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요 약

모바일 기기 및 네트워크 성능의 향상과 함께 이미지 분류, 물체 인식과 같은 모바일 비전 애플리케이션 산업

은 빠르게 성장하고 있다. 모바일 비전 애플리케이션을 설계할 때, 딥러닝 모델 파티셔닝에 기반한 모바일 엣지
컴퓨팅(MEC)을 바탕으로 한다면 사용자 경험 품질(QoE)을 향상하는 데 큰 도움이 된다. 딥러닝 모델 파티셔닝에

대한 연구는 그동안 여러 방향에 걸쳐 발전해 왔으나, 이전까지는 딥러닝 모델을 레이어 단위로 나눔과 동시에 입
력 프레임의 크기를 조절하는 연구는 없었다. 본 연구는 Lyapunov 최적화에 기반하여 타임슬롯마다 1) 처리할 프

레임의 수, 2) 모델 파티션 포인트, 3) 입력 프레임의 사이즈를 동시에 조절하는 알고리즘 Parecon을 제안한다.
제안된 알고리즘은 처리 fps, 단대단 지연 시간, top-1 정확도를 동시에 최적화하며, 시뮬레이션을 통해 Parecon이
기존의 알고리즘에 비해 단대단 지연 시간, top-1 정확도를 유지하면서도 fps를 크게 향상시키는 것을 확인한다.

키워드 : 딥러닝, DNN 모델 파티셔닝, 해상도 조절, 모바일 비전 애플리케이션, 사용자 경험 품질, 모바일
엣지 컴퓨팅

Key Words : Deep learning, DNN model partitioning, resolution control, mobile vision application, quality
of experience, mobile edge computing

ABSTRACT

With the advancement of mobile device and network performance, the industry for mobile vision applications,

such as image classification and object detection, is rapidly growing. When designing mobile vision applications,
employing mobile edge computing (MEC) based on deep learning model partitioning can significantly improve the
quality of user experience (QoE). Research on deep learning model partitioning has advanced in various directions

over time, but until now, there has been no study that simultaneously partitionizes deep learning models by layers
and adjusts the input frame size. Our proposed algorithm, Parecon, is based on Lyapunov optimization and dynamically
adjusts 1) the number of frames to be processed, 2) model partition points, and 3) input frame size at each time

slot. The proposed algorithm simultaneously optimizes processed fps, E2E latency, and top-1 accuracy. Through
simulations, we confirmed that Parecon achieves a significant improvement in fps compared to existing algorithms
while maintaining simular E2E latency and top-1 accuracy.
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Ⅰ. 서 론

최근모바일기기및네트워크의성능, 딥러닝기술
의발달과함께자율주행자동차, 스마트폰, 드론과같
은모바일기기에서딥러닝모델에기반한모바일비전

애플리케이션을사용하는경우가늘어나고있다. 딥러
닝모델을처리하는위치에따라, 처리방식을모바일
컴퓨팅과엣지컴퓨팅으로분류할수있다. 모바일컴퓨

팅에서는모든딥러닝모델의처리를모바일기기가맡
으며, 이 경우 지속적인 모바일 하드웨어의 발전에도
불구하고성능의제한이존재한다. 엣지컴퓨팅에서는

모바일기기는단지입출력기기의역할만을수행하며,

엣지서버에서딥러닝연산이이루어진다. 일반적으로
엣지서버의성능은모바일기기보다훨씬높으므로이

경우에는성능문제가발생하지는않으나, 네트워크상
태가좋지않은상황에서제대로서버를사용하기어렵
다는 한계가 있다.

모바일엣지컴퓨팅(MEC)은두처리방식의장점만
을 결합했다. MEC는 이진결정 MEC와 딥러닝 모델
파티셔닝에기반한 MEC로나눌수있는데, 이진결정

MEC에서는모바일컴퓨팅과엣지컴퓨팅중하나만을
선택할수있으며, 실시간으로변화하는네트워크의상
태나모바일기기가사용가능한에너지등을고려하여

QoE를 높일 수 있는 방향으로 모바일 컴퓨팅과 엣지
컴퓨팅 중 하나를 결정하는 연구가 진행되어왔다[1-8].

