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다중 빔 저궤도 위성에서 다중 에이전트 심층 강화
학습을 활용한 핸드오버 최소화 기법
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Handover Minimization Scheme Using Multi-Agent Deep
Reinforcement Learning in Multi-Beam Low Earth Orbit Satellites
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요 약

본 논문에서는 중앙 집중 학습 및 분산 실행(CTDE, Centralized Training Decentralized Execution) 방식의 다

중 에이전트 심층 강화 학습(MADRL, Multi-Agent Deep Reinforcement Learning) 알고리즘인 Multi-Agent

Proximal Policy Optimization,(MAPPO) 기반 다중 빔 저궤도 위성 핸드오버 전략을 제안한다. 제안된 방법은 빔

간 및 위성 간 핸드오버 발생 시의 비용 차이, 사용자 서비스 품질 제약 조건, 그리고 부하 균형을 고려하여 핸드

오버 횟수를 최소화하고 처리율을 최대화하는 것을 목표로 한다. 각 사용자는 국소 정보(커버리지 내 부하 수 및

채널 정보)를 바탕으로 독립적으로 핸드오버를 결정하며, 이는 복잡하고 동적으로 변하는 다중 빔 저궤도 위성 환

경에 즉각적인 대응을 가능하게 한다. 시뮬레이션 결과, 제안된 알고리즘은 기존 핸드오버 알고리즘에 비해 핸드

오버 횟수를 39.1%에서 75.53%까지 감소시키고, 처리율을 14.6%에서 157.7%까지 향상시켰음을 보임으로써, 제안

알고리즘의 우수한 성능을 입증하였다.

키워드 : 저궤도 위성, 핸드오버 전략, 다중 빔, 다중 에이전트 심층 강화학습
Key Words : Low earth orbit satellite, handover strategy, multi-beam, multi-agent deep reinforcement

learning

ABSTRACT

In this paper, we propose a Multi-Agent Proximal Policy Optimization (MAPPO)-based handover strategy for

multi-beam Low Earth Orbit (LEO) satellite networks, employing the Centralized Training and Decentralized

Execution (CTDE) approach of Multi-Agent Deep Reinforcement Learning (MADRL). The proposed strategy

aims to minimize the number of handovers and maximize throughput by considering the cost differences

between inter-beam and inter-satellite handovers, user quality of service (QoS) constraints, and load balancing.

Each user independently makes handover decisions based on local information (e.g., load and channel conditions
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Ⅰ. 서 론

최근저궤도위성네트워크는전세계적인커버리지
(Coverage)와끊김없는연결을제공하는역할로많은

관심을 받고 있다[1,2]. 저궤도 위성은 낮은 전파 지연
시간과 낮은 에너지 소비와 같은 여러 이점을 제공할
수있지만, 높은공전속도는지상사용자가서비스받

는동안빈번한핸드오버를불가피하게발생한다[3]. 특
히, 다중빔저궤도위성환경에서는사용자에게여러
빔이 빠르게 지나감에 따라 매우 빈번한 빔 간 또는

위성간핸드오버가발생한다[4]. 따라서, 빔간또는위
성간핸드오버발생비용은서로다르므로, 핸드오버
빈도뿐만아니라그비용을최적화하는것이중요하다
[5]. 핸드오버 발생 횟수의 증가는 네트워크 오버헤드
(Overhead)가증가시켜서비스품질이 저하되는문제
를야기할수있다. 따라서, 이러한비용을최소화하는

다중 빔 저궤도 위성을 위한 핸드오버 전략의 설계가
필요하다.

최근, 저궤도위성네트워크에대해, 다양한기준과

제약 조건을 가진 핸드오버 기법들이 제안되었다[6-8].

먼저, 네트워크흐름그래프(Network-Flows Graph) 기
반의핸드오버전략이저궤도위성네트워크를위해제

안되었다[6]. 여기서, 위성과 사용자 단말 간의 매칭은
제한된용량과최대흐름조건하에서그래프의비용과
흐름의곱을최소화함으로써결정되었다. Wu 등은저

궤도 위성 핸드오버를 위한 이분 그래프(Bipartite

Graph) 프레임워크와잠재적게임(Potential Game) 이
론 기반 핸드오버 알고리즘을 제안하여, 저궤도 위성

네트워크에서모바일단말기의이득을극대화하였다[7].

대규모사용자단말을위한그룹핸드오버전략이저궤
도위성네트워크에서제안되었다[8]. 그러나, 제안된핸

드오버 전략[6]-[8]들은 중앙화된(Centralized) 방식으로
중앙제어장치와글로벌(Global) 정보를필요로한다.

이는, 고밀도저궤도위성네트워크에서더욱큰신호

오버헤드(Overhead)를 초래한다.

이와같은중앙집중방식의한계를완화하고자, 저
궤도위성네트워크에서분산화(Distributed)된핸드오

버방식이제안되었다[9,10]. 다중에이전트(Agent) 강화

학습기반저궤도위성핸드오버전략은각위성의부하
(Load) 제약조건을만족시키면서평균핸드오버횟수

를최소화하는방식으로제안되었다[9]. 연속심층 Q-학
습(Successive Deep Q-Learning) 알고리즘 기반으로
한분산형저궤도위성핸드오버방식이제안되었는데
[10], 이는각사용자가핸드오버가발생할때, 핸드오버
지연, 실패, 서비스품질및위성간트래픽균형을고려
하여 지역 정보에 기반한 핸드오버 결정을 수행할 수

있도록 한다.

앞서 제안된 중앙화 또는 분산화된 위성 핸드오버
전략[6-10]들은위성핸드오버만고려하였으며, 빔간핸

드오버는고려하지않았다. 그러나실질적이고정교한
저궤도위성 네트워크에서의 핸드오버 설계를 위해서
는위성간또는빔간의핸드오버비용차이를고려해

야 한다.

최근, 위성간또는빔간의핸드오버를고려한연구
에대한관심이증가하고있으나, 현재연구태동단계

에머물러있다. 다층(Multi-Layer) 저궤도위성시스템
에서중앙핸드오버관리자가예측된채널상태와위성
위치정보를활용하여핸드오버시점을결정하는방식

을제시하였으나[5], 통신거리가긴위성통신환경에서
는글로벌정보를수집하는중앙관리자를통한핸드오
버기법이급변하는위성환경에실시간으로대응하기

어렵다는중대한한계를내포하고있다. 또한, 해당연
구는빔간과위성간핸드오버기법을통합적으로다루
지 않고 별도로 제시하였다. 반면, 위성 간 및 빔 간

핸드오버를 동시에 고려하는 핸드오버 기법이 제안되
었으며[11], 해당방식은분산화및다중목적최적화기
법을활용하여처리율, 핸드오버비용, 부하균형을각

각의 최적화 목표로 설정하였다. 그러나 해당 방식은
각목표에대해개별적인 Q-네트워크를구축해야하고,

각사용자가세개의 Q-네트워크를유지하고조절해야

하는등연산복잡성이크게증가하고최적화성능면에
서한계가있다. 또한, 다중빔환경의채널특성을정밀
하게 반영되지 않았다.

따라서, 본논문에서는매우복잡하고역동적인다중
빔저궤도위성네트워크에서발생하는핸드오버문제
를효과적으로해결하기위해, 연산복잡성을최소화하

within the coverage area), allowing for prompt immediately adaptation to the dynamic and complex

environment of multi-beam LEO satellite networks. Simulation results indicate