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요 약

농업 분야에서 병충해 작물의 신속하고 정확한 진단은 생산성과 품질을 높이는 데 매우 중요하다. 그러나 실제
농업 환경에서는 양질의 학습 데이터 부족, IoT 기기의 메모리 용량, 연산 용량 제약과 같은 어려움이 있다. 따라
서 작물 병충해 진단을 딥러닝으로 해결하기 위해서는 작은 크기를 갖는 경량 모델이 적은 학습 데이터로도 작물

병충해 진단을 효과적으로 수행할 수 있어야 한다. 본 연구에서는 이러한 문제를 해결하기 위해 메타 러닝 기법과
신경망 구조 탐색 기법을 함께 활용하는 작물 병충해 진단 기법을 제안한다. 제안 기법은 경량 모델로 구성된 탐
색 공간에서 다양한 병충해 작물 태스크에 대해 적은 데이터로도 일반화가 가능한 메타 모델을 탐색하여 활용한

다. 실제 작물 병충해 데이터로 진행한 실험 결과, 제안된 기법으로 학습된 모델은 기존 연구에서 사용한 모델과
비교하여 파라미터 수가 98.7% 적은 모델로 15.5% 이상의 정확도 향상을 기록하였다. 이와 같은 결과는 제안 기
법이 실제 농업 환경에서의 제한된 환경에서도 효과적으로 작물 병충해 진단을 수행할 수 있음을 보여준다.

키워드 : 메타 러닝, 신경망 구조 탐색, 병충해 작물 진단, IoT
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ABSTRACT

In agriculture, accurate and efficient diagnosis of crop diseases is essential to improve agricultural

productivity and quality. However, in real-world agricultural environments, there are challenges such as the lack
of high-quality data and the limited memory and computational capacity of IoT devices. Therefore, in order to
address crop disease diagnosis with deep learning, a lightweight model with a small size should be able to

effectively examine crop disease with a small amount of training data. In this paper, we propose a crop
disease diagnosis method that applies a combination of meta learning and neural architecture search to address
these issues. The proposed method searches for a meta-model that can be generalized for various crop disease

diagnosis tasks with only a small amount of data, in a search space consisting of lightweight models. Through
experiments on real-world crop disease dataset, we demonstrate that the model trained with the proposed
method achieves an accuracy improvement of more than 15.5% with 98.7% fewer parameters compared to the

model in the related work. These results show that the proposed method is feasible for crop disease diagnosis
under the limited conditions of real-world agricultural environments.



The Journal of Korean Institute of Communications and Information Sciences '25-09 Vol.50 No.09

1354

Ⅰ. 서 론

농업은식량공급과국가경제에중대한역할을하는
산업이고, 병충해문제는농업분야에서작물수확량에
큰영향을미치는주요문제중하나이다[1]. 따라서병

충해로인한작물손실을최소화하기위해작물의상태
를실시간으로모니터링하고신속히대응하는것이필
수적이다. 작물의상태를모니터링할때중요한것중

하나는작물잎의상태를시각적으로확인하여질병을
조기에확인하는것이다. 작물의병충해진단은전통적
으로숙련된전문가가작물을직접육안으로검사하여

분석하여진행하였다. 하지만이방법은병충해전문가
가수많은작물잎의상태를직접확인해야하므로시간
이많이걸려높은비용과낮은효율성을갖는문제점이

있다.

최근몇년간딥러닝모델을활용한병충해진단이
이같은문제를해결할수있는매우유망한접근법으로

떠오르고있다[2]. 더나아가딥러닝모델을 IoT 장치에
적용하여 농장에 설치함으로써 실시간으로 작물의 상
태를 분석하고 자동으로 병충해를 탐지하는 시스템이

점차도입되고있다. 그러나이러한딥러닝모델을실제
현장에서 적용할때는데이터의제한성과 IoT 장치의
자원 제한이라는 현실적 제약에 직면하게 된다.

전통적인딥러닝모델특히, 심층신경망은일반적으
로수십에서수백만개이상의파라미터를포함하고있
고, 이런 많은 수의 파라미터를 효과적으로 학습하기

위해서는일반적으로대규모데이터셋이요구된다. 하
지만, 실제농업환경은날씨, 조명, 계절, 작물의성장
단계등다양한조건에따라달라지므로질병이나특정

상황에 대한 이미지 데이터가 제한적인 경우가 많다.

이와같이데이터가부족한경우, 모델이학습데이터에
과적합되기쉽고이는모델의일반화능력을떨어트린

다. 또한, 너무 많은 파라미터를 갖는 딥러닝 모델은
모델을저장하기위한용량이크고, 예측을수행하는데
많은 연산량을 요구하므로 일반적으로 메모리 용량과

연산자원의제한이명확한 IoT 장치에서사용하는것
은 한계가 있다[3].

메타러닝은모델이여러태스크에대해신속히적응

할수있도록훈련하는접근방식으로, 전통적인딥러닝
모델을학습시킬때주어진데이터가제한될때의문제
를 해결하기 위한 효과적인 대안으로 주목받고 있다.

