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연합학습 참여 유도를 위한 교대 제안 협상 기반
기기정보 비공유 인센티브 메커니즘
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요 약

본 논문에서는 연합학습(federated learning)에서 클라이언트 기기정보의 활용 없이 연합학습의 성능을 개선하는

동시에 최적으로 보상자원을 분배하는 인센티브 메커니즘(incentive mechanism)을 제안한다. 연합학습에서 클라이

언트의 자체적인 성능 평가를 반영하는 효용 함수를 정의하고, 이를 기반으로 서버에게 최소 보상정보를 전송함으

로써 클라이언트 로컬 모델의 손실이나 데이터셋의 크기 등의 기기정보를 드러내지 않고 클라이언트를 선택하는

방식을 제안한다. 또한 보상자원 분배지점 결정을 위해 서버와 클라이언트 간의 협상 분해 및 교대 제안 협상을

수행함으로써 클라이언트의 효용 함수 등의 기기정보를 공유하지 않는다. 실험을 통해 제안하는 인센티브 메커니

즘은 연합학습의 수렴 속도 및 정확도를 개선하며, 교대 제안 협상 기반의 보상 분배를 통해 최적 자원 분배 지

점인 내쉬 협상 해법(Nash bargaining solution)을 근사한다는 것을 확인하였다.

키워드 : 연합학습, 인센티브 메커니즘, 교대 제안 협상

Key Words : Federated learning, Incentive mechanism, Alternating-offers bargaining

ABSTRACT

In this paper, we propose a non-disclosure incentive mechanism for federated learning via alternating-offers

bargaining which does not utilize device information of clients while improving learning performance and

approximating an optimal resource allocation. By defining utility functions of clients that reflect their self

estimated performances and determining minimum compensation information, clients can be selected for

participation without revealing their device information such as loss of their local model or dataset size. To

determine the compensation resource allocation, server and clients perform alternating-offers bargaining, which

does not require sharing their utility functions. Experiment results show that the proposed incentive mechanism

can speed up convergence, improve test accuracy, and induce compensation resource allocation near the Nash

bargaining soution while not revealing the device information of clients.
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Ⅰ. 서 론

최근사물인터넷(Internet of Things) 및클라우드컴
퓨팅(cloud computing)의활용범위가넓어지면서, 분
산된다수의디바이스(device)들에서데이터셋이대규

모로 생성되고 있다. 이에 따라 지속적으로 생성되는
대규모 데이터셋을 이용하여 인공지능 모델을 학습시
키고개선된서비스를제공하는방식에대한관심또한

증가하였다[1,2]. 기존의 머신러닝(machine learning)은
이러한 분산된 데이터셋을 서버(server)에서 수집하여
모델을훈련시킨다는점에서중앙집중적인특성을가

진다. 그러나데이터셋을수집하는과정에서서버에대
규모의통신부하가발생할뿐만아니라, 디바이스들의
개인정보가 그대로 전송된다는 점에서심각한 개인정

보 유출의 위협이 발생한다는 한계점을 가진다[3].

이러한중앙집중적방식의한계점을극복하기위해,

연합학습(federated learning)이 제안되었다[4]. 연합학

습에서는개별디바이스또는클라이언트(client)가개
별데이터셋을이용하여로컬모델(local model)을학
습시킨다. 그리고 학습된 로컬 모델 파라미터(local

model parameter) 또는그래디언트(gradient)를서버에
전송하고, 서버는 전송받은 정보를 집계(aggregation)

하여 전역 모델 파라미터(global model parameter)를

업데이트한다. 클라이언트의 데이터셋을 직접 공유하
지는않으면서도데이터셋의특성을학습한모델파라
미터를 공유함으로써 대규모 데이터셋을 간접적·분산

적으로활용하는효율적인머신러닝방식이제안된것
이다.

