constrained edge devices. However, an in-depth examination

of how different quantization configurations influence accuracy and efficiency remains underexplored. This

paper systematically evaluates 72 quantized variants of Llama 3.2 (1B and 3B parameters) and Qwen 2.5 (1.5B

and 3B parameters) across 13 quantization configura- tions, ranging from q2_K to q6_K. We use the

MMLU-Pro benchmark to measure the accuracy (including and excluding random guesses), inference time,

resource utilization, and power consumption on an NVIDIA Jetson Orin Nano. Our findings reveal that low-bit

quantized models often rely heavily on random guessing, with modest accuracy improvements observed when

these are excluded. Furthermore, Qwen 2.5 models generally yield superior accuracy and lower latency than

Llama 3.2, albeit with higher sensitivity to quantization, whereas Llama 3.2 exhibits more consistent

performance across quantization configurations. CPU utilization remains low (approximately 1-4%), with GPU

utilization peaking up to 90% and power consumption ranging from 9.2 W to 11.5 W. Variability across

different domains (computer science, engineering, and math) underscores the importance of selecting the

appropriate model family, parameter size, and quantization configuration for specific applications. We conclude

by outlining future directions for improving on-device NLP, including mixed-precision quantization,

hardware-specific optimizations, and broader assessments covering multilingual or multimodal tasks.

Key Words : Small Language Models, Edge AI Deployment, Quantization, Edge Computing, MMLU-Pro

mailto:syjang@hanbat.ac.kr
mailto:cbchoi@hanbat.ac.kr


논문 / Analyzing Quantized Small Language Models for Efficient Edge Deployment

1365

(SLMs) has emerged as a promising alternative for

edge deployment. Based on the literature, SLMs are

often defined as having fewer than one billion parame-

ters[2] or less than 10 billion parameters[3]. These

scaled-down models are more suitable for deployment

on resource-constrained edge devices, as they exhibit

reduced computational and memory footprints.

While existing research has examined various char-

acteristics of LLMs, such as inference latency, memo-

ry usage, and accuracy[4], these studies primarily focus

on high-performance server hardware, neglecting the

distinct constraints of edge devices. Assessments of

small language models specifically designed for edge

deployment remain limited. This gap is crucial, as the

successful integration of SLMs could unlock a diverse

range of NLP applications on edge platforms, includ-

ing ondevice assistants, context-aware IoT systems,

and realtime translation services while maintaining ac-

ceptable performance levels.

Quantization methods[5,6] have demonstrated the

potential to substantially reduce the memory require-

ments and computational complexity of language

models, thereby facilitating the deployment of

large-scale models on resource-constrained edge plat-

forms like the NVIDIA Jetson devices. Previous stud-

ies have investigated the application of quantization

techniques in general neural networks[7] and diverse

NLP applications[8,9]. However, the intricate relation-

ship between model scale, quantization approach, and

performance on edge hardware remains an area that

requires further exploration.

Building upon prior research on quantization, mod-

el evaluation, and SLMs, this study extends those in-

sights to edge computing. Specifically, we provide a

comprehensive assessment of quantized SLMs on re-

source-constrained hardware. We evaluate the per-

formance and efficiency-measured in terms of in-

ference time, resource utilization, and power con-

sumption-of 72 quantized models. These models,

which range from 1 billion to 3 billion parameters

and incorporate various quantization configurations,

are designed for deployment on devices such as the

NVIDIA Jetson Orin Nano. Our contributions are

threefold: (1) we assess the viability of deploying

quantized SLMs on edge devices; (2) we investigate

the trade-offs between model accuracy and efficiency

on resource-constrained hardware; and (3) we provide

practical insights for selecting models and quantiza-

tion configurations to support efficient NLP service

deployments on edge devices.

Ⅱ. Related Work

Small Language Models: Wang et al.[10] have pro-

vided a detailed survey of small language models,

clarifying their definitions and exploring their use cas-

es in resource-constrained environments. Their work

underscores the potential of SLMs to deliver com-

petitive performance with significantly reduced pa-

rameter counts, laying the groundwork for further ex-

ploration of these models in edge hardware

applications. Our study builds upon these insights by

specifically evaluating quantized SLMs on edge de-

vices, extending the analysis to scenarios with tight

resource budgets.

Quantization Techniques: Jacob et al.[7] demon-

strated the feasibility of integer-arithmetic-only in-

ference through quantization, enabling significant

model size reduction while maintaining acceptable ac-

curacy levels. This pioneering research has influenced

subsequent advancements in quantization techniques.

Building upon this foundation, Gholami et al.[5] pro-

vided a comprehensive survey of various quantization

methods, exploring their applications, challenges, and

effectiveness across a range of scenarios. Lee et al.[9]

conducted an extensive evaluation of quantized, in-

struction-tuned LLMs, analyzing models with up to

405 billion parameters. Their research highlights the

trade-offs between quantization methods and model

performance at scale. However, their focus on server-

grade hardware limits the applicability of their find-

ings to edge deployments, where computational re-

sources and memory are constrained.

Model Storage Formats: The development of effi-

cient model storage formats, such as GGUF

(GPT-Generated Unified Format)[11], has been in-

strumental in enabling the deployment of quantized

models on devices with limited resources. GGUF sup-

ports diverse quantization configurations while offer-

ing enhanced metadata storage capabilities. This ex-



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1366

tensibility ensures that models can be seamlessly load-

ed and executed across multiple platforms, facilitating

systematic experimentation and reproducibility. Our

work leverages the GGUF format to manage a variety

of quantization configurations in a unified manner.

Ⅲ. Methodology

3.1 Hardware and Software Setup
Hardware: All experiments were conducted on an

NVIDIA Jetson Orin Nano, which features a

1024-core NVIDIA Ampere GPU with 32 Tensor

Cores, a 6-core Arm Cortex-A78A CPU, and 8GB

of LPDDR5 memory.

Operating System: Ubuntu 22.04 LTS (64-bit).

LLM Serving Framework: We used the Ollama

framework to serve the quantized LLMs due to its

support for various quantization methods and compati-

bility with edge devices. The Ollama provides pre-

quantized model variants, ensuring efficient execution

on the Jetson device.

3.2 Model and Configuration
The models selected for evaluation comprise

Meta’s Llama 3.2 (1B and 3B) and Alibaba’ s Qwen

2.5(1.5B and 3B). These represent two modern fami-

lies of open-source SLMs. We applied 13 distinct

quantization configurations using the GGUF storage

format to each model to reduce both memory and

computational overhead on edge devices. The config-

urations, denoted as ‘q2_K’, ‘q3_K_L’, ‘q3_K_M’,

‘q3_K_S’, ‘q4_0’, ‘q4_1’, ‘q4_K_M’, ‘q4_K_S’,

‘q5_0’, ‘q5_1’, ‘q5_K_M’, ‘q5_K_S’, and ‘q6_K’, are

explained as follows:

∙ 'q2' to 'q6' (Quantization Bit-Width): The nu-

meral denotes the bit-width used to represent

each weight. For instance, ‘q2’ indicates a 2-bit

precision, while ‘q6’ signifies a 6-bit precision.