메타 러닝은 기존에 학습한 유사한 태스크들로부터의
학습경험을토대로제한된데이터만으로도특정태스
크를효과적으로학습할수있는 능력을 갖추고 있다.

따라서특정작물에관한데이터가부족한경우가많은

농업 분야의 병충해 탐지에 적용될 수 있다.

하지만 메타 러닝 모델 역시 IoT 장치에 적용하는
데에는한계가있다. 구체적으로, 모델 설계과정에서

크기와 효율성 같은 조건을 고려하지 않은 메타 러닝
모델의경우, 일반적으로복잡한아키텍처와많은파라
미터를요구하여모델크기가커지는경향을갖는다[4].

이로 인해 메모리나 연산 자원이 제한된 IoT 장치에
실질적으로사용하기에는어려움이있다. 따라서다양
한작물과그에대한여러병충해조합에특화된병충해

모니터링이필요한농업현장에서는 IoT 장치의메모리
를고려한신경망구조설계기술이필요하다. 이러한
기술은제한된자원환경에서도최적의성능을제공할

수있는효율적인모델을설계할수있도록하며, 동시
에 메타 러닝의 장점을 결합하여 IoT 기반의 스마트
농업에 새로운 가능성을 제시한다.

본논문에서는메타러닝기반신경망구조탐색기
법을활용하여 IoT 장치의자원과학습데이터가제한
된환경에서도효율적이고정확한작물병충해진단예

측모델을설계하는방법을제안하였다. 본연구의주요
공헌은다음과같다. 첫째, 병충해조합에따른최적의
아키텍처를 자동으로 탐색할 수 있도록 하였다. 이를

통해주어진기존의모델대비경량화된모델로도높은
분류정확도를달성하였다. 둘째, 메타러닝을통해대
규모데이터수집이어려운실제환경에서제한된데이

터만으로효율적인모델학습이가능하도록하였다. 이
는새로운병충해조합에대한소규모병충해작물이미
지데이터셋을사용하여적은학습단계로도높은정확

도의분류예측을가능하게한다. 마지막으로, 모델탐
색시모델크기를조정할수있도록하여자원제약이
있는 다양한 IoT 장치에서의 적용 가능성을 높였다.

Ⅱ. 관련 연구

2.1 메타 러닝
메타 러닝은 모델이 다양한 태스크에 대해 빠르게

적응할수있도록학습하는방법론으로, ‘학습하는방
법을 학습하는' 학습 기법으로 알려져 있다[5]. 여기서

태스크란 모델이 해결해야하는 특정한 문제를 의미하
며, 메타러닝은이태스크들에대해일반화할수있는
학습능력을목표로한다. 모델은여러태스크들에대해

학습을반복함으로써 새로운 태스크에서도 적은데이
터로 빠르게 성능을 낼 수 있는 능력을 갖추게 된다.

이 때문에 메타 러닝은 데이터 수집이 어렵고 다양한

태스크들을다루는농업과같은특화된응용분야에서
의 실용성을 높일 수 있다.
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메타 러닝을 달성할 수 있는 대표적인 방법으로는
MAML(Model-Agnostic Meta-Learning)[6]과 ProtoNet

(Prototypical Networks)[7] 등이 있다. MAML은특정

모델구조에구애받지않고, 다양한태스크로부터의데
이터를이용하여적은학습샘플만으로도새로운태스
크에빠르게최적화할수있는초기파라미터를학습하

는기법이다. ProtoNet은각클래스의프로토타입을정
의하고이를기반으로새로운태스크에서분류를수행
한다. 각 클래스의 프로토타입은 해당 클래스의 샘플

임베딩벡터의평균으로계산되며, 새로운샘플과프로
토타입 간의 거리를 측정하여 분류를 진행한다.

MAML과 ProtoNet은 서로 다른 접근 방식을 취하지

만, 모두데이터가제한적인상황에서도새로운태스크
에빠르게적응할수있다는점에서메타러닝기법으로
서중요한역할을한다. 이외에도 MAML과 ProtoNet

의기법을확장한다양한연구가진행되고있으며, 이러
한연구들은데이터효율성과다양한환경에서의일반
화 성능을 향상시키는 데 기여하고 있다.

2.2 신경망 구조 탐색
신경망 구조 탐색은 주어진 태스크에 대해 최적의

신경망구조를자동으로탐색하는방법이다. 이는번거
롭고시간이소모되는수작업아키텍처설계를대체할

수있고, 효과적인모델설계를통해높은성능을달성
하여최근딥러닝분야에서널리사용되고있다. 기존의
탐색 전략에는 랜덤 탐색, 진화 알고리즘, 강화 학습,

베이지안최적화등이있다[8]. 하지만이러한방법들은
대부분수백, 수천개의아키텍처를처음부터학습해야
하는과정때문에연산비용이매우높은문제가있다.