하지만 연합학습은 서버에 비해 제한적인 연산 및

통신자원을가진클라이언트에게로컬모델을학습시
키고 전송하도록 요구한다는 점에서, 클라이언트에게
연산및통신자원에대한오버헤드(overhead)를발생

시킨다[3,7-9]. 따라서실제연합학습시스템에서는클라
이언트가 연합학습에 참여하지 않기로선택하는 경우
가발생할수있다. 또한실제연합학습시스템에서클

라이언트는이질성(heterogeneity)를가지고있으므로,

클라이언트 데이터셋의 질(quality)과 양(quantity)에
따라집계된전역모델의성능이저하될수있다는한계

점이 있다[5-11].

이러한한계점을극복하기위해, 연합학습의성능개
선에 기여할 클라이언트를 선택하는 클라이언트 선택

전략(client selection strategy), 연합학습 참가에 대한
비용을보상하는보상 분배메커니즘(payment alloca-

tion mechaism), 그리고 이 두 가지를 모두 포함하는

인센티브 메커니즘(incentive mechanism)들이 제안되

었다[8,9,12,13]. 클라이언트선택전략연구에서는클라이
언트의로컬모델손실(loss)[8], 소모비용[9] 등을고려하
여연합학습의정확도및수렴속도를개선하는방식이

제안되어왔으며, 보상분배메커니즘에서는클라이언
트의소모비용, 기여도[12] 등을고려하여보상을측정하
는방식이제안되어왔다. 또한, 인센티브메커니즘에서

는클라이언트의정보를보호하기위해, 차분프라이버
시(differential privacy)를 적용하는 프라이버시 보호
인센티브 메커니즘들도 제안되었다[14-16]. 차분 프라이

버시란클라이언트의정보보호요구수준에따라로컬
모델 파라미터에 노이즈를 추가하여 전송하도록 허용
하는방식이다. 그러나기존에제안된클라이언트선택

전략, 보상분배메커니즘및인센티브메커니즘은클라
이언트의로컬모델의성능이나자원, 차분프라이버시
의정도등의다차원적인기기정보[13]를서버에게전송

하도록요구한다는점에서, 클라이언트의정보를노출
하지 않는다는 연합학습의 근본적인 원칙에 부합하지
않는다는 한계점이 존재한다.

따라서본논문에서는클라이언트의기기정보를공
유하지않아도 되는 인센티브 메커니즘을 제안하고자
한다. 제안하는 인센티브 메커니즘에서 클라이언트는

연합학습수행에소모하는비용과로컬모델의자체평
가된성능을반영하여받고자하는최소보상정보만을
서버에게전송함으로써, 기기정보가구분되지않는정

보만을서버에게전송하게된다. 이후서버는전송받은
최소 보상정보를 비교하여 클라이언트 선택을 수행하
며, 분배할 보상을 결정하기 위해 순차적으로 제안을

주고받는교대제안협상[17]을수행한다. 이를통해클
라이언트의 기기정보가 구분되지 않는 방식으로 연합
학습의성능을개선할수있는클라이언트를선택하고,

소모비용을 보상하여 안정적인 연합학습 시스템을 구
성할수있다. 실험을통해제안하는인센티브메커니
즘은 클라이언트의 기기정보 없이도 연합학습의 수렴

속도및테스트정확도(test accuracy)를개선하며, 최적
의 자원 분배 지점을 근사할 수 있음을 보였다.

본논문은다음과같이구성된다. Ⅱ장에서는연합학

습시스템및서버와클라이언트의효용함수를모델링
하고, 인센티브메커니즘의문제를정의한다. Ⅲ장에서
는기기정보를활용하지않는클라이언트선택전략과

보상분배방식을포함하는인센티브메커니즘을제안
한다. Ⅳ장에서는실험을통해제안하는인센티브메커
니즘의 성능을 검증하며, Ⅴ장에서는 본 논문을 결론

맺는다.
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Ⅱ. 시스템 모델링 및 문제 정의

2.1 연합학습 시스템 모델링
본논문에서는하나의서버와다수의클라이언트가

존재하는연합학습시스템을고려한다. 서버와클라이

언트들은동일한구조를가진인공지능모델을가지고
있으며서버는시스템의평균적인모델성능을향상시
키고자 한다.