Generally, a higher bit-width allows for a more

nuanced representation of the model’s weights,

which can better preserve accuracy but at the

cost of increased resource usage.

∙ ‘0’ and ‘1’ (Quantization Types): The suffixes

‘0’ and ‘1’ indicate the quantization type as de-

fined in frameworks like llama.cpp. In ‘type-0’

quantization, each weight is reconstructed as w
= dq, where d is the block scale, and q is the

quantized value. In ‘type-1’ quantization, the re-

construction uses w = dq + m, where m repre-

sents the block minimum. These types differ in

whether an offset (minimum) is used for each

quantization block.

∙ ‘K’ (Quantization Method): The presence of

a K indicates the use of K-Quantization, a tech-

nique that divides the model’s weights into large

blocks, which are further split into smaller

subblocks. Each sub-block is assigned its scale

and minimum value, which are then quantized

to a limited number of bits based on the target

bitwidth. This approach helps the model main-

tain its performance despite the reduced pre-

cision by capturing distribution differences

within large weight blocks.

∙ ‘L’, ‘M’, and ‘S’ (Quantization Var iants):

These letters denote variant schemes to balance

accuracy and efficiency by adjusting the

bit-widths used for different parts of the model.

In the ‘L’ (Large) variant, critical tensors are

quantized with a higher bit-width to preserve

precision, while all other tensors use the target

bit-width. The ‘M’ (Medium) variant employs

an intermediate bit-width for the critical ten-

sors-lower than that of the ‘L’ variant but higher

than the base target-thus compromising per-

formance and compression. The ‘S’ (Small)

variant uniformly applies the base target

bit-width across all tensors, maximizing quanti-

zation efficiency but potentially sacrificing

some accuracy.

For clarity, Table 1 provides a summary of the

quantization configuration nomenclature and their key

characteristics.

We chose the above models and quantization set-

tings (as provided by the Ollama framework) follow-

ing an initial screening based on prior works[2,3] and



논문 / Analyzing Quantized Small Language Models for Efficient Edge Deployment

1367

pilot experiments on the Jetson Orin Nano (8GB

memory). The selection of Llama 3.2 and Qwen 2.5

was motivated by their complementary architectural

and training characteristics, ensuring our findings’

generalizability and robustness. Llama 3.2, introduced

by Meta in September 2024, includes lightweight

models with 1B and 3B parameters and multimodal

variants with 11B and 90B parameters. This study

specifically utilizes the lightweight versions optimized

for efficient deployment on edge devices. The archi-

tecture features enhancements such as Grouped-Query

Attention (GQA), significantly improving inference

scalability. Furthermore, instruction-tuned versions of

Llama 3.2 have been aligned with human preferences

using supervised fine-tuning (SFT) and reinforcement

learning from human feedback (RLHF)[12]. Qwen 2.5,

developed by Alibaba and also released in September

2024, complements Llama 3.2 by providing an alter-

native architecture pre-trained on an extensive corpus

comprising 18 trillion tokens. Qwen 2.5 excels partic-

ularly in knowledge-intensive and reasoning tasks. Its

variants, fine-tuned for instruction following and

structured outputs, utilize RLHF extensively to en-

hance alignment and model responsiveness[13].

Including these two distinct model families-differ-

entiated by Western and Chinese origins, distinct

pre-training datasets, and varying tokenization strat-

egies-strengthens the general applicability of our

study. The comprehensive combination of models and

quantization strategies (2 model families × 2 model

sizes × 13 quantization configurations = 72 variants)

facilitated an in-depth evaluation of how quantization

affects key performance metrics, including storage ef-

ficiency, inference speed, and output accuracy.

3.3 Benchmark Dataset
We used a subset of the MMLU-Pro benchmark[14]

to evaluate model accuracy, ensuring consistent and

challenging test conditions across different models

and quantization configurations. Specifically, we se-

lected three knowledge domains from MMLU-Pro:

computer science (410 questions), engineering (969

questions), and mathematics (1351 questions).

MMLU-Pro is a more challenging extension of the

original MMLU(Massive Multitask Language

Understanding) benchmark[15], featuring complex rea-

soning questions and an increased number of answer

choices (up to 10) to reduce the chance of correct

guesses by random chance. Each question in these

subsets is multiple-choice with one correct answer and

9 distractors, making naive guessing only 10% likely

to succeed.

3.4 Evaluation Protocol
For each model variant, we measured several met-

rics: accuracy, inference time, resource utilization, and

power consumption. Accuracy on MMLU-Pro was

Configuration Description

q2_K 2-bit K-quantization (ultra-low precision for maximum memory efficiency).

q3_K_L 3-bit K-quantization, Large variant: critical layers at higher quantization to preserve accuracy.

q3_K_M 3-bit K-quantization, Medium variant: critical layers at intermediate precision (trade-off approach).

q3_K_S 3-bit K-quantization, Small variant: uniform 3-bit quantization across all layers (maximum efficiency).

q4_0 4-bit quantization, type-0 (block scale only, w = d × q).

q4_1 4-bit quantization, type-1 (block scale + offset, w = d × q + m).

4_K_M 4-bit K-quantization, Medium variant: 4-bit base with some higher-quantization sub-blocks for key weights.

q4_K_S 4-bit K-quantization, Small variant: uniform 4-bit for all weights.

q5_0 5-bit quantization, type-0.

q5_1 5-bit quantization, type-1.

q5_K_M 5-bit K-quantization, Medium variant: higher than 5-bit for critical parts.

q5_K_S 5-bit K-quantization, Small variant: uniform 5-bit quantization.

q6_K 6-bit K-quantization (highest precision considered in this study under K-quantization).

Table 1. Summary of Quantization Configurations



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1368

computed as the fraction of questions answered

correctly. We report accuracy under two conditions:

including random guesses and excluding random

guesses. This distinction is made because the evalua-

tion script is designed such that if a model’ s gen-

erated response does not contain a recognizable an-

swer option, a random answer is selected on its behalf

(simulating a guess). Given the benchmark’ s format

of up to 10 choices, a random guess has a 10% chance

of being correct. Including these guesses in accuracy

can inflate the score of very poorly performing

models. Therefore, we also calculate accuracy, ex-

cluding those cases where we remove all questions

where the model failed to produce an answer and a

guess was inserted. The “excluding” accuracy reflects

the model’ s performance on the subset of questions

it meaningfully attempted. By comparing both, we can

gauge how much a model relies on guesswork. We

also recorded the inference time per question

(averaged over all queries in a domain), using Ollama’

s timing logs on the Jetson. CPU and GPU utilization

were monitored via system tools (with GPU utilization

focusing on the Jetson’ s integrated GPU), and power

consumption was measured using the Jetson’ s on-

board power meter, capturing average power draw (in

milliwatts, mW) during inference on each domain.

These measurements allow us to evaluate efficiency

in terms of both computational load and energy usage.

