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ABSTRACT

In this paper, we propose a non-disclosure incentive mechanism for federated learning via alternating-offers
bargaining which does not utilize device information of clients while improving learning performance and
approximating an optimal resource allocation. By defining utility functions of clients that reflect their self
estimated performances and determining minimum compensation information, clients can be selected for
participation without revealing their device information such as loss of their local model or dataset size. To
determine the compensation resource allocation, server and clients perform alternating-offers bargaining, which
does not require sharing their utility functions. Experiment results show that the proposed incentive mechanism
can speed up convergence, improve test accuracy, and induce compensation resource allocation near the Nash

bargaining soution while not revealing the device information of clients.
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Table 2. t., and test accuracy [%] according to the
client selection strategies

Pow-d, d=16' Proposed mechanism
trs 16 8
Test acc. 79.25 80.19
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Ale) Aol 7F9-A|9} B (Gaussian distribution) 2
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Fig. 3. Average test accuracy according to the client
selection strategies
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