연합학습시스템의라운드   ⋯ 에서클
라이언트 ∈  ⋯의로컬모델파라
미터를   , 개별데이터셋의크기를 , 개별손

실함수를  라고하자. 서버 는시스템내평

균적인 모델 성능을 향상시키는 전역 모델 파라미터

를 찾기 위해, 클라이언트의 개별 목적함수
 를조합한전역손실함수 를최소화

하는 것을 목적으로 한다.

 
  



  (1)

이때   
  



로, 클라이언트의 상대적인

데이터셋의크기를반영한다. 식 (1)의전역손실함수를

최소화하기위해, 서버 는클라이언트중일부를선택
하여로컬모델을학습시키고서버에모델파라미터를

전송하는태스크(task)를부여한다. 이때서버 는주요
한 클라이언트의 반복적인 연합학습 참가를 유도하기
위해, 선택된클라이언트에게태스크수행에소모하는

비용에대한보상자원 를분배한다. 서버 는전

송받은모델파라미터를조합하는방식으로전역모델

파라미터를 업데이트하여 시스템 내에서 범용적으로
작동하는전역모델을얻을수있다. 본논문에서는전
역모델의업데이트방식으로 FedAvg (federated aver-

aging)[4]를 사용한다. 인센티브 메커니즘을 통해 선택

된클라이언트의집합을  라하면, 전역모델파라

미터 는 다음과 같이 업데이트된다.

 
∈ 

  (2)

업데이트된 전역모델파라미터 는시스템 내

클라이언트에게전송됨으로써연합학습의라운드 가
종료된다. 그림 1은인센티브메커니즘을포함한연합
학습 시스템을 나타낸다.

2.1.1 서버의 효용 모델링

연합학습시스템의라운드 에서 명의클라이언
트가존재할때연합학습에참가시키고자하는클라이

언트의 비율을 ≤≤ 라고 하면, 서버 는
⌊⌋명의 클라이언트를 선택하여 연합학습을
수행시키고그에대한대가로보상자원을분배하며, 클

라이언트의 선택 비율 는 서버의 통신 능력에 따라

결정된다[18]. 서버 가활용가능한총보상자원 

는라운드 에서의보상자원예산 와직전라운드

에서 남은 보상자원 의 합으로 결정된다

 .

서버 는연합학습을통해얻을것으로기대되는전

역모델의정확도이득(accuracy gain)  [9]와연합
학습과정에서모델파라미터송수신에소모할것으로
예상되는통신자원오버헤드로구성된소모비용 

[7]를고려하여, 참가할클라이언트를선택하고활용가

능한보상자원 를분배한다. 이때서버의소모비
용 는모델파라미터송수신에소모되는통신자

원 오버헤드 및 모델 파라미터 집계에 소모되는 연산
자원오버헤드로구성되며, 참가클라이언트의수가클

수록통신자원오버헤드가지배적이다[6]. 정확도이득

는초기전역모델의정확도대비라운드 에서의
정확도의차이를의미한다. 라운드 에서전역모델의

정확도를  , 정확도차이에대한주관적만족도
를  라할때, 정확도이득 는다음과같이
정의된다.

  (3)

이때인센티브메커니즘에서는연합학습수행이전

에클라이언트를선택하고분배할보상을결정하므로,

그림 1. 인센티브 메커니즘을 포함한 연합학습 시스템
Fig. 1. Federated learning system with an incentive
mechanism
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정확도이득 를예측하기위해직전두라운드에
서 정확도 이득의 평균값을 이용한다

 .

인센티브메커니즘을통해서버 가선택한클라
이언트의 집합  에 분배할 보상자원의 벡터를

 ⋯ ,⋯∈ 라하자. 이때

서버 의 효용 은 다음과 같이 정의된다.