All experiments were run in a controlled setting on

the Jetson (performance mode enabled, consistent am-

bient conditions) to ensure fair comparison across

models and configurations.

Ⅳ. Experimental Results

This section presents an in-depth analysis of the

experimental results for the quantized Llama 3.2 and

Qwen 2.5 models. We first discuss accuracy outcomes

(with and without random guess adjustments) across

the different configurations, then examine inference

latency and subsequently analyze the relationship be-

tween model size and performance. Finally, we con-

sider resource utilization patterns and provide qual-

itative insights into the practical usability of these

models.

4.1 Accuracy Analysis
Tables 2 and 3 summarize the accuracy of Llama

3.2 and Qwen 2.5 models on the MMLU-Pro bench-

mark, both including and excluding random guesses.

The highest accuracy in each category is shown in

bold. Each value represents accuracy, while the num-

bers in parentheses indicate the number of questions

answered correctly over the total number of questions

attempted. For instance, in Table 1, Llama 3.2 1B

q2_K achieves 0.115 (47/410) when including random

guesses, indicating 47 out of 410 questions were cor-

rect (i.e., 11.5% accuracy). Excluding random guess-

es, the model’ s accuracy is 0.125 (43/345), meaning

43 out of 345 questions were correct (12.5% accu-

racy). From these figures, we can infer that 65 ques-

tions were randomly guessed, of which 4 were an-

swered correctly. The MMLU-Pro benchmark eval-

uates language models on multiple-choice questions,

with an average of 9.188, 9.583, and 9.771 answer

choices for computer science, engineering, and math,

respectively. This corresponds to probabilities of

0.109, 0.104, and 0.102, respectively, for randomly

selecting the correct answer in each domain.

Conventional MMLU-Pro evaluations include random

guesses when a model’ s response is unextractable,

but this paper examines results both with and without

random guesses to offer deeper insights into model

performance. Excluding random guesses provides a

clearer picture of a model’ s predictive capability, as

random responses can skew accuracy metrics.

Notably, even small quantized models achieve higher

accuracy when random guesses are excluded, under-

scoring their non-trivial predictive abilities.

Tables 2 and 3 reveal significant performance dif-

ferences among categories. Generally, the math cat-

egory exhibits the best performance, followed by com-

puter science and engineering. Moreover, the optimal

quantization technique varies by category. For exam-

ple, Qwen 2.5 3B q4_1 performs best in math and

computer science, yet in engineering it is surpassed

by q5_K_S, which shows 5.9% higher accuracy.

Similarly, for Llama 3.2 3B, the best-performing

quantizer differs across categories. These variations

indicate that even within MMLU-Pro results, it is es-

sential to evaluate model performance by the required



논문 / Analyzing Quantized Small Language Models for Efficient Edge Deployment

1369

Quantization

Llama 3.2 1 B Accuracy Llama 3.2 3 B Accuracy

including
random guesses

excluding
random guesses

including
random guesses

excluding
random guesses

Computer science

q2_K 0.115 (47/410) 0.125 (43/345) 0.185 (76/410) 0.188 (76/405)

q3_K_L 0.210 (86/410) 0.215 (85/395) 0.344 (141/410) 0.357 (140/392)

q3_K_M 0.163 (67/410) 0.161 (64/398) 0.322 (132/410) 0.335 (130/388)

q3_K_S 0.161 (66/410) 0.160 (64/401) 0.285 (117/410) 0.294 (117/398)

q4_0 0.183 (75/410) 0.186 (74/398) 0.390 (160/410) 0.398 (159/400)

q4_1 0.202 (83/410) 0.207 (82/396) 0.349 (143/410) 0.359 (142/395)

q4_K_M 0.224 (92/410) 0.232 (90/388) 0.378 (155/410) 0.390 (154/395)

q4_K_S 0.217 (89/410) 0.221 (87/393) 0.354 (145/410) 0.360 (144/400)

q5_0 0.212 (87/410) 0.220 (87/396) 0.324 (133/410) 0.333 (133/400)

q5_1 0.232 (95/410) 0.237 (95/400) 0.368 (151/410) 0.377 (150/398)

q5_K_M 0.207 (85/410) 0.215 (85/395) 0.354 (145/410) 0.363 (143/394)

q5_K_S 0.205 (84/410) 0.209 (82/392) 0.359 (147/410) 0.369 (146/396)

q6_K 0.220 (90/410) 0.226 (88/389) 0.359 (147/410) 0.377 (147/390)

Engineering

q2_K 0.104 (101/969) 0.109 (66/608) 0.156 (151/969) 0.156 (149/953)

q3_K_L 0.155 (150/969) 0.161 (147/912) 0.228 (221/969) 0.229 (214/935)

q3_K_M 0.139 (135/969) 0.141 (132/933) 0.224 (217/969) 0.230 (212/923)

q3_K_S 0.134 (130/969) 0.134 (125/934) 0.182 (176/969) 0.186 (174/938)

q4_0 0.146 (141/969) 0.150 (137/914) 0.253 (245/969) 0.257 (243/945)

q4_1 0.146 (141/969) 0.152 (137/904) 0.241 (234/969) 0.246 (231/940)

q4_K_M 0.168 (163/969) 0.173 (159/921) 0.233 (226/969) 0.234 (223/952)

q4_K_S 0.169 (164/969) 0.171 (157/918) 0.237 (230/969) 0.242 (227/939)

q5_0 0.182 (176/969) 0.188 (173/921) 0.266 (258/969) 0.272 (254/933)

q5_1 0.147 (142/969) 0.153 (140/916) 0.255 (247/969) 0.259 (242/934)

q5_K_M 0.155 (150/969) 0.158 (143/904) 0.238 (231/969) 0.245 (229/934)

q5_K_S 0.151 (146/969) 0.151 (139/921) 0.255 (247/969) 0.258 (244/946)

q6_K 0.152 (147/969) 0.158 (142/900) 0.283 (274/969) 0.288 (270/938)

Math

q2_K 0.100 (135/1351) 0.100 (113/1133) 0.201 (271/1351) 0.207 (258/1246)

q3_K_L 0.195 (264/1351) 0.211 (240/1140) 0.324 (438/1351) 0.357 (414/1160)

q3_K_M 0.198 (267/1351) 0.205 (246/1198) 0.338 (457/1351) 0.376 (430/1144)

q3_K_S 0.145 (196/1351) 0.153 (184/1202) 0.286 (387/1351) 0.312 (368/1181)

q4_0 0.204 (275/1351) 0.212 (244/1151) 0.335 (452/1351) 0.360 (432/1199)

q4_1 0.212 (286/1351) 0.236 (256/1086) 0.355 (480/1351) 0.384 (465/1210)

q4_K_M 0.208 (281/1351) 0.220 (261/1189) 0.360 (487/1351) 0.394 (467/1184)

q4_K_S 0.211 (285/1351) 0.223 (261/1170) 0.338 (456/1351) 0.374 (438/1170)

q5_0 0.238 (321/1351) 0.246 (300/1218) 0.366 (494/1351) 0.396 (468/1182)

q5_1 0.226 (305/1351) 0.247 (286/1157) 0.331 (447/1351) 0.362 (425/1174)

q5_K_M 0.209 (283/1351) 0.226 (268/1187) 0.363 (490/1351) 0.398 (473/1187)

q5_K_S 0.226 (305/1351) 0.239 (282/1178) 0.361 (488/1351) 0.402 (468/1165)

q6_K 0.230 (311/1351) 0.247 (289/1170) 0.356 (481/1351) 0.386 (456/1181)