이러한비용문제를개선하기위해최근연구는아키
텍처를변형하되기존가중치를유지하는네트워크모
피즘(network mophisms)과같은아이디어를도입하거

나, 가중치 공유(weight sharing) 기법을 사용해 탐색

과정에서 여러아키텍처가 동일한 가중치를 재사용할
수있게하여탐색효율성을향상시키는기법을사용한

다[9]. 또한, 전체아키텍처학습을피하고부분적또는
축소된평가방식을통해계산자원을절약하는방법으
로 다중 충실도 최적화(multi-fidelity optimization)[10]

도주목받고있다. 다양한방식으로보다효율적인방법
을개발하는데중점을두고있지만, 여전히작은문제
에 국한되는 경우가 많다.

신경망설계의위와같은한계를극복하기위해 Liu

et al[11]은 경사 하강법 기반의 신경망 구조 탐색
(Differentiable Architecture Search, DARTS)을통해

아키텍처 탐색공간을 연속적으로 만들어 아키텍처를

최적화하는방법을제안했다. 기존의신경망구조탐색
은아키텍처의구성요소들을선택하는이산적인문제
로, 수많은아키텍처들을개별적으로학습시켜평가하

기때문에연산자원이많이소모된다. 반면 DARTS는
각연산에가중치를부여하는방식으로후보연산들을
하나의혼합연산으로대체하여탐색공간을연속적으

로만들었다. 이를통해탐색공간을미분가능한하나
의 최적화 문제로 구성하고, 경사 하강법을 사용하여
네트워크 가중치와 아키텍처 가중치를 동시에 업데이

트함으로써 계산 비용을 절감할 수 있다.

2.3 메타 러닝과 신경망 구조 탐색의 결합
제한된 데이터에서 빠르게 학습할 수 있는 능력을

갖추고 있는 메타 러닝과 주어진 문제에 대해 최적의

신경망구조를자동으로탐색하는신경망구조탐색을
결합한연구들은 새로운데이터 환경에서도 적응력과
일반화성능을극대화시킬수있다는점에서주목받고

있다. Wong et al[12]은신경망구조탐색과전이학습을
결합하여 기존 신경망 구조 탐색의 계산 비용 문제를
해결하고, 새로운태스크에서효율적으로신경망구조

를 설계하는 방식을 제안하였다. 여러 태스크에 대해
동시에신경망구조탐색을실행하여컨트롤러가여러
태스크간에일반화된패턴을학습하도록하고, 학습이

끝난후학습된컨트롤러를새로운태스크에적용하여
하이퍼파라미터와아키텍처탐색속도를높인다. Kim

등[13]은점진적신경망구조탐색을퓨샷(few shot) 러

닝에적용하여적은파라미터로도기존메타러닝모델
보다 높은 정확도를 달성했다.

2.4 인공지능과 작물 병충해 진단
딥러닝의 등장 이후, 합성곱 신경망(CNN)과 같은

모델들이농업분야에도입되면서작물병충해를진단
하는연구가활발히진행되었다. 예를들어, 장서영외
[14]는합성곱신경망기본구조의모델과전이학습기

반사전훈련모델인 ResNet50을이용하여병충해작
물이미지분류학습을제안하였다. 김연이외[15]는클
래스불균형등작물병충해진단학습데이터의품질에

초점을 맞추어 10종의 노지 작물을 기준으로 병충해
데이터셋을구축하고 YOLOv5 모델을적용해학습하
여 작물 병충해 진단 성능을 개선하였다.

딥러닝모델은특정문제에서는높은성능을발휘하
지만, 많은양의데이터와연산자원을필요로하고새
로운태스크를학습하려면오랜시간이걸린다는점에

서메타러닝이주목받게되었다. 메타러닝은모델이
다양한작물의병충해데이터를빠르게학습하고적응
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할수있도록하여, 제한된데이터환경에서도높은분
류성능을달성할수있는접근법을제안한다. Argueso

et al[16]은병충해데이터셋을소스도메인과타겟도메

인으로나누고소스도메인에서병충해이미지의특징
을학습한다. 이과정에서모델은병충해분류와관련된
고유한특징을추출하고이후타겟도메인의소량의데

이터에서이를미세조정하여모델이새로운데이터에
빠르게적응할수있도록한다. Nuthalapati et al[17]은
분류기의임베딩함수를활용해입력이미지의특징을

추출해모델을학습시키고거리계산을통해학습된이
미지들과입력이미지들의유사도를비교하여입력샘
플들을최종적으로분류한다. Chen et al[18]은식물질

병을탐지하고예측에중요한입력영역을시각화하는
메타 학습 기반의 국소 특징 매칭 조건부 신경 적응
프로세스를사용하여특징추출후학습된이미지와입

력 이미지 간의 특징 공간에서 거리를 계산하여 입력
이미지의 레이블을 하는 방법을 사용한다.

위와같은연구들은메타러닝방법을작물병충해

진단모델에적용하여적은데이터로도새로운작물진
단태스크를학습하는가능성을보여주었으나, 큰크기
의 고정된 백본 네트워크에서 메타 러닝을 적용하여

IoT장치의제약조건을고려한모델설계가고려되지않
아 실제 IoT장치를 이용한 적용에 한계가 있다.