 
∈ 

  (4)

2.1.2 클라이언트의 효용 모델링

연합학습시스템내의클라이언트 는로컬모델을
활용하는임의의서비스를이용하므로, 로컬모델의성
능에대한자체적인평가를수행한다. 이때클라이언트
는연합학습참가시기대되는자신의기여도를자체
적으로 측정하며, 이를 자체 평가 성능(self estimated

performance) 라고 정의한다. 자체 평가 성능

 는로컬모델의손실  와로컬모델훈련

에소요되는시간에영향을미쳐클라이언트의연산자
원오버헤드를증가시키는데이터셋의크기 

[8]를

복합적으로 고려하도록 다음과 같이 정의한다.

    


×


 (5)

이때  는로컬모델의손실에대한주관적민

감도,   는훈련시간에대한주관적민감도를

나타낸다.

클라이언트 가 연합학습에 참가한다면, 파라미터
송수신에필요한통신자원오버헤드뿐만아니라로컬
모델훈련에필요한연산자원오버헤드를포함하는비

용 를 소모한다
[3,7]. 따라서 클라이언트 는 비용

를 보상 받으면서 로컬 모델의 자체 평가 성능

에대응되는보상자원 를얻고자한다. 따라

서클라이언트 의효용 는다음과같이정의

된다.

 (6)

2.2 클라이언트 선택 및 보상자원 분배 문제 정의
인센티브메커니즘의클라이언트선택문제는사회

후생최대화(social welfare maximization) 문제로정의

할수있으며, 사회후생은서버와클라이언트의효용의

합으로 정의된다[9].

 
argmax  

∈ 

 (7)

또한, 인센티브메커니즘의보상자원분배문제는내

쉬협상해법(Nash bargaining solution)을찾는문제로
정의할수있다[19]. 내쉬협상해법은연합학습에참가
한클라이언트의효용의곱으로정의되는시스템효용

또는내쉬곱(NP, Nash product)을최대화하는지점과
일치한다[20]. 따라서내쉬협상해법은다음과같이정
의할 수 있다.

 
argmax 

∈ 
 (8)

이때 는클라이언트 가얻고자하는최소효용인불

일치점(disagreement point)을 나타낸다[21].

Ⅲ. 인센티브 메커니즘

본논문에서는클라이언트의기기정보공유없이연
합학습에 기여할 클라이언트를 선택하고 할당할보상

을결정하는인센티브메커니즘을제안한다. 제안하는
인센티브메커니즘은서버의최대보상정보공지및클
라이언트의최소보상정보전송, 서버의클라이언트선

택, 서버와클라이언트의교대제안협상, 그리고서버
의 클라이언트 추가 선택의 순으로 동작한다.

3.1 서버의 최대 보상정보 공지 및 클라이언트의
최소 보상정보 전송

서버 는모든클라이언트에게 연합학습에 참가한
다면할당받을수있는최대보상정보 를공지한

다. 이때공정한보상자원분배를유도하기위해, 최대

보상정보 는 총 보상자원 를 선택하고자

하는 ⌊⌋명 클라이언트에게 균일하게 분배하
는 값으로 설정한다.

⌊⌋


 (9)

클라이언트 는연합학습에참가한다면받고자하는

최소보상정보 를계산하여서버 에전송한다.

이때 최소 보상정보 는 클라이언트 의 효용

가 0이되는지점에서의보상자원 의값
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으로 설정한다.

  (10)

이는클라이언트 의불일치점 에도달할수있는보

상자원  에대응된다. 제안하는인센티브메커니즘

에서는자체평가성능 와소모비용 를반영

한최소보상정보 만을서버 에게전송함으로

써, 실제 클라이언트의 기기정보인 로컬 모델 손실
  , 데이터셋의크기 와소모비용 의

값을 드러내지 않을 수 있다.

3.2 서버의 클라이언트 선택
서버 는클라이언트 로부터전송받은최소보상정

보  와 자신이 공지했던 최대 보상정보 

를 비교하여, 다음과 같이 후보자 클라이언트 집합
 ′ 를 결정한다.