한편딥러닝모델파티셔닝에기반한 MEC에서는딥러

닝모델을여러개의레이어그룹으로분리한다. 이경
우딥러닝모델의처리방식을결정하는시스템은모바
일컴퓨팅이나엣지컴퓨팅을선택할수도있지만, 상황

에따라레이어그룹일부는모바일에서처리한뒤, 중
간결과를엣지서버로전송하여나머지레이어그룹을
처리하는것이가능하다. 딥러닝모델파티셔닝을사용

할경우시스템은더많은선택지가생겨나며, 따라서
딥러닝 모델 파티셔닝에 기반한 MEC는 이진 결정
MEC보다변화하는환경에더유연하게대응할수있

다[9-13].

그러나이제까지딥러닝모델파티셔닝과입력프레
임의크기조절을동시에수행하는연구는존재하지않

았다. 입력프레임의크기를원본대비줄일경우, 자연
스럽게모바일기기가처리해야하는데이터의양과중
간결과크기가감소하며, 이에따라처리속도가증가

할것이라고기대할수있다. 하지만동시에입력프레
임 크기의 감소는 추론 정확도의 손실을 야기하며[14],

지나치게 입력 프레임 크기를 크게 줄일 경우 딥러닝

모델의본래성능을제대로발휘할수없다. 본연구는

처리 fps와 정확도 사이에서 균형을 찾고자 한다.

여기에더해, 본연구는처리 fps를높이기위해기존
의딥러닝모델파티셔닝관련연구에서사용되었던[15]

파이프라인개념을도입했다. 그림 1(b)는모바일처리
시간이업로드시간보다긴경우에파이프라인이작동
하는 방식을 보여준다. 파이프라인을 사용하면 n번째

프레임의중간결과가네트워크를통해엣지서버로전
송되는순간, n+1번째프레임의모바일처리가시작됨
으로써동시에여러프레임을처리하는것이가능하다.

그림 1(c)는 업로드 시간이 모바일 처리 시간보다 긴
경우에파이프라인이작동하는방식을보여준다. 중간
결과가연속으로전송될수있도록 n번째프레임의중

간결과가전송되는와중에 n+1번째프레임의모바일
처리가 시작된다.

파이프라인 구조를 구현하기 위해서는 프로그램에

서 모바일 처리 프로세스, 업로드 프로세스, 다운로드
프로세스가독립적으로작동해야한다. 일반적으로처
리 fps가 증가하면 자연스럽게 한 프레임당 소요되는

단대단지연시간은감소하지만, 파이프라인을사용할
경우프로세스간에데이터를주고받는과정에서추가
지연이발생하기때문에처리속도와단대단지연시간

사이에서도 균형을 찾아야 한다.

종합하자면, 본연구는처리 fps, 단대단지연시간,

정확도를 동시에 최적화하는 알고리즘을 설계하는 것

을목표로한다. 만약 3개의요소사이에서적절한균형
점을 찾을 수 있다면, 정확도 및 지연 시간의 손실을
최소화하면서처리 fps를극대화할수있을것이다. 이

를위해본연구에서는가상큐기반 Lyapunov 최적화
를 활용하여 1) 파티션 포인트, 2) 처리 fps, 3) 입력
프레임크기를동적으로제어하는 Parecon 알고리즘을

제안한다. 제안한 Parecon 알고리즘은단대단지연시
간및정확도와관련된제약조건을지키면서처리 fps

그림 1. 파이프라인 구조.
Fig. 1. Pipeline architecture.
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를최대화한다. 또한, 시뮬레이션을통해 Parecon 알고
리즘의성능을측정하고, 기존에제안된알고리즘과비
교해 어느 정도의 성능 향상을 보이는지 확인한다.

Ⅱ. 시스템 모델

2.1 서비스 모델
그림 2는 본 연구의 시스템 모델 구조이며, 모바일

단말이비전애플리케이션을사용하고, 모바일기기와
MEC 서버모두사전학습된딥러닝모델 을메모리
에 올려두고 있다. 예를 들어, 모바일 단말에서 물체
인식을위하여모바일단말과 MEC 서버모두동일한
EfficientNetV2-S 모델을메모리에 올려둔다. 본 연구

의타임슬롯은 ∊ ⋯로구성되어있으
며, 단위시간간격은 (second)로둔시간에따라동
작하는시스템을고려한다. 모바일비전애플리케이션

은 타임슬롯마다 시작 추론을 위하여 (bits) 크기의(frames) 개를생성하고, 이는모바일단말의추론
을위한입력데이터로사용한다. 모바일단말은입력되

는 데이터에 대해서 처리하고자 하는 데이터의 수∊⋯를결정한다. 또한, 모바일비전애플
리케이션에 입력된 프레임은 크기 조정 팩터∊⋯에 의해 재조정되며, 최종적으로 딥러

닝 모델이 타임슬롯 t마다 입력받는 이미지의 크기는가된다. =1일경우원본크기가그대로유지

되며, 1 이하로줄어드는경우그만큼프레임의크기가
감소한다.