Ⅲ. 문제 정의

현재스마트농업환경에서는대부분의 IoT 장치들
이클라우드와연결되어있어대규모모델을활용할수

있다. 그러나 실제 농업 현장에서는 네트워크 연결이
불안정하거나, 통신인프라가부족한외곽지역등클라
우드서버와의지속적인연결이어려운환경이다수존

재한다. 이러한상황에서는클라우드기반 IoT 장치를
활용하기어렵고, 모델이 IoT 장치자체에서구동되어
야 한다.

이러한제약은모델의크기와연산자원을제한할수
있으므로 메모리와연산자원이제한된실제 IoT 장치
(예: Raspberry Pi4 등)를 고려하여 최적화된 모델을

사용하는것이중요하다. 또한, 공개된병충해작물데
이터셋(예: PlantVillage 등)이 존재하긴 하지만, 실제
농업환경에서는특정지역의특수한작물이나희귀한

병충해유형등공개데이터셋에서찾기어려운사례가
많으며, 새롭게데이터를수집하더라도소규모로만수
집될가능성이높다. 이러한현실적인데이터제한상황

을고려하면, 소규모데이터만으로도높은정확도를유
지하고빠르게태스크에적응가능한효율적인접근법

이 필요하다.

본연구는위와같이연산자원과학습데이터가제한
된환경에서도효율적이고정확한작물병충해진단예

측모델을설계및학습할수있도록하는것을목표로
한다.

Ⅳ. 제안 방법

4.1 메타 러닝 기반 신경망 구조 탐색 기법을 활
용한 효율적인 작물 병충해 진단

본연구에서는메타러닝기반신경망구조탐색기
법을활용하는작물병충해진단모델을설계하고학습
하는방법을제안한다. 이같은접근을통해제한된자

원을 갖는 IoT 환경에서도 병충해 작물 이미지 분류
문제를 효율적으로 해결할 수 있다.

병충해작물분류예측에메타러닝을적용하는일반

적인방법은다양한병충해와작물조합으로모델을메
타 러닝 시켜 새로운 조합의 병충해 작물 태스크에도
빠르게적응할수있는초기모델을구하는것이다. 본

논문에서는신경망구조탐색기법에메타러닝을적용
하여탐색효율성을극대화하고새로운태스크에빠르
게적응할수있도록하였다. 특히, 탐색대상신경망의

크기를제한할수있는신경망구조탐색기법의특성을
활용하면 IoT 장치의메모리용량과연산자원에맞는
신경망 크기를 갖는 작물 병충해 진단 모델을 구성할

수있으므로, 자원이제한된 IoT 환경에서도효과적으
로활용할수있다. 신경망구조탐색기법과메타러닝
적용에 대한 자세한 설명은 4.2절에 제시한다.

메타러닝과정을거쳐최적화된모델은 IoT 장치에
배포되어 사용될 수 있다. 사용자가 IoT 장치를 통해
진단하고자하는작물이미지를촬영하면, IoT 장치에

내장된모델이해당이미지를분석하여실시간병충해
진단을수행한다. 이후에도새롭게진단하고자하는병
충해작물태스크에대해소량의추가데이터를이용해

메타러닝된초기모델을재학습하면, 해당조합에최적
화된 새로운 경량 모델을 효율적으로 얻을 수 있다.

이러한 접근을 통해 모델은 적은 데이터로 다양한

병충해작물태스크에대해학습하면서, 신경망구조의
제약조건하에서새로운태스크에적합한최적의신경
망구조를빠르고효율적으로탐색할수있다. 이는제

한된데이터와적은컴퓨팅자원을갖는 IoT 환경에서
효과적인 병충해 탐지 및 분류 시스템 구축을 가능케
한다. 특히, 본연구에서탐색된최적모델은파라미터

수가약 1M개수준으로 Raspberry Pi 4와같은대표적
인 IoT 기기에서도메모리용량(최대 4GB RAM)을고
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려했을 때 충분히 구동 가능하다.

4.2 작물 병충해 진단 예측 모델 메타 러닝 과정
본연구에서메타러닝의각태스크는특정작물과

병충해의 조합을 나타내는 소규모 이미지 데이터셋으

로구성된다. 구체적으로, 개의서로다른병충해작
물 클래스가 있고 각 클래스당 개의 제한된 이미지
샘플이제공될때, 이 개클래스에대한분류문제가
하나의태스크(-plant -image)로구성된다. 예를들
어, 5-plant 1-image 문제는 5개의 서로 다른 병충해
클래스와 각 클래스당 1개의 학습이미지를 포함하는

문제를의미한다. 본연구에서는이처럼데이터가제한

된 -plant -image 문제에빠르게적응할수있는최
적의신경망구조를효과적으로설계하기위해메타러

닝기반신경망구조탐색기법[19]을활용하였다. 이기
법은메타러닝과정과메타테스트과정으로이루어진
다. 메타러닝과정은다양한태스크에대한보편적인

모델파라미터를구하여메타테스트과정에서새로운
병충해작물태스크에대해모델을빠르게적응시킬수
있게하는것을목표로하는과정이다. 메타테스트과정

에서는메타러닝을통해얻은보편적인모델파라미터
를활용하여새로운병충해작물태스크에최적화된성
능을발휘하도록모델을적응시키는것을목표로한다.