Table 2. Accuracy of Llama 3.2 models on MMLU-Pro benchmark including and excluding random guesses



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1370

Quantization

Qwen 2.5 1.5B Accuracy Qwen 2.5 3B Accuracy

including
random guesses

excluding
random guesses

including
random guesses

excluding
random guesses

Computer science

q2_K 0.127 (52/410) 0.135 (49/362) 0.105 (43/410) 0.000 (0/3)

q3_K_L 0.244 (100/410) 0.246 (100/406) 0.188 (77/410) 0.193 (77/398)

q3_K_M 0.271 (111/410) 0.273 (109/399) 0.190 (78/410) 0.195 (77/395)

q3_K_S 0.205 (84/410) 0.205 (83/405) 0.215 (88/410) 0.215 (87/405)

q4_0 0.300 (123/410) 0.302 (123/407) 0.395 (162/410) 0.398 (162/407)

q4_1 0.312 (128/410) 0.313 (128/409) 0.398 (163/410) 0.400 (163/408)

q4_K_M 0.302 (124/410) 0.303 (124/409) 0.337 (138/410) 0.337 (138/409)

q4_K_S 0.293 (120/410) 0.292 (119/408) 0.339 (139/410) 0.340 (139/409)

q5_0 0.310 (127/410) 0.314 (127/405) 0.368 (151/410) 0.368 (151/410)

q5_1 0.322 (132/410) 0.323 (131/406) 0.380 (156/410) 0.384 (156/406)

q5_K_M 0.283 (116/410) 0.286 (116/406) 0.388 (159/410) 0.391 (159/407)

q5_K_S 0.332 (136/410) 0.333 (135/406) 0.346 (142/410) 0.346 (142/410)

q6_K 0.324 (133/410) 0.327 (133/407) 0.373 (153/410) 0.373 (153/410)

Engineering

q2_K 0.111 (108/969) 0.112 (101/905) 0.094 (91/969) 0.000 (0/0)

q3_K_L 0.184 (178/969) 0.185 (178/961) 0.213 (206/969) 0.214 (206/964)

q3_K_M 0.186 (180/969) 0.188 (180/959) 0.201 (195/969) 0.202 (194/961)

q3_K_S 0.164 (159/969) 0.163 (155/952) 0.185 (179/969) 0.185 (176/951)

q4_0 0.200 (194/969) 0.201 (194/963) 0.254 (246/969) 0.258 (245/950)

q4_1 0.227 (220/969) 0.227 (218/961) 0.273 (265/969) 0.275 (265/964)

q4_K_M 0.187 (181/969) 0.188 (181/961) 0.271 (263/969) 0.275 (262/951)

q4_K_S 0.209 (203/969) 0.210 (203/965) 0.254 (246/969) 0.259 (246/950)

q5_0 0.205 (199/969) 0.206 (199/965) 0.293 (284/969) 0.294 (284/965)

q5_1 0.200 (194/969) 0.200 (194/968) 0.311 (301/969) 0.314 (300/956)

q5_K_M 0.224 (217/969) 0.222 (213/959) 0.311 (301/969) 0.312 (299/957)

q5_K_S 0.214 (207/969) 0.213 (204/959) 0.332 (322/969) 0.334 (320/959)

q6_K 0.203 (197/969) 0.204 (197/967) 0.308 (298/969) 0.310 (297/957)

Math

q2_K 0.097 (131/1351) 0.097 (114/1174) 0.116 (157/1351) 0.000 (0/0)

q3_K_L 0.279 (377/1351) 0.283 (366/1295) 0.170 (230/1351) 0.174 (226/1301)

q3_K_M 0.281 (379/1351) 0.291 (369/1269) 0.155 (209/1351) 0.157 (186/1188)

q3_K_S 0.199 (269/1351) 0.205 (260/1268) 0.216 (292/1351) 0.217 (287/1323)

q4_0 0.315 (425/1351) 0.321 (416/1297) 0.453 (612/1351) 0.464 (601/1295)

q4_1 0.358 (484/1351) 0.366 (467/1277) 0.491 (664/1351) 0.514 (656/1276)

q4_K_M 0.329 (445/1351) 0.341 (438/1285) 0.340 (459/1351) 0.352 (452/1283)

q4_K_S 0.319 (431/1351) 0.325 (423/1300) 0.437 (591/1351) 0.453 (584/1288)

q5_0 0.376 (508/1351) 0.381 (498/1308) 0.362 (489/1351) 0.368 (486/1321)

q5_1 0.358 (483/1351) 0.368 (479/1302) 0.346 (467/1351) 0.364 (458/1257)

q5_K_M 0.370 (500/1351) 0.380 (490/1290) 0.385 (520/1351) 0.390 (517/1324)

q5_K_S 0.361 (488/1351) 0.376 (482/1283) 0.383 (518/1351) 0.389 (516/1328)

q6_K 0.368 (497/1351) 0.377 (491/1304) 0.397 (536/1351) 0.408 (531/1303)

Table 3. Accuracy of Qwen 2.5 models on MMLU-Pro benchmark including and excluding random guesses



논문 / Analyzing Quantized Small Language Models for Efficient Edge Deployment

1371

category.

When comparing Tables 2 and 3, Qwen 2.5 outper-

forms Llama 3.2 according to the highest accuracy

criteria. In the math category, Qwen 2.5 3B q4_1 ach-

ieves 51.4%, notably higher than Llama 3.2 3B

q5_K_S at 40.2%. However, Qwen 2.5 exhibits con-

siderable performance variability across quantization

configurations, particularly at low bit configurations

(‘q2_K’, ‘q3_K_S’, ‘q3_K_M’, ‘q3_K_L’). Notably,

Qwen 2.5 3B q2_K failed to extract any answers in

engineering and math, and only three were extractable

in computer science-all of which were incorrect, as

shown in Table 2.

4.2 Inference Time Analysis
Tables 4 to 7 present the inference times for Llama

3.2 1B, Llama 3.2 3B, Qwen 2.5 1.5B, and Qwen

2.5 3B models across various quantization

configurations. Each reported value is the mean, with

parentheses showing the standard deviation. The in-

ference time varies substantially by MMLU-Pro cat-

egory, typically increasing from computer science to

engineering and then math. Many outliers emerge at

lower bit configurations: in Qwen models, q2_K on

both 1.5B and 3B is particularly affected, while in

Llama models, q3_K_S, q3_K_M, and q3_K_L on the

3B model exhibit notable outliers.