사전학습된딥러닝모델 은 convolution, maxpool

과같이특정작업을수행하는여러레이어로구성된다.

본연구에서사용한모델은 22.1M 개의파라미터를갖
는 EffcientNetV2-S이며 ImageNet-1k 데이터 세트에

기반하여사전훈련되어있다. 이러한레이어의출력결
과는연속된다음레이어의입력이된다. 본연구에서는
모델 을 개의 레이어 그룹으로 나누어,

LG    ⋯ 로표현한다. 레이어그룹 ∊LGm
은 추론 연산을 분할 하기 위한 가장 작은 단위이다.

이때, 레이어그룹 은 residual block, parallel 레이어,

route 레이어등을포함한하나이상의레이어들로이루
어져있다. 단일프레임의추론을완료하려면프레임이
모든 LGm의레이어그룹에서순차적으로처리되어야
한다. 상황에따라일부상위레이어그룹은모바일단
말에서프로세싱된후, 그에따른결과를 MEC 서버로
전송한후, 남아있는나머지레이어그룹은 MEC 서버

에서프로세싱하여추론을진행할수있다. 즉, 딥러닝
모델 파티셔닝을 통하여 모바일 단말과 MEC 서버가
추론연산을분담하는것이가능하다. 이에따라모바일

단말은모바일단말과 MEC 서버간프로세싱연산을
나누기 위하여 매 타임슬롯 마다 파티션 포인트∊⋯ 를결정한다. 결정된파티션포인

트 에 따른 동작은 다음과 같다.




    MEC서버가 LG를처리    모바일단말이 LGm를처리  모바일단말이  ⋯    를처리후MEC서버가   ⋯를처리
각레이어그룹의특성을반영하기위해단일비트를

처리하는 데 필요한 GPU 사이클 수를 나타내는

processing density (cycles/bit)를정의한다. 만약레

이어그룹 이필터의크기가주어진합성곱계층을포
함하고있을경우, 는 s에따라달라질수있다. 반면

레이어그룹 이동일한크기의입력만허용하는 dense

레이어로만이루어졌을경우 는 s에대해동일하다.

또한, 각레이어그룹별로입력데이터대비출력데이
터크기가다르다. 이러한비율을 bit conversion ratio

(bits/bit)로정의한다. process density와마찬가지로,

의 값은 s에 따라 달라질 수 있다.

파티션 포인트 , 크기 조정팩터 에대해, 모바일
기기(md)와 MEC 서버(es)의 processing density와 bit

그림 2. 입력 프레임의 크기 조정과 딥러닝 모델 파티셔닝
을 함께 수행하는 MEC 시스템 구조.
Fig. 2. MEC system architecture that performs input
frame resizing and deep learning model partitioning
simultaneously.
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conversion ratio는 다음과 같이 표현된다.




md   

  ′  
  ′  es   

′  
  ′

md   
    es   

 
(1)

여기서모든크기조정팩터 ∊에대해 =0이고,

=1이다. mdis 및 esis 는프레임크기 에대해
모바일기기및 MEC 서버가경험하는 process density

이며, md , es 이다. 따라서모바일기기와

MEC 서버의작업량은각각 mdis 와 esis 이
다. 마찬가지로, mdis 및  esis 는모바일기기와 MEC

서버가경험하는 bit conversion ratio이다. 예외적으로

md   es 이며, 이는  일경우모바
일에서모든데이터를처리하기때문이다. 결과적으로

업로드에필요한중간결과크기는  md 이고, 최

종 결과 크기는 es 이다.

