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ABSTRACT

With the advancement of mobile device and network performance, the industry for mobile vision applications,
such as image classification and object detection, is rapidly growing. When designing mobile vision applications,
employing mobile edge computing (MEC) based on deep learning model partitioning can significantly improve the
quality of user experience (QoE). Research on deep learning model partitioning has advanced in various directions
over time, but until now, there has been no study that simultaneously partitionizes deep learning models by layers
and adjusts the input frame size. Our proposed algorithm, Parecon, is based on Lyapunov optimization and dynamically
adjusts 1) the number of frames to be processed, 2) model partition points, and 3) input frame size at each time
slot. The proposed algorithm simultaneously optimizes processed fps, E2E latency, and top-1 accuracy. Through
simulations, we confirmed that Parecon achieves a significant improvement in fps compared to existing algorithms

while maintaining simular E2E latency and top-1 accuracy.
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