Figures 1 and 2 provide a more granular view of

inference times per question for selected quantization

settings (q2_K, q3_K_S, q4_K_M). Fig. 1 displays

Llama 3.2 1B and 3B results for computer science,

while Fig. 2 shows Qwen 2.5 1.5B and 3B in the

same domain. Each dot represents the inference time

for a single question, and the red dashed line indicates

the average. For Qwen 2.5 1.5B and 3B, q2_K incurs

very high inference times (23.366 and 137.915, re-

spectively), attributable to numerous values exceeding

100. As quantization configurations increase, in-

ference times become more consistent.

Fig. 1. Inference time distribution for computer science
using Llama 3.2 (‘L’) models. ‘1B‘ and ‘3B’ refer to
number of parameters, while ‘q2_K’, ‘q3_K_S’, and
‘q4_K_M’ specify the quantization methods.

Fig. 2. Inference time distribution for computer science
using Qwen 2.5 (‘Q’) models. ‘1.5B‘ and ‘3B’ refer to
number of parameters, while ‘q2_K’, ‘q3_K_S’, and
‘q4_K_M’ specify the quantization methods.



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1372

Quantization Computer science Engineering Math Total

q2_K 11.462(23.551) 9.263(21.571) 10.538(22.432) 10.224(22.317)

q3_K_L 11.071(17.746) 17.564(21.967) 22.353(32.947) 18.959(27.776)

q3_K_M 9.895(16.827) 16.565(23.753) 22.497(33.928) 18.499(28.858)

q3_K_S 8.888(17.215) 12.539(21.681) 21.891(35.115) 16.619(29.159)

q4_0 9.354(14.871) 23.973(26.178) 20.747(28.456) 20.181(26.458)

q4_1 6.443(11.731) 15.107(20.641) 16.733(26.279) 14.611(22.934)

q4_K_M 8.963(15.910) 17.565(22.026) 18.672(26.841) 16.821(24.040)

q4_K_S 7.584(13.510) 15.039(19.683) 19.195(27.591) 15.976(23.615)

q5_0 7.972(11.936) 17.304(20.068) 17.335(25.609) 15.918(22.362)

q5_1 8.306(11.161) 17.671(19.107) 19.853(26.900) 17.344(22.843)

q5_K_M 8.397(12.939) 15.766(17.636) 17.657(25.445) 15.595(21.583)

q5_K_S 7.714(11.305) 15.763(18.159) 17.760(26.042) 15.542(21.989)

q6_K 8.813(14.254) 17.931(20.068) 19.285(27.803) 17.232(23.852)

Table 4. Inference time (s) of Llama 3.2 1B models across quantization configurations

Quantization Computer science Engineering Math Total

q2_K 11.374(23.145) 13.306(21.043) 30.060(55.294) 21.307(42.733)

q3_K_L 23.590(41.897) 42.906(55.409) 44.929(67.010) 41.007(60.249)

q3_K_M 20.084(35.182) 39.949(50.903) 45.832(68.397) 39.877(59.136)

q3_K_S 24.303(42.731) 41.209(57.042) 54.763(81.317) 45.378(69.411)

q4_0 14.563(24.193) 26.293(32.452) 30.409(43.701) 26.568(37.892)

q4_1 14.759(25.690) 27.733(34.375) 29.476(42.281) 26.647(37.800)

q4_K_M 18.207(30.425) 36.060(42.961) 35.125(50.195) 32.916(45.600)

q4_K_S 16.205(26.174) 35.918(41.811) 34.012(48.779) 32.014(44.111)

q5_0 19.761(32.906) 35.688(42.242) 34.912(49.827) 32.912(45.335)

q5_1 17.219(28.820) 33.025(41.639) 34.715(49.298) 31.487(44.490)

q5_K_M 21.813(36.426) 38.027(46.302) 35.727(49.826) 34.454(47.097)

q5_K_S 19.626(32.493) 34.875(43.101) 34.594(49.660) 32.446(45.469)

q6_K 22.257(37.381) 41.805(49.517) 40.804(57.350) 38.374(52.478)

Table 5. Inference time (s) of Llama 3.2 3B models across quantization configurations

Quantization Computer science Engineering Math Total

q2_K 23.366(41.708) 20.377(38.791) 30.265(47.524) 25.720(43.980)

q3_K_L 10.696(16.927) 12.802(20.240) 21.131(29.700) 16.608(25.406)

q3_K_M 12.388(23.365) 13.187(22.379) 24.353(36.741) 18.593(30.989)

q3_K_S 10.879(21.321) 16.445(32.183) 21.860(40.491) 18.289(35.539)

q4_0 7.201(9.839) 8.789(10.291) 15.383(22.818) 11.814(17.960)

q4_1 6.231(6.174) 9.585(10.740) 18.462(22.360) 13.474(17.879)

q4_K_M 8.030(9.604) 10.405(12.910) 18.450(25.701) 14.029(20.485)

q4_K_S 7.079(8.855) 8.818(10.160) 17.114(22.846) 12.662(18.068)

q5_0 9.266(12.052) 11.518(11.455) 18.857(22.226) 14.812(18.150)

q5_1 7.888(10.743) 8.911(7.879) 16.121(20.971) 12.326(16.469)

q5_K_M 7.945(10.031) 9.510(8.849) 19.724(24.862) 14.330(19.431)

q5_K_S 8.220(10.942) 9.006(7.553) 18.944(24.531) 13.806(19.025)

q6_K 9.282(12.119) 10.741(7.607) 20.629(26.712) 15.415(20.556)

Table 6. Inference time (s) of Qwen 2.5 1.5B models across quantization configurations



논문 / Analyzing Quantized Small Language Models for Efficient Edge Deployment

1373

4.3 Relationship Between Accuracy, Inference 
Time, and Model Size

Figure 3 illustrates the relationship between accu-

racy and inference time, while Figure 4 shows how

accuracy varies with model size. Figure 5 depicts the

relationship between inference time and model size.

In this context, "accuracy" refers to the average per-

formance across computer science, engineering, and

math domains, including random guesses. In Figures

3 and 4, Qwen 2.5 3B q4_1 achieves the highest over-

all accuracy at 40%, surpassing Qwen 2.5 3B q5 and

q6. For Llama 3.2 3B model, the q6_K configuration

yields the highest accuracy at 33.04%. For Llama 3.2

3B, q3_K_S, q3_K_M, and q3_K_L configurations

result in higher inference times while maintaining fair

accuracy. In contrast, the same configurations applied

to Qwen 2.5 3B lead to moderate inference times but

lower accuracy. Additionally, Qwen 2.5 3B models

Quantization Computer science Engineering Math Total

q2_K 137.915(71.527) 50.104(63.342) 12.707(12.517) 45.206(64.297)

q3_K_L 19.481(39.276) 29.959(38.045) 33.287(54.477) 30.036(47.289)

q3_K_M 18.699(38.964) 26.585(40.064) 29.027(51.892) 26.609(46.288)

q3_K_S 21.644(51.973) 21.542(38.120) 25.178(54.540) 23.357(48.957)

q4_0 16.034(15.441) 43.807(28.396) 38.215(28.779) 36.868(28.549)

q4_1 20.170(17.618) 44.744(26.949) 39.754(32.522) 38.584(29.881)

q4_K_M 8.202(12.565) 45.633(34.546) 11.927(20.739) 23.332(30.585)

q4_K_S 14.526(16.620) 45.047(31.467) 30.979(28.547) 33.502(30.013)

q5_0 14.962(17.719) 37.918(33.953) 17.002(24.819) 24.120(29.435)

q5_1 13.016(16.715) 40.227(29.497) 15.406(22.890) 23.857(27.535)

q5_K_M 17.617(17.876) 36.754(27.205) 19.859(26.641) 25.519(27.055)

q5_K_S 15.071(18.829) 30.236(28.956) 19.586(24.741) 22.688(26.220)

q6_K 20.242(22.045) 51.754(34.798) 21.533(28.985) 32.066(33.646)