2.2 정확도 모델를줄이면입력프레임의크기가줄어추론속도
가높아지지만, 동시에추론정확도가떨어진다. 에
의해크기가조정된프레임이 DNN 모델 m에의해처
리될때, ∊ 를정확도로정의한다. 는
concave하고미분가능하며, 증가하는함수이다[14]. 또
한, 모바일 비전 애플리케이션을 사용하기 위한 최소
시간 평균 정확도(임계값)를 th로 정의한다.

2.3 단대단 지연 시간 모델
단일 프레임을 처리하는 데 발생하는 단대단 지연

시간은 다음과 같이 네 가지로 구성된다.

1) 모바일단말에서의프로세싱시간: 에따라모
바일단말에서처리해야하는 GPU 사이클수는

md    (cycles)이고, GPU 클럭 주파수는

md (cycles/second)으로 고정되어 있으므로, 모

바일 단말 프로세싱에 걸리는 시간은

md   md (seconds)이다.

2) 중간 결과 업로드 시간: 모바일 단말에서 MEC

서버로 전송하는 데이터의 양은 md   
(bits)이고, 업링크대역폭은 (bits/second)

이므로 데이터 전송 시간은 md   
이다.

3) MEC 서버에서의프로세싱시간: MEC 서버에서

처리해야 하는 GPU 사이클 수는 es   
(cycles)이고, GPU 클럭 주파수는 es
(cycles/second)이므로 MEC 서버프로세싱에걸

리는 시간은  es   es (seconds)이다.

4) 최종결과다운로드시간: 비전어플리케이션에

서최종추론결과(예: 이미지내물체에대한판
단결과)전송시간은전체추론시간대비매우적
은비중을차지하므로최종데이터전송에대한

시간은 생략한다.

따라서, 단대단 지연 시간 은 다음과 같다.

 md    md    es
es   

(seconds) (2)

Ⅲ. 문제 정의 및 제안 알고리즘

3.1 문제 생성
본모바일비전애플리케이션을위한 QoE 개선문제

를세운다. 우리의목표는정확도와단대단지연시간을
충족하면서처리 fps를최적화하는것이다. 먼저, 처리

된프레임과입력프레임의시간평균비율   
를이용해사용자의만족도를나타내는유틸리티함수⋅를정의한다. 유틸리티함수는 concave 함수이며,

증가하고미분가능하다. 파티션포인트 , 처리 fps, 크기 조정 팩터 를 동시에 제어하여 다음과
같이 fps 유틸리티를 최대화하는 문제를 정의한다.

(P1): max    





  ≤  ≥   md    ≤∀∊  md    ≤mdt∀t∊C  it∊Ibt∊Bst∊S

여기서 (C1)과 (C2)는각각시간평균단대단지연시
간과정확도에대한제약조건이다. (C3)은업링크전송

에필요한데이터양이주어진네트워크대역폭을초과
할수없음을나타낸다. (C4)는모바일처리에필요한
GPU 사이클양이모바일 GPU의처리용량을초과할

수없음을나타낸다. (C5)는파티션포인트 , 처리
fps , 크기 조정 팩터 의 선택 가능한 범위를
나타낸다. 시스템상태 Ω  는독립항등분
포(i.i.d.)이며, 타임슬롯마다 무작위로 변경된다. 또한,
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알고리즘은미래의시스템상태나확률적정보를미리
알지 못한다고 가정한다.

유틸리티함수 ⋅는시간평균에대해비선형함
수이므로, 타임슬롯마다문제를풀어내기어렵다. 따라
서 (P1)을 타임슬롯마다 푸는 문제로 변환하기 위해
straight line set와보조변수를추가한다. 먼저임의의

상수 minmax 로 이루어진 straight line set

  min ≤≤max을정의한다. (P1)에제약사항

을 추가한 문제는 다음과 같다.

(P2): max    
 ∊

이때 (P2)의최대유틸리티는제약조건으로인해 (P1)

보다 높을 수 없다. 그러나 집합 K의 범위를 충분히
넓게설정하면 (P2)와 (P1)은동일한솔루션을갖는다.

다음으로, (P2)를 시간 평균의 함수로 나타내기 위해

보조 변수 ∊를 소개한다. 는 Jensen’s

inequality로 인하여 다음과 같은 관계를 갖는다.

∊ and ≤ (3)

마지막으로, 보조변수 를추가하여 (P2)를 (P3)

으로 변형한다.