4.2.1. 메타 러닝 과정

본연구에서메타러닝의각태스크는특정작물메타
러닝과정에서는메타테스트과정에서새로운병충해
작물태스크에빠르게적응할수있도록하는보편적인

모델파라미터를학습하며, 이같은모델을메타모델이
라고한다. 메타모델의효율성과적응력을극대화하기
위해 본 연구에서는 경사 하강법 기반의 신경망 구조

탐색 방식인 Differentiable Architecture Search

(DARTS)[11]를활용하고이와함께메타러닝알고리즘
Reptile[20]을적용하여새로운태스크에쉽게적응할수

있는 메타 러닝된 신경망 구조를 탐색한다.

DARTS의 목표는 그림 1과 같이 최종 네트워크를
구성하기 위해 필요한 기본 구성 요소인 셀의 구조를

찾아신경망을구성하는것이다. 셀은여러개의작은
계산단위를포함하는블록으로, 이블록들이모여전체
신경망을구성하게된다. 셀은일반셀(normal cell)과

축소셀(reduction cell) 두가지종류가있다. 이두셀
은서로다른역할을수행하며신경망전체의효율성과
성능을 극대화하기 위해 번갈아 가며 배치된다. 일반

셀은 입력 특징 맵을 받아 다양한 연산을 적용한 후
입력크기와같은출력특징맵을생성한다. 축소셀은

입력 특징 맵에 다양한 연산을 적용한 후 특징 맵의

높이와너비를절반으로줄이는처리과정이포함되어

있는셀이다. 일반셀과축소셀은 개의노드로이루
어진방향성비순환그래프(Directed Acyclic Graph)로

표현되며. 각노드는이미지를처리한중간결과를의미
하는특징맵을나타낸다. 하나의셀에는두개의입력
노드와하나의출력노드가있다. 두개의입력노드는

이전 셀의 출력으로 나오는 특징 맵이고 출력 노드는
해당셀에서계산된특징맵이다. 각노드들은노드와
노드 사이의 연산 과정을 나타내는 에지로 연결된다.

DARTS는각노드사이에서어떤연산을수행할지 (즉,

어떤에지를선택할지) 명시적으로선택하는대신, 에
지 후보를 동시에 고려하고, 소프트맥스 연산을 통해

에지의 선택을 확률적으로 표현한다.

 ′∈exp′exp
(1)

   ∈   (2)

예를들어, 는에지에서사용할수있는후보연산
들의집합(e.g., 3*3 convolution, 5*5 convolution, 3*3

average pooling, …)을의미하고각연산은노드에적

용할특정함수 ∙을나타낸다. 노드 와그이전

그림 1. DARTS 네트워크 및 셀 구조 예시
Fig. 1. Example of DARTS Network and Cell Archi-
tecture
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노드 는에지 에의해연결되며한쌍의노드에대한가중치를혼합하는연산은 로파라
미터화 된다. 그러면 아키텍처 탐색 작업은 의
집합을학습하는것으로축소된다. 이렇게혼합연산이

모두포함된모델을원샷모델이라고한다. 학습과정에
서 DARTS는훈련및검증손실에대해각각경사하강

을번갈아가며원샷모델 의가중치와아키텍처파라
미터의가중치를모두최적화한다. 탐색단계가끝나면

각혼합연산  를가장가중치가높은연산들 개
(일반적으로   )로대체하고다른연산들은모두제
거하는 가지치기(pruning)를 수행하여 이산적인 아키
텍처를 얻을 수 있다. DARTS는 셀과 노드의 개수를

조절함으로써탐색할신경망크기를미리설정하고신
경망구조탐색을진행한다. 이러한특성덕분에, 메모
리용량과연산자원이제한된 IoT 환경에서도효과적

인 성능을 발휘할 수 있다.

DARTS의신경망구조탐색기능에메타러닝알고
리즘을결합하면, 탐색된구조가다양한태스크에서높

은 일반화 성능을 갖추게 하여 새로운 태스크에 쉽게
적응하게만들수있다. 본연구에서는 DARTS에메타
러닝을적용하기위하여단순한업데이트방식의장점

을가진 Reptile 알고리즘을사용하였다. Reptile 알고
리즘은단일그래디언트업데이트로메타러닝을수행
하며, 간단한방식으로도다양한태스크에대한일반화

성능을효과적으로유지한다. Reptile 알고리즘의작동
방식은 다음과 같다.

먼저여러개의샘플링된태스크들에대해다중경사

하강법을적용하여모델을학습시킨다. 이과정에서모
델은태스크에특화된최적의가중치로업데이트된다.

이후, 메타 업데이트 단계에서 모델의 초기 가중치와

태스크 학습 후의 가중치 간의 차이를 기반으로 초기
가중치를조정한다. 이조정은새로운태스크에빠르게

적응할수있도록초기가중치를최적화하는역할을한
다. 이러한반복적인과정은다양한태스크에대한일반
화된가중치를학습하도록하며, 새로운태스크에대해

서 모델의 빠른 적응을 가능하게 한다.