Table 7. Inference time (s) of Qwen 2.5 3B models across quantization configurations

Fig. 3. Relationship between accuracy and inference time across all models and quantization configurations.



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1374

using the q4_K_S, q4_0, and q4_1 configurations ex-

hibit higher accuracy with longer inference times,

whereas q2_K configuration produces very low accu-

racy with longer inference times. Comparing Qwen

2.5 1.5B and Llama 3.2 1B models, Qwen 2.5 1.5B

generally shows lower inference times and higher ac-

curacy across most quantization configurations-even

though it has more parameters than Llama 3.2 1B.

Similarly, Qwen 2.5 3B often outperforms Llama 3.2

3B in terms of both accuracy and inference speed.

We also revealed distinct clustering patterns as pre-

sented in Figures 4 and 5: Llama models are relatively

well-clustered, whereas Qwen models exhibit great

dispersion. This variability suggests that selecting the

optimal quantization configuration for Qwen models

is necessary and requires extensive experimentation.

For example, even though Qwen 2.5 1.5B q6_K and

Qwen 2.5 3B q2_K configurations have similar sizes,

Qwen 2.5 1.5B q6_K significantly outperforms Qwen

2.5 3B q2_K in both accuracy and inference time.

4.4 Resource Utilization and Power Consumption 
Analysis

Deploying models on edge devices requires raw in-

ference time and understanding of how they utilize

hardware resources (CPU/GPU) and how much power

they draw. During our tests, we monitored CPU load,

GPU load, and power usage on the Jetson Orin Nano.

Tables 8 to 11 present the resource utilization and

power consumption for the Llama 3.2 and Qwen 2.5

models under each quantization configuration.

∙Llama 3.2 1B Models: CPU utilization ranges

from 1.726% to 3.587%, while GPU utilization

peaks at 90.094%. Power consumption varies

between 9825.426 mW and 11311.145 mW.

Highbit configurations exhibit elevated power

consumption despite reduced CPU load, likely

due to increased GPU activity.

∙Llama 3.2 3B Models: CPU utilization remains

low (1.201%-2.398%), but GPU utilization fluc-

tuates significantly, from 62.607% to 85.782%.

Power consumption spans 9547.107 mW to

11458.084 mW. The q4_K_S configuration

demonstrates the highest power draw, while

q3_K_S balances lower GPU utilization with re-

duced energy consumption.

Fig. 4. Relationship between accuracy and model size across all models and quantization configurations.



논문 / Analyzing Quantized Small Language Models for Efficient Edge Deployment

1375

Quantization CPU Utilization (%) GPU Utilization (%) Power Consumption (mW)

q2_K 2.852 83.706 9962.771

q3_K_L 2.564 85.131 10190.147

q3_K_M 2.658 82.492 10052.843

q3_K_S 2.428 83.708 9825.426

q4_0 3.587 79.850 10231.300

q4_1 3.543 78.055 10052.620

q4_K_M 1.874 90.094 11217.783

q4_K_S 3.460 79.364 10648.455

q5_0 3.553 79.697 10778.045

q5_1 3.557 80.015 10715.291

q5_K_M 3.309 79.040 10893.187

q5_K_S 3.372 80.730 10959.560

q6_K 1.726 89.405 11311.145

Table 8. Resource utilization and power consumption of Llama 3.2 1B models across quantization configurations

Quantization CPU Utilization (%) GPU Utilization (%) Power Consumption (mW)

q2_K 1.637 79.311 10235.359

q3_K_L 1.282 76.252 9888.316

q3_K_M 1.374 85.782 10556.523

q3_K_S 1.559 76.015 9547.107

q4_0 2.146 78.249 11005.015

q4_1 2.398 67.443 10024.660

q4_K_M 2.106 69.784 10513.422

q4_K_S 1.840 81.614 11458.084

q5_0 1.201 73.463 10876.795

q5_1 2.032 68.757 10229.257

q5_K_M 1.909 67.834 10634.820

q5_K_S 1.952 69.566 10676.829

q6_K 1.788 62.607 10016.592

Table 9. Resource utilization and power consumption of Llama 3.2 3B models across quantization configurations

Quantization CPU Utilization (%) GPU Utilization (%) Power Consumption (mW)

q2_K 3.106 82.347 9784.272

q3_K_L 2.886 84.696 9842.946

q3_K_M 3.147 80.150 9625.500

q3_K_S 2.739 81.000 9447.782

q4_0 3.959 74.864 9835.472

q4_1 4.288 74.966 9576.185

q4_K_M 3.721 79.055 10432.955

q4_K_S 4.144 74.196 10163.166

q5_0 3.388 78.705 10457.940

q5_1 3.746 69.554 9570.465

q5_K_M 3.751 75.448 10432.320

q5_K_S 3.851 78.718 10331.470

q6_K 2.295 80.678 10515.761

Table 10. Resource utilization and power consumption of Qwen 2.5 1.5B models across quantization configurations



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1376

∙Qwen 2.5 1.5B Models: CPU utilization ranges

from 2.295% to 4.288%, with GPU utilization

between 69.554% and 84.696%. Power con-

sumption peaks at 10515.761 mW and drops to

9447.782 mW, indicating that lower-bit quanti-

zations enhance energy efficiency.

∙Qwen 2.5 3B Models: CPU utilization is modest

(1.372%-3.383%), but GPU utilization varies

widely, from 63.123% to 84.773%. Power con-

sumption ranges from 9194.816 mW to

10667.693 mW. The q4_K_S configuration in-

curs the highest power cost, while q3_K_S ach-

ieves the lowest.

These findings underscore that one must align the

quantization configuration with deployment priorities

when optimizing for edge deployment. If the priority

is energy efficiency, one might avoid configurations

that cause long tail latencies or GPU thrashing (even

if they save memory), because they can consume more

power. If the priority is maximum accuracy, one might

choose a higher bit-width and accept a moderate in-

crease in power. Our analysis provides concrete data

for these trade-offs. Such data can guide decisions de-

pending on whether an application (say, a bat-

tery-powered IoT device vs. a plugged-in smart kiosk)

values efficiency over accuracy or vice versa.

