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A Study on Meta-Learning Based Neural Architecture
Search for Crop Disease Diagnosis in IoT Environments
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ABSTRACT

In agriculture, accurate and efficient diagnosis of crop diseases is essential to improve agricultural
productivity and quality. However, in real-world agricultural environments, there are challenges such as the lack
of high-quality data and the limited memory and computational capacity of IoT devices. Therefore, in order to
address crop disease diagnosis with deep learning, a lightweight model with a small size should be able to
effectively examine crop disease with a small amount of training data. In this paper, we propose a crop
disease diagnosis method that applies a combination of meta learning and neural architecture search to address
these issues. The proposed method searches for a meta-model that can be generalized for various crop disease
diagnosis tasks with only a small amount of data, in a search space consisting of lightweight models. Through
experiments on real-world crop disease dataset, we demonstrate that the model trained with the proposed
method achieves an accuracy improvement of more than 15.5% with 98.7% fewer parameters compared to the
model in the related work. These results show that the proposed method is feasible for crop disease diagnosis

under the limited conditions of real-world agricultural environments.
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Table 1. Meta Learmng of Neural Architectures for Crop
Disease Diagnosis

Algorithm 1

Procedure of meta learning for crop disease diagnosis

1: Input:
Distribution over crop disease diagnosis tasks
p(7)
Task-learner @*(w,a, D’T’;"i”)

Meta-learner &, , ¥,

w’

2: Initialize w,, . a,,,,

meta
3: while not converged do
4: Sample crop disease diagnosis tasks

Tyvees T, from p(7)

5 for each task 7; do

. * * @k rain

6: wT" a’ﬂ (wmem Ly etar U )

7 end for

8: Update w,,,,,a,,,, based on crop disease
diagnosis tasks:

P "
9: Wy eta w (wme[a‘ {wT,’ a']‘l’ 7;}1': 1)
PR n

10: ametﬂ(;w;z (amufa’ {le’ aT;‘ Y‘L}l -1 )

11: end while

12:  return Optimized weights and architecture

parameters w,, ;> @, .+,

4.2.2 Hgt HAE 1bY
v} el sEs the T} 3R o o Folxlr), w
A, Askslaa} sk aba) Wge) 2o olrlxE
7RkeR A2 T E Aeljick o], wel 2Rl
e A2 ezl vhal Asrste] wlzel A
A 73 wp a5 EEICE ol mEle] of7]d]
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Table 2. Meta-Test for Learning New Crop Disease
Diagnosis Task After Meta-Learning

Algorithm 2

Procedure of meta test for crop disease diagnosis

1: Input:
New crop disease diagnosis task
T= ( trazn’ test)
Meta-learned architecture and weights:

,

w, meta

meta

2: Initialize w,<w,,,,

3: Initialize o<,

meta
4: for j<1,....,k do
steps for new crop

> Adaptation

5: wTth_AfaskVMLT(WT"ZT’DMW'% )

Ap<—ar— é't(lsk VaLT(wT’aT’Dtmin )

6

7: end for
8: a,<PRUNE(a,)
9

: Evaluate D), with a;.w,
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Fig. 3. Illustration of Meta Test Procedure

N

Mkoz, g elaze] lolelol] 2 whA] 24
] o)olRIek g 7o) hmEl Folis mwd
< 23 oozl H=j3)E 25 welo] ehgsicy 3l

o]

T3l A A el
5.1 40014 AglE 313y
3, 5.2} 5.3.4¢0A
H7he Fste] dae]Fe] Aes Balch

A AE clolEAl

2 2 WFs] 215hs gk tiEAQl dlofe] Al
4l PlantVillage ®|o]E]4lS &-83}9]t}. PlantVillage
dloE] Al thefgt 21E-e] ol veh s 717t A
o} of] 74| AS EFFE o]vlA] dlelelAlelrt. o]
dlo|ElAl 1482] 8 2ha 3871] e 74
wo] glom, oF 54306712 o]vA| = A= e] Qlck
Al HERe BulE, S, ) 2w, A
| 23 el dlelEAE hofdl et =Y
vel BB AER f3telo] Agghony] wel 2
Agvr T2 A 7Nk A W] A 71e]

e At

> 9

ac}

1

oX, ol NE

1360

Meta-learned Final
model Architecture

Task
Adaptation

7 @v@ 0
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4] Transformer-based few-shot learning (FSL)!'"7]%
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