신경망 구조 탐색 기법으로 DARTS를, 메타 러닝
알고리즘으로 Reptile을사용하는메타러닝기반신경

망 구조 탐색 기법을 활용한 작물 병충해 진단 모델
학습 알고리즘은 다음과 같은 과정으로 이루어진다.

먼저, 다양한작물과병충해조합의이미지를수집하

고 이를 -plant -image 태스크로 구성하는 데이터
전처리과정을거친다. 이후메타러닝기반모델학습

단계에서는다양한 -plant -image 태스크를기반으
로 모델을 학습한다.

태스크를학습하는모델을간단하게태스크학습자

(task-learner) 로 표현할 수 있다. 태스크 학습자는
수식 (3)을 단일 업데이트로 하여 번의 학습 단계로
각태스크 에대해학습률 , 로모델의가중
치 와아키텍처파라미터 를최적화하여각각  와 를 구한다.

   
 ∇  

∇  

 (3)

다양한태스크에대해모델을일반화된가중치로학

습시키는 메타 러닝 알고리즘은 메타 학습자

(Meta-learner) 로표현할수있다. 메타학습자는학

습된가중치  와  를기반으로수식 (4)를단일업

데이트로 메타 러닝을 수행하여 모델의 초기 가중치와 를 학습한다.

그림 2. 메타 러닝 과정 개념도
Fig. 2. Illustration of Meta Learning Procedure
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메타러닝이완료되면모델의가중치는다양한태스
크들에 대한 보편적인 가중치로 수렴하며, 이를 통해
새로운태스크에서도빠른적응이가능해진다. 메타러

닝기반신경망구조탐색기법을활용한작물병충해
진단 모델 학습 알고리즘의 전체 과정

      



    
    


 (4)

에 대한 파이프라인은 표 1과 그림 2에서 확인할 수

있다. 그림 2는메타학습데이터셋에서다양한태스크
를샘플링하고, 이를통해모델을메타러닝하는과정을
시각적으로 표현한 것이다. 그림에서 모델의 노드 간

연결을나타내는선들은후보연산을나타내며, 그림에
서는 3개의후보연산이포함되어있다. 메타러닝이후,

각후보연산들의중요도가가중치로계산되며, 가중치

가 클수록 연결선이 더 굵게 표현된다.

4.2.2 메타 테스트 과정

메타테스트는다음과같은과정으로이루어진다. 먼
저, 진단하고자 하는 작물과 병충해 조합의 이미지를

기반으로새로운태스크를정의한다. 이후, 메타러닝된
모델을새로운태스크에대해재학습하여태스크에최
적화된가중치  를도출한다. 이때모델의아키텍

처파라미터 , 즉각후보연산의가중치는태스크에

대한중요도에따라조정된다. 이과정을태스크적응

과정(task adaptation)이라고한다. 이후중요도가낮은
연산을제거하면, 새로운태스크에최적화된최종모델
구조를얻을수있다. 이후에사용자는애플리케이션을

통해진단하고자하는작물의이미지를촬영하여실시
간으로촬영된이미지를분석하여병충해를분류할수
있다. 이같은메타 러닝 모델 기반작물병충해진단

신경망구조탐색을통해제한된 IoT 환경의실제병충
해 진단 애플리케이션에서 적은 데이터로 빠른 적응,

유연성, 정확성 등 다양한 이점을 제공한다.

메타테스트의전체과정에대한알고리즘과파이프
라인은 표 2와 그림 3에서 확인할 수 있다. 그림 3은
메타 테스트 데이터셋에서 새로운 태스크를 샘플링하

여, 이를기반으로모델이태스크적응을수행한다. 태
스크적응단계에서는메타러닝을통해학습된모델을

Algorithm 1

Procedure of meta learning for crop disease diagnosis

 1: Input:
   Distribution over crop disease diagnosis tasks 
   Task-learner    


   Meta-learner   

 2: Initialize  
 3: while not converged do
 4:    Sample crop disease diagnosis tasks   from 
 5:    for each task   do

 6:         
   

 ←    


 7:    end for
 8:    Update    based on crop disease 
diagnosis tasks:

 9:        ←   
   

    
 

10:        ←  
   

    
 

11: end while
12: return Optimized weights and architecture 
parameters  

표 1. 병충해 작물 분류를 위한 메타 러닝
Table 1. Meta-Learning of Neural Architectures for Crop
Disease Diagnosis

Algorithm 2
Procedure of meta test for crop disease diagnosis

 1: Input:
   New crop disease diagnosis task     
   Meta-learned architecture and weights:  

 2: Initialize ←
 3: Initialize ←
 4: for ← do             ▷ Adaptation 
steps for new crop
 5:    ← ∇  
 6:    ← ∇  
 7: end for

 8: ← 
 9: Evaluate   with   

표 2. 새로운 병충해 작물 분류 학습을 위한 메타 테스트
Table 2. Meta-Test for Learning New Crop Disease
Diagnosis Task After Meta-Learning
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기반으로, 새로운태스크의데이터에맞게빠르게조정

이이루어진다. 적응과정이완료된후에는프루닝과정

을통해태스크에최적화된최종모델이완성된다. 그림
3은 각 연산의 중요도가 반영된 가중치에 따라 특정

연결이 제거되거나 유지되는 과정을 시각적으로 보여
준다. 최종적으로얻어진아키텍처는새로운태스크의
분류성능을최적화할뿐만아니라, 제한된 IoT 환경의

특성을반영하여신경망구조를탐색한결과로써효율
적이고간소화된구조를갖추어제한된 IoT 환경에서도
실행 가능하도록 설계된다.