4.5 Qualitative Evaluation and Use Cases
While the above quantitative results shed light on

performance metrics, it is equally important to consid-

er qualitative aspects and the usability of these quan-

tized models in real application scenarios. Ultimately,

an edge-deployed language model must deliver useful

responses to end-users within acceptable time frames.

Here, we discuss some qualitative observations and

the practical implications of our findings.

Firstly, the user-perceived quality of answers can

degrade in non-obvious ways when models are heav-

ily quantized. For configurations like q2_K or q3_K_S

that showed very low accuracy, the content of their

outputs often reflected confusion or failure. For exam-

ple, in our trials, Qwen 2.5 3B with q2_K frequently

produced irrelevant or malformed answers, or no an-

swer at all, for many questions. This aligns with the

quantitative result that it answered zero questions

correctly. This model would be unusable in a practical

setting such as an on-device engineering Q&A assis-

tant a user would receive either incorrect answers or

an “I don’ t know” far too often. In contrast, a model

with slightly higher precision (say Qwen 2.5 3B q4_1)

might produce mostly correct and fluent answers in

the same scenario, resulting in a dramatically better

user experience. This highlights that beyond accuracy

percentages, there is a threshold of quality below

which a model’ s outputs may be nonsensical or un-

helpful to a human. Our results suggest that quantiza-

tion beyond 4-bit for complex QA tasks crosses that

Quantization CPU Utilization (%) GPU Utilization (%) Power Consumption (mW)

q2_K 3.383 84.773 10080.404

q3_K_L 1.372 77.756 9622.810

q3_K_M 1.844 78.777 9505.850

q3_K_S 2.478 78.393 9194.816

q4_0 2.561 69.440 9555.400

q4_1 2.569 74.382 9929.643

q4_K_M 2.739 68.165 9785.233

q4_K_S 2.733 80.807 10667.693

q5_0 2.163 71.740 10045.034

q5_1 2.773 71.190 10151.950

q5_K_M 2.440 64.571 9973.136

q5_K_S 2.554 63.123 9723.113

q6_K 2.029 72.238 10316.134

Table 11. Resource utilization and power consumption of Qwen 2.5 3B models across quantization configurations



논문 / Analyzing Quantized Small Language Models for Efficient Edge Deployment

1377

threshold for these models.

Secondly, consider application scenarios like onde-

vice virtual assistants, real-time translators, or voice-

controlled IoT devices (as mentioned in the

Introduction). Such applications require accuracy, re-

al-time interaction constraints, and user satisfaction

considerations. For instance, a real-time translator de-

ployed on a mobile device must generate translations

quickly and accurately. Suppose we were to deploy

Llama 3.2 1B q3_K_S (3-bit, small variant) to such

an application. In that case, a user might experience

very fast responses (due to the small model and ag-

gressive quantization), but the translations could be

garbled or incorrect, rendering the service ineffective.

On the other hand, using Llama 3.2 3B q5_0 (5-bit,

type-0) might yield slower responses but much more

reliable translations. User feedback in such a case

would likely favor the slightly slower but more accu-

rate model. This trade-off between speed and output

quality must be tuned to the use case: for a casual

chatbot that doesn’t require high factual accuracy, a

highly quantized small model might suffice, and the

occasional nonsensical answer might be acceptable or

even humorous. However, for a critical task (say, a

medical information assistant on an edge device), one

would choose the configuration that maximizes an-

swer correctness, even if it means using more power

or time.

We did not perform a formal user study, but qual-

itatively, we found that excluding random guesses

from the evaluation (as discussed earlier) is a proxy

for removing bogus answers. Users in a real scenario

effectively “exclude” random guesses themselves by

disregarding nonsensical responses. Our observation

that excluding guesses modestly boosts measured ac-

curacy suggests that some model outputs -especially

from low-bit models-are essentially random. Thus,

from a usability standpoint, those configurations have

a high rate of unacceptable outputs. For practical de-

ployment, one might implement safeguards such as

confidencebased answer rejection. Indeed, one could

design the system to detect when the model is likely

guessing (e.g., low likelihood scores) and either

prompt the user again or offload the query to a larger

model in the cloud if possible. This difference could

affect user trust; users might prefer a system that occa-

sionally says “I’m not sure” (an understandable re-

sponse) over one that returns gibberish. In summary,

Fig. 5. Relationship between inference time and model size across all models and quantization configurations.



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1378

our practical evaluation suggests that there is a floor

on quantization for real-world use beyond which the

user experience degrades sharply. In our experiments,

4-bit quantization (especially with type-0/ 1 or K with

some higher-precision variant) tended to be the lowest

precision that still maintained reasonably coherent

outputs across all domains. Configurations at 2-bit or

3-bit often led to outputs that would not meet user

expectations in many applications. Therefore, devel-

opers targeting edge deployment should consider the

qualitative behavior of models. Additionally, one can

ensure better user satisfaction by aligning model

choice with the application. These qualitative insights

complement the quantitative metrics, reinforcing that

the “best” configuration depends on the context of

use, not just on raw performance numbers.

Ⅴ. Conclusions

This study presents the first systematic evaluation

of quantized SLMs for deployment on resourcecon-

strained edge devices, focusing on the NVIDIA Jetson

Orin Nano. By analyzing 72 quantized models of

Llama 3.2 (1B and 3B parameters) and Qwen 2.5

(1.5B and 3B parameters) across 13 quantization con-

figurations (q2_K to q6_K), we demonstrate the po-

tential and limitations of these models for edge

deployment. Our findings indicate that Qwen 2.5

models generally achieve higher accuracy and lower

latency than Llama 3.2 models of similar size. Still,

Qwen models are also more sensitive to aggressive

quantization (suffering steep accuracy drops at low

bit-widths). Excluding random guesses from evalua-

tion improves the measured accuracy, while low-bit

configurations (e.g., Qwen 2.5 3B q2_K) rely heavily

on guessing due to the failure of answer extraction.

We also observed that accuracy and inference time

vary significantly across domains (computer science,

engineering, and math), highlighting the importance

of domain-specific model selection and quantization

tuning. Resource utilization analysis shows that CPU

utilization remains low (1-4%), while GPU was the

main workhorse, reaching up to 90% utilization.

Power consumption ranged from 9.2 W to 11.5 W

under load. These results underscore the need to bal-

ance computational efficiency and energy con-

sumption when deploying quantized models on edge

devices.