 ′   ∈  ≤ (11)

이때후보자클라이언트집합의크기를  ′ 라
하고, 집합내클라이언트의최소보상정보  를

오름차순으로 나열하면 
 ≤⋯≤

 ≤⋯≤


 ′ 라하자. 만약  ′ ⌊⌋이면, 서

버 는아래의조건을만족하도록선택하는클라이언
트의 집합  를 결정한다.

   ∈ ′    ≤⌊⌋ (12)

만약  ′ ⌊⌋이면, 선택하는 클라이언
트의 집합을 후보자 클라이언트의 집합으로 결정한다
   ′  . 서버 는 선택된 클라이언트의 집
합  에대한보상자원분배이후에, 선택되지않은

클라이언트중 ⌊⌋  명을추가로선택
할 수 있다. 이는 Ⅲ장 4절에서 이어진다.

3.3 서버와 클라이언트의 교대 제안 협상
서버 와클라이언트는보상자원분배지점 를

결정하기 위해, 교대 제안 협상을 수행한다.

3.3.1 협상 분해 및 교대 제안 협상

본 논문에서는 교대 제안 협상의 복잡도를 낮추기

위해, 서버 와  명클라이언트의교대제안협

상을서버 와각클라이언트 ∈ 의독립적인

 개의교대제안협상으로분해한다. 이를위해
서버 가 각 클라이언트 의 참가를 통해 얻는 효용
 를 다음과 같이 정의한다.

 


 (13)

분해된교대제안협상에서서버 와각클라이언트
는보상 를결정하고자한다. 서버 와클라이언

트 는제안시점  이진행됨에따라

순차적으로 어느 한쪽은 제안 을 하고, 나머지

한쪽은 제안에 대한 의사결정을 수행한다. 만약 제안

가거절되면다음제안시점  이진행되며,

서버 와 클라이언트 의 효용은 각각 할인계수
(discount factor)    ∈배로 감소한다.

할인계수는 협상이 지연되기보다는 빠르게 성사되는
것을선호하는특성을나타낸다[22]. 할인계수의값이 0

에가까울수록협상지연에대한인내심(patience)이없
음을의미하며, 할인계수의값이 1에가까울수록협상
지연에 대해 완벽한 인내심이 있다는 것을 의미한다.

만약 제안   가 수락되면 협상이 종료되고

  , 보상 가 결정된다   .

이때 결정된 보상 가 서버 의 최대 보상정보

에비해작다면, 클라이언트 와의협상에서남

는 보상 는 다음과 같이 결정된다.

 (14)

분해된  개의독립적인교대제안협상은동
시적으로진행되므로, 클라이언트의협상종료시점 

는서로다를수있다. 따라서분해된교대제안협상을
적용한보상자원분배문제는다음과같이재정의된다.

 
argmax 

∈ 


  (15)

3.3.2 적응적 교대 제안 협상 전략

서버 는효율적협상타결을유도하기위해, 자신의
할인계수  를클라이언트 에게알린후에교대제안

협상을 수행한다. 교대 제안 협상의 제안시점 에서

클라이언트 가보상   를제안할차례라가정하

자.

클라이언트 는서버 의수락을유도하기위해, 자
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신의직전제안  에비해자신의효용을감소

시켜서버 에게양보하는제안을한다. 이때효용감
소간격 ∆은서버 의할인계수에대해적응적으로

조정하기위해, 할인계수의비에비례하게설정

한다. 이러한 반대제안 전략은 다음과 같이 정의된다.


 

 ∆

∆ 

  (16)

이때 는협상에서클라이언트 의양보율을의미한다.

서버 는클라이언트 에게제안 을받으면,

자신의효용을고려하여의사결정을수행한다. 현재받
은제안의효용이자신의직후제안시점인  에서

제안가능한최대효용보다크거나같으면, 제안을수락
한다. 이러한의사결정기준은다음과같이표현할수

있다.