Ⅴ. 실 험

메타러닝기반신경망구조탐색기법을활용한병

충해작물분류모델에대한실험및평가를진행한다.

5.1.절에서실험을진행한환경및구성에대해설명하
고, 5.2.절과 5.3.절에서 병충해 작물 분류 모델 성능

평가를 수행하여 알고리즘의 성능을 보인다.

5.1 실험 데이터셋
실험은작물병충해진단을위한대표적인데이터셋

인 PlantVillage 데이터셋을 활용하였다. PlantVillage

데이터셋은다양한작물의잎에나타나는건강한상태
와여러가지질병을포함한이미지데이터셋이다. 이
데이터셋은 14종의주요작물과 38개의클래스로구성

되어 있으며, 약 54,306개의 이미지로 구성되어 있다.

대표적인 작물로는 토마토, 옥수수, 감자, 포도, 사과
등이 포함된다. 우리는 데이터셋을 다양한 메타 러닝

및메타테스트세트로분할하여실험함으로써메타러
닝 신경망 구조 탐색 기반 작물 병충해 진단 기법의
성능을 검증하였다.

5.2 작물 병충해 분류 성능 비교
딥러닝기반의작물병충해진단의대표적선행연구

인 Transformer-based few-shot learning (FSL)[17]기법
과의비교를통해제안하는메타러닝신경망구조탐색

기반작물병충해진단기법의성능을평가한다. 선행
연구와의성능비교공평성을위해앞선선행연구에서
사용한데이터분할방식을동일하게적용하여실험을

진행하였다. 해당 연구에서는 세 가지의 데이터 분할
세트를 사용하며, 세부적인 분할 방법은 다음과 같다.

분할 1에서메타테스트세트는 10개의서로다른토마

토클래스(1 healthy, and 9 diseased)로구성되며, 메타
훈련 세트는 나머지 28개의 클래스로 구성된다. 분할
2에서메타테스트세트는 4개의서로다른사과클래

스(3 diseased, 1 healthy), 4개의서로다른포도클래스
(3 diseased, 1 healthy), 2개의서로다른체리클래스(1

diseased, 1 healthy)로구성되며, 메타훈련세트는나

머지 28개의클래스로구성된다. 분할 3에서메타테스
트세트는 4개의서로다른옥수수클래스(3 diseased,

1 healthy), 4개의 서로 다른 포도 클래스(3 diseased,

1 healthy), 2개의서로다른복숭아클래스(1 healthy,

1 diseased)로구성되며, 메타훈련세트는나머지 28개

의클래스로구성된다. -plant -image 태스크는다양
한데이터셋분할에서무작위로샘플링하여생성된다.

DARTS를 기반으로 한 실험 환경은 다음과 같다.

우선 선행 연구 FSL[17]의 경우모델의파라미터 수가

약 76M개인데반해, 제안기법에서는 IoT장치의제한
된자원을고려하여전체파라미터수를약 1M개내외
가 되도록 셀 개수를 설정하여 일반 셀과 축소 셀을

탐색하도록한다. 전체모델은 6개의셀, 각셀은 4개의
중간 노드로 구성되며, 1, 3, 5번째 셀은 일반 셀, 2,

4, 6번째 셀은 축소 셀이다. 후보 연산 세트는

MaxPool3x3, AvgPool3x3, SkipConnect, Conv1x5-5x1,

Conv3x3, SepConv3x3, DilatedConv3x3이다. 탐색단

그림 3. 메타 테스트 과정 개념도
Fig. 3. Illustration of Meta Test Procedure



논문 / IoT 환경에서의 병충해 작물 진단을 위한 메타 러닝 기반 신경망 구조 탐색 활용 연구

1361

계에서는 신경망의 가중치와 아키텍처 파라미터를 동
시에 최적화하기 위해 bi-level optimization을 사용하
였다. 신경망구조탐색은 10,000 에포크동안진행되었

으며, SGD(Stochastic Gradient Descent) 옵티마이저
와함께학습률 0.025, 아키텍처파라미터업데이트를
위한 가중치 감쇠 0.001으로 설정하였다.

평가 단계에서는 메타 러닝된 모델을 메타 테스트
세트에 대해 50 학습 단계 동안 태스크 적응 과정과
프루닝을진행하여최종모델을구성하였고, 최종모델

을이용하여제안기법의성능을확인하였다. 또한제한
된 데이터 조건에서 성능을 확인하기 위해 5-plant

5-image 설정으로 진행되었다.