(P3): max      
 



  ≤   ∈∀∊

이때,  ∊이며 보조 변수 는 입력 fps

대비처리 fps에대한가상의비율로, 는 를시
간 평균 관점에서 따라간다. (P3)은 보조 변수 의
추가로 시간 평균 관점에서 풀 수 있는 문제이며,를동적으로제어하여유틸리티를최
대화하는 문제이다. (P3)의 목적함수의 최적값은 (P2)

의목적함수의최적값과같으며, (P2)의목적함수의최
적값은 (P1)의 목적함수의 최적값과 같다.

3.2 알고리즘 유도
먼저 유한 초기값 를 갖는 가상 큐를 정의한다. 는 다음과

같이 정의된다.

  th  Rt (4)

    th . (5)

    . (6)

만약우리가큐 를시간평균관점에서
안정화할수있다면, 제약조건 (C1), (C2), (C6)이충족
된다. 이제 가상 큐 를 사용하여,

Lyapunov drift 함수와 유틸리티 함수에 가중치 V를

곱한합을나타내는 Lyapunov drift-plus-penalty를최
소화하는 알고리즘을 만들 수 있다.

3.3 알고리즘 설명
이번 절에서는 딥러닝 모델 파티셔닝 알고리즘

Parecon을 제안한다. Parecon은 가상 큐, 입력프레임의수 , 업링크네트워
크 자원 에 대한 정보들을 바탕으로 를 결정한다.

1) 보조 변수 : 매 타임슬롯 마다 가상의 큐에 따라 Parecon은 다음 문제를 해결한다.

min   (7)   ∊
는 에 대해 convex하고, 는에대해 linear하기때문에식 (7)은 convex 함수이

다. 또한 는 straight line set이며이는 convex set이다.

따라서, 를결정하는것은 convex 최적화문제이기

때문에, 최적의 는 다음과 같이 도출된다.

  ′   min

max
(8)

2) 그외변수   : 매타임슬롯 마다가
상큐 에따라 Parecon은다음문제를
해결한다.

min     IBS
 md

 md    md    es
 es    

 
 


   md    ≤   md    ≤md  ∊ ∊  

(9)
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식 (9)에서  는 서로 결합되어 있으며, 제약
조건 (C3)과 (C4)에서   는서로결합되어
있기때문에 3개의제어변수를독립적으로분할할수

없으며, 3차원공간내에서솔루션탐색을수행해야한
다. 우선 Parecon 알고리즘의검색 공간을 3차원에서
2차원으로줄이기위해  가주어졌을때 closed

form으로표현되는최적의처리 fps  를도출한다.

식 (9)는  가 주어질 때 다음과 같이 표현된다.

max  (10)





  ≤md 
  ≤mdis

gmdt
C  bt∊⋯at

이때 최적의 는 다음과 같이 구할 수 있다.

  min⌊
 mdisdt wsmmdis

gmdt 
⌋ (11)

Parecon은 각 파티션 포인트 와 각 크기 조절
팩터 에 대한 반복을 기반으로 다음과 같이  를 결정한다.

   결정 알고리즘
Input: 
Output:   ,

(Initialization)

1: ←∞
(Iteration)

2: for ∊ and∈ do

3: Find   as a closed form eq. (11)

4: Update  minIBS 
5: if   IBS  then

6: Update      
7: end if

8: end for

3.4 알고리즘 성능
본연구에서제안한알고리즘 Parecon은시간평균

유틸리티에 대해 제약사항을 만족하면서 다음과 같은

성능을 보인다.

≥P VB (12)

여기서P 는 (P3)을풀어얻을수있는유틸리티의

최대값이다. 이때 B는상수이며, 가중치 V를증가시킬
수록 최적의 유틸리티에 더욱 근접할 수 있다.

Ⅳ. 시뮬레이션 기반 평가

4.1 시뮬레이션 환경
본시뮬레이션에서는모바일기기의사용자가이미

지분류비전애플리케이션을사용하는환경을가정한
다. 딥러닝 모델은 Pytorch를 기반으로 사전 훈련된

EffcientNetV2-S[16]이고, 모델을 9개의레이어 그룹으
로나눈다. 입력되는프레임의수는 30~60개범위에서
타임슬롯마다무작위로생성되며, 모바일단말의 GPU

클럭주파수는 NVIDIA Jetson NX Xavier 보드를기

준으로 956MHz로설정하고, MEC 서버의 GPU 주파
수는 RTX4090의스펙으로설정한다. 업링크네트워크

로보낼수있는데이터의양은 6.68Mbps~66.76Mbps

범위에서타임슬롯마다변동하며, 각타임슬롯의간격
은 1초, 전체타임슬롯수는 1500으로설정한다. 가중치

파라미터 V는세가지 QoE 지표사이에좋은균형을
갖는 지점을 실험적으로 찾았으며 20으로 설정한다.