Although our experiments were conducted on a

specific hardware platform (Jetson Orin Nano), the in-

sights are also relevant to other edge platforms. The

qualitative trends we observed are likely to generalize

across different hardware architectures. For edge de-

vices that lack a GPU and rely on CPUs, quantization

would remain crucial for fitting models in memory,

though such devices may experience overall slower

inference; the relative performance differences be-

tween, say, 4-bit and 6-bit models might be similar,

but absolute latencies would increase. One could po-

tentially deploy slightly larger models or use higher

precision without exceeding resource limits on more

capable edge accelerators or devices with greater

memory (for example, a Jetson AGX Orin). Still, the

same trade-off between efficiency and accuracy would

apply. We expect that the optimal quantization strat-

egy (e.g., choosing 4-bit vs. 8-bit) might shift with

hardware – some processors are optimized for certain

bit-widths- yet the core finding stands: moderate

quantization offers big wins with tolerable impact on

accuracy, whereas extreme quantization risks making

the model ineffective. Our discussion on hardware

generalizability is necessarily qualitative; verifying

these hypotheses on diverse edge hardware (GPUs,

CPUs, NPUs, DSPs across different vendors) is an

important avenue for future work.

In addition to extending across hardware, future

work should examine mixed-precision quantization

strategies, where different layers of the model are

quantized to different bit levels based on their

sensitivity. Hardware-specific optimizations could fur-

ther improve performance. Moreover, expanding eval-

uations to include multimodal and multilingual tasks

will be valuable, especially since models like Llama

3.2 and Qwen 2.5 are inherently multilingual and

some have vision or audio capabilities. We also sug-

gest that future research incorporate user-centric eval-

uations (e.g., human feed-back on output quality, us-

ability studies in actual edge applications) to comple-

ment quantitative metrics - addressing the gap be-

tween benchmark performance and real-world user



논문 / Analyzing Quantized Small Language Models for Efficient Edge Deployment

1379

satisfaction. By tackling these areas, the community

can build on the findings of this work to enable more

robust and energy-efficient NLP services on the next

generation of resource-constrained edge devices.

References

[1] A. Vaswani, N. Shazeer, N. Parmar, et al.,
“Attention is all you need,” in Advances in
NeurIPS, vol. 30, 2017.

[2] Z. Liu, C. Zhao, F. Iandola, et al.,

“MobileLLM: Optimizing sub-billion para-

meter language models for on-device use

cases,” in Proc. ICML, pp. 32431-32454,

2024.

[3] Y. Fu, H. Peng, L. Ou, A. Sabharwal, and T.

Khot, “Specializing smaller language models

towards multi-step reasoning,” in Proc. ICML,

pp. 10421-10430, 2023.

[4] C. Shin, Y. Go, Y. Yoo, G. Yang, and C.

Yoo, “An analysis on inference time,

accuracy, communication, and GPU memory

usage for inference batch of large language

models,” J. KICS, vol. 49, no. 10, pp. 1377-

1385, 2024.

[5] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W.

Mahoney, and K. Keutzer, “A survey of

quantization methods for efficient neural

network inference,” arXiv preprint arXiv:
2103.13630, 2021.

[6] M. Nagel, M. Fournarakis, R. A. Amjad, Y.

Bondarenko, M. van Baalen, and T.

Blankevoort, “A white paper on neural

network quantization,” arXiv preprint arXiv:
2106.08295, 2021.

[7] B. Jacob, S. Kligys, B. Chen, et al.,

“Quantization and training of neural networks

for efficient integer-arithmetic-only inference,”

in Proc. IEEE Conf. CVPR, pp. 2704-2713,

2018.

[8] J. Lang, Z. Guo, and S. Huang, “A

comprehensive study on quantization

techniques for large language models,” arXiv
preprint arXiv:2411.02530, 2024.

[9] J. Lee, S. Park, J. Kwon, J. Oh, and Y. Kwon,

“A comprehensive evaluation of quantized

instruction-tuned large language models: An

experimental analysis up to 405B,” arXiv
preprint arXiv:2409.11055, 2024.

[10] F. Wang, Z. Zhang, X. Zhang, et al., “A

comprehensive survey of small language

models in the era of large language models:

Techniques, enhancements, applications, colla-

boration with LLMs, and trustworthiness,”

arXiv preprint arXiv:2411.03350, 2024.

[11] G. Gerganov, et al., GGUF, https://github.com/g

gerganov/ggml/blob/master/docs/gguf.md, 2023.

[12] A. Grattafiori, A. Dubey, A. Jauhri, et al.,

“The llama 3 herd of models,” arXiv preprint
arXiv:2407.21783v3, 2024.

[13] Qwen, : A. Yang, et al., “Qwen2.5 technical

report,” arXiv preprint arXiv:2412.15115v2,

2025.

[14] Y. Wang, X. Ma, G. Zhang, et al.,

“Mmlu-pro: A more robust and challenging

multi-task language understanding benchmark,”

in Advances in NeurIPS, vol. 37, pp. 95266-

95290, 2024.

[15] D. Hendrycks, C. Burns, S. Basart, et al.,

“Measuring massive multitask language

understanding,” in Proc. ICLR, 2021.



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1380

Sooyoung Jang

Feb. 2006 : B.S. Industrial &

Systems Engineering, Korea

Advanced Institute of Scie-

nce and Technology (KAIST).

Aug. 2008 : M.S. Industrial &

Systems Engineering, Korea

Advanced Institute of

Science and Technology (KAIST). Feb. 2014 :

Ph.D. Industrial & Systems Engineering, Korea

Advanced Institute of Science and Technology

(KAIST).

Mar. 2014~Sep. 2017 : Senior Researcher, amsung

Electronics.

Oct. 2017~Feb. 2023 : Senior Researcher, Electronics

and Telecommunications Research Institute (ETRI).

Mar. 2023~Current : Assistant Professor, Department

of Computer Engineering, Hanbat National

University.

<Research Interest> artificial intelligence, rein-

forcement learning, data analysis

[ORCID:0000-0002-6931-9592]

Seungho Yang

Feb. 2009 : B.S. Civil, Urban &

Geosystem Engineering, Seo-

ul National University.

Aug. 2014 : Ph.D. Civil &

Environmental Engineering,

Seoul National University.

Mar. 2015~Apr. 2017 : Team

Manager, Han-a Urban Research Institute.

May 2017~Mar. 2018 : Researcher, Goyang Reseach

Institute.

Jun. 2018~Jan. 2021 : Postdoctoral Fellow, York

University, Canada.

Mar. 2021~Mar. 2025 : Assistant Professor, Depa-

rtment of Urban Engineering, Hanbat National

University.

Apr. 2025~Current : Associate Professor, Department

of Urban Engineering, Hanbat National University.

<Research Interest> urban planning, urban design,

smart city

[ORCID:0000-0001-8371-599X]

Changbeom Choi

Feb. 2005 : B.S. Computer

Engineering, Kyung Hee

University.

Feb. 2007 : M.S. Computer

Science, Korea Advanced

Institute of Science and

Technology (KAIST).

Aug. 2014 : Ph.D. Electrical Engineering, Korea

Advanced Institute of Science and Technology

(KAIST).

Sep. 2014~Feb. 2021 : Associate Professor, Depa-

rtment of Global Entrepreneurship and Information

Communication Technology, Handong Global

University.

Mar. 2021~Current : Associate Professor, Department

of Computer Engineering, Hanbat National

University.

<Research Interest> discrete event system, artificial

intelligence, AI agent

[ORCID:0000-0002-4826-7949]