Accept

if 
≥

 
 ∆ 

Reject
otherwise

(17)

이때 서버 는 클라이언트 의 기기정보인 할인계수
를알지못하므로, 효용감소간격 ∆은자신의할인

계수만을기반으로결정한다. 따라서서버 의양보율
을 라 하면, 효용 감소 간격 ∆는 다음과 같다.

그림 2. 제안하는 교대 제안 협상의 동작 과정
Fig. 2. Process of the proposed alternating-offers bargaining

∆ 


 (18)

만약 제안   이 수락되지 않아 다음 제안시점이

진행되면, 서버 는동일한방식으로반대제안을수행
하고, 클라이언트 는의사결정을 수행한다. 그림 2는
제안하는 교대 제안 협상의 동작 과정을 간략히 나타

낸다.

3.4 서버의 클라이언트 추가 선택
Ⅲ장 2절에서 언급되었듯, 만약 min⌊⌋

   이면, 서버 는거절했던클라이언
트∉ 에대한추가선택을시도한다. 서버 는
이미선택했던클라이언트에대한보상분배후에남은

보상자원을 활용하기 위해, 최대 보상정보  를

다음과 같이 업데이트한다.

  ⌊⌋


⌊⌋


∈





(19)

업데이트된 최대 보상정보  를 이용하여, 서버

는Ⅲ장 2절의클라이언트선택및Ⅲ장 3절의교대
제안협상을추가로수행한다. 이러한과정은남은보상
자원을활용하더라도더이상클라이언트가추가로선

택되지않을때까지최대 ⌊⌋번반복되며, 보상
정보만이전송되므로모델파라미터송·수신에비해무
시할만한오버헤드를가진다[18]. 추가선택이종료된이

후 남은 보상자원   
∈ 

는 다음 라운드

에서 활용된다.

Ⅳ. 실험 및 성능 검증

4.1 실험 설정
Ⅲ장에서 제안한 인센티브 메커니즘의 클라이언트

선택 전략과 보상 분배 방식의 성능을 검증하기 위해
실험에서활용된조건및파라미터설정값들을표 1에
서 나타내었다.

클라이언트선택전략의비교알고리즘으로는손실
이큰순서로클라이언트를선택하는 pow-d (power of

choice)[8]을사용하였으며, 클라이언트선택을위한후

보자클라이언트집합의크기 를 16으로설정하였다.
공정한성능비교를위해 60라운드의연합학습을 15번
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반복하여 평균적 성능을 비교하였다.

보상분배방식의내쉬협상해법에대한근사성능
을검증하기위해, 클라이언트의효용함수를이용하여

내쉬협상해법을계산하는 DV (direction vector) 기반
알고리즘[25]을사용하였으며 500번을반복하여평균적
성능을 측정하였다.

4.2 실험 결과
제안하는클라이언트선택전략에따른연합학습의

정확도와수렴속도를검증하고자한다. 그림 3은라운

드 가진행될때클라이언트선택전략에따른평균적
인클라이언트모델의정확도를나타내며, 표 2는클라
이언트선택전략에따른목표정확도(target accuracy)

75% 도달에소요되는라운드수와테스트정확도

를나타낸다. 평균적인클라이언트의정확도에관하여,

pow-d 전략의최종테스트정확도는 79.25%에도달하
는반면, 제안하는클라이언트선택전략의최종테스트
정확도는평균 80.19%로더높은수준에도달하는것

을확인할수있다. 또한수렴속도의경우, pow-d 전략
은 16라운드가소요되지만, 제안하는클라이언트선택
전략은 8라운드가소요되어수렴속도가 2배로증가한

다. 이를통해제안하는클라이언트선택전략은자체

평가성능을활용함으로써로컬모델손실이나데이터
셋크기등의기기정보를드러내지않고도효율적인연

합학습을가능하게함을확인할수있다. 다만제안하는
클라이언트선택전략의표준편차(STD, standard de-

viation)는 비교적 크게 나타나는데, 이는 클라이언트

선택과정에서가우시안분포(Gaussian distribution)으
로부터확률적으로추출되는민감도  , 를활용하면

서 변동성이 발생하는 것으로 추측할 수 있다.