4.2 시뮬레이션 결과
그림 3은 Parecon의 top-1 정확도, 처리 fps 및단대

단지연시간을나타낸다. 즉, top-1 정확도의요구사항th를변화시켜가며얻어지는처리 fps (processed fps)

와단대단지연시간(E2E latency)의변화를측정한것
이다. 요구정확도가 작아질수록알고리즘은 fps를높

이는데더집중하며, 자연스럽게 fps는높아지고정확

그림 3. 요구 정확도 값에 따른 처리 fps, 단대단 지연 시
간, top-1 정확도.
Fig. 3. Processed FPS, E2E latency, and top-1 accuracy
based on the required accuracy value.
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도는낮아진다. 또한, 대부분의상황에서처리 fps가높
아지면단대단지연시간은감소한다. 반대로요구정확
도가높아질수록알고리즘은 fps가조금줄어들더라도

정확도를높이는데집중하며, 자연스럽게처리 fps는
낮아지고 단대단 지연 시간은 증가한다.

그림 4는단대단지연요구사항 th를 0.08초로, 정

확도요구사항 th을 0.78로설정할때, 기존알고리즘

과의 QoE 비교결과를보여준다. Neurosurgeon은파
이프라인 없이 지연 시간만을 최소화하고[9], DADS는
파이프라인환경에서상황에따라처리 fps 또는지연
시간중하나만을최적화한다[13]. CutEdge는파이프라
인환경에서모델파티셔닝을수행하여처리 fps와지
연 시간을 동시에 최적화하지만, 입력 프레임의 크기
는 별도로 조절하지 않는다[15]. 여기서 정밀한 비교를

위해비교알고리즘별입력프레임크기를 2개씩테스
트한다.

먼저 Neurosurgoen은파이프라인을사용하지않기
때문에추가적인지연오버헤드가없고, 지연시간최소
화에만집중하기때문에가장낮은지연시간을갖지만,

높은 처리 fps를 갖는 건 불가능하다. 다음으로

CutEdge는 204*204 프레임크기에서 Neurosurgoen보
다높은처리 fps를달성하는데, 이는파이프라인을활
용함과동시에처리 fps와지연시간을함게고려하기

때문이다. 하지만 CutEdge는시스템상태변화에따라
입력 프레임 크기를 동적으로 조절할 수 없기 때문에
Parecon보다낮은처리 fps와더높은지연시간을보인

다. 한편 DADS는 상황에 따라 처리 fps와 지연 시간
중하나의 QoE 지표만을고려하기때문에 CutEdge와
유사하지만 약간 낮은 성능을 보인다. 마지막으로,

Parecon은 DNN 모델 파티셔닝과 함께 입력 프레임
크기를 유연하게 조정함으로써 요구 사항을 충족하면
서도 가장 높은 처리 fps를 달성한다.

Ⅴ. 결 론

모바일비전애플리케이션사용자의경험품질은애
플리케이션의정확도, 하나의프레임의처리시간을나
타내는단대단지연시간, 처리속도를나타내는처리

fps에 큰 영향을 받는다. 본 연구에서는 모바일 비전
애플리케이션사용자경험품질향상을위한딥러닝모
델파티셔닝기반제어알고리즘을제안한다. 이는모델

파티션포인트, 처리할프레임의수, 입력프레임의크
기를 제어하며, 최대 단대단 지연 시간 및 최소 top-1

정확도를보장하며 fps 유틸리티를증가시킨다. 시뮬레

이션을통해제안하는알고리즘이요구된정확도에따
라서처리 fps, 정확도및단대단지연시간이달라진다
는것을확인했다. 또한, 기존에제안되었던딥러닝모

델파티셔닝알고리즘과비교하여사용자경험품질개
선에 높은 효과가 있음을 검증하였다.
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