작물병충해분류성능을표 3에나타내었다. 본연
구의 모델은 분할 1, 2, 3에 대한 실험에서 FSL[17]과
비교하여비슷하거나더나은성능을달성하였다. 특히,

분할 1에서는 79%의정확도를달성해기존방법대비
15.5% 더높은정확도를기록하였다. 분할 2와 3에서는
88%와 89%의 정확도를 달성해 기존 모델 정확도를

상회하였다. 이러한성능향상은우리의메타러닝기반
신경망 구조 탐색 기법이 병충해 작물 조합에 빠르게
적응하고효과적인연산구조를탐색하여최적의모델

을구성했기때문이다. 선행연구 FSL은 Transformer

기반모델을사용하여상대적으로많은파라미터와높
은계산량을요구한다. 반면, 본논문의모델은 DARTS

기반의 convolution 연산과 skip connection 중심의단
순한 구조를 통해 계산 효율성을 극대화하였다. 또한,

Reptile 알고리즘의특성상적은반복으로도빠르게최

적의초기가중치를찾을수있어, 매우적은파라미터
수로도효과적인학습을수행할수있었다. 실제로제안
기법을통해탐색된모델의파라미터수는약 1M개로,

기존모델이약 76M개인것과비교하면약 98.7% 더
적다. 메타러닝을통해일반화된초기가중치를제공함
으로써적은학습데이터만으로도높은성능을달성할

수있었으며, 이는데이터가부족한병충해작물분류
및리소스가제한된 IoT 환경에서의활용가능성을높
인다.

제안 기법 FSL[17]

파라미터 수 약 1M 약 76M

분할 1 정확도 79.0% 63.5%

분할 2 정확도 88.8% 87.0%

분할 3 정확도 89.3% 88.5%

표 3. 분류 정확도 비교
Table 3. Comparison of Classification Accuracy

5.3 제안 기법 적응성 평가
실제 환경에서는 다양한 작물 조합이 아닌 특정한

단일작물에대해서적용될가능성이높으므로이같은

환경에서도제안기법메타모델이일반화가잘되는지
검증하기위한추가실험을진행하였다. 이를위해, 메
타 러닝 단계에서는 목표로 하는 특정 작물을 제외한

다양한작물과병충해에대한모델을학습시킨후, 메타
테스트단계에서해당특정작물병충해데이터를사용
하였다. 데이터셋의메타테스트세트는 4개의서로다

른사과클래스(3 diseased, 1 healthy), 메타훈련세트
는 나머지 34개의 클래스로 구성된다.

또한본실험에서는단일작물에대한모델을고려하

므로, 탐색대상모델은앞선실험에서의절반정도의
파라미터개수를갖는모델로설정하였다. 모델의탐색
공간은 4개의셀, 각셀은 3개의중간노드로구성되며,

1, 3번째셀은일반셀, 2, 4번째셀은축소셀이다. 평가
단계에서는메타러닝된모델을메타테스트세트에대
해 30 학습 단계 동안 태스크 적응 과정과 프루닝을

통해최종모델을구성하여모델의성능을확인하였다.

나머지세부설정은앞선실험과동일하다. 제한된데이
터조건에서성능을확인하기위해 4-plant 4-image 설

정으로 진행되었다.

본 실험 결과, 앞선 실험에서 탐색한 모델의 절반
수준인약 0.5M개의파라미터만으로 75.8%의정확도

를달성하였다. 이를통해제안기법을활용하면적은
수의파라미터를가진모델에서도성능저하없이준수
한분류정확도를유지할수있음을확인하였다. 특히,

제안기법을이용하면기존에얻어진다양한작물에서
의병충해데이터를이용하여새로운작물의병충해진
단을위한최적화된메타모델을학습하고, 이를이용하

여적은데이터만을갖는특정작물에대해서도빠르게
적응할수있음을보였다. 이러한접근방식은 IoT 기반
농업환경에서도활용가능성이높아, 실용적이고효율

적인 솔루션을 제공할 수 있음을 시사한다.

Ⅵ. 결 론

본연구에서는제한된데이터와 IoT 환경에서메타
러닝 기반 신경망 구조 탐색 기법을 활용하여 병충해
작물 분류 문제를 효과적으로 해결할 수 있는 방법을

제시하였다. 기존 방법 대비 높은 효율성과 정확도를
달성하였으며, 특히작은데이터셋에서도일반화성능
을유지하는메타러닝기반신경망구조탐색기법의

강점을확인하였다. 실험결과, 제안한 방법은 병충해
분류에서우수한성능을보였으며, IoT 장치에서도실
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시간으로 활용할 수 있는 가능성을 보여 스마트 농업
실현에 기여할 수 있음을 입증하였다.

그러나본연구는 IoT 장치에서의실질적인실행속

도를고려하지못했다는한계가있다. 향후연구에서는
IoT 장치의제한된컴퓨팅리소스와메모리환경에서도
원활히작동할수있도록단순히모델의크기를기준으

로모델탐색을수행하는것이아니라모델의연산효율
성을높이는방향으로도모델탐색최적화를진행하여
실시간병충해진단시스템의현장적용성을높이고자

한다. 특히, 모델의추론지연시간을최소화하는방향
으로연구를확장하면실시간진단이가능하도록최적
모델을탐색할수있다. 이러한연구를통해스마트농

업 생태계 구축에 기여할 수 있을 것으로 기대된다.
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