또한, 제안하는교대제안협상전략을활용한보상

분배방식의내쉬협상해법에대한근사성능을평가하
고자 한다. 표 3은 연합학습에 선택된 클라이언트 수
 가집합 에서결정될때, 제안하는
교대제안협상전략에따른자원분배지점에서의내쉬
곱과 DV 기반알고리즘의내쉬곱, 그리고두지점사
이의 절대 백분율 오차(APE, absolute percentage er-

ror)와 APE의 STD를나타낸다. 연합학습에참가하는
클라이언트의수가순차적으로증가함에따라, 제안하
는교대제안협상전략의내쉬협상해법에대한 APE

는 0.0003%, 0.0040%, 0.0148%, 0.0369%으로증가하
고, STD는 0.0009, 0.0058, 00014, 0.0030으로증가하
지만, 각각 0.05%와 0.005 이내의낮은값을유지한다.

이러한경향성은선택된클라이언트의수가증가함
에따라협상의분해에서오차가발생하며, 클라이언트
의양보율 가균일분포(uniform distribution)에서확

Category Element Details

Dataset
and Model

Dataset Fashion-MNIST[23]

Data
Heterogeneity

,
Dirichlet distribution

Model LeNet-5[24]

Learning Rate 

Server

 

 


  , Uniform

distribution

Client


, Gaussian

distribution


, Gaussian

distribution



  ,
Uniform distribution

Hyper
Parameter

 
,

Uniform distribution

 

  ,
Uniform distribution

표 1. 실험에서 활용된 조건 및 파라미터 설정
Table 1. Conditions and parameter settings in the expe-
riment

Pow-d, d=16[8] Proposed mechanism

  

Test acc.  

표 2. 클라이언트 선택 전략에 따른 와 최종 테스트 정확
도 [%]
Table 2.  and test accuracy [%] according to the
client selection strategies

그림 3. 클라이언트 선택 전략에 따른 평균 테스트 정확도
Fig. 3. Average test accuracy according to the client
selection strategies
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률적으로추출될때변동성이발생하는것으로추측할

수 있다. 이를 통해 제안하는 교대 제안 협상 전략이
클라이언트의수가증가할때오차및변동성이발생하
는 특성이 있지만, 클라이언트의 기기정보 공유 없이

낮은오차율로내쉬협상해법을근사할수있다는것을
확인할 수 있다.

Ⅴ. 결 론

본논문에서는연합학습에서클라이언트의자체평
가성능을반영하는최소보상정보를기반으로한클라

이언트 선택 전략과 협상 분해 및 교대 제안 협상을
기반으로한보상분배방식을포함하는인센티브메커
니즘에대한연구를진행하였다. 클라이언트의로컬모

델손실및데이터셋크기를고려하여자체평가성능을
정의하였으며, 이를반영한최소보상정보를공유함으
로써 클라이언트의 실제 기기정보가 드러나지 않고도

클라이언트선택이이루어지는전략을제안하였다. 또
한선택된클라이언트에대한보상자원분배를위해협
상을분해하여서버와클라이언트의교대제안협상을

적용하였으며, 서버의할인계수를활용한적응적인교
대제안협상전략을제안하였다. 클라이언트선택전략

에 대한 실험을 통해 제안된 클라이언트 선택 전략은

서버가 클라이언트의 손실을 활용하는 기존의 전략에
비해연합학습의정확도가개선되고수렴속도가증가
하는것을확인하였다. 또한보상분배방식에대한실

험을통해제안된교대제안협상전략이낮은오차율로
내쉬 협상 해법에 대해 근사한다는 것을 확인하였다.

따라서 제안하는 인센티브 메커니즘을 통해 클라이언

트의 기기정보를 공유하지 않고도 연합학습의 성능을
개선하고효율적인보상자원분배를수행할수있음을
확인하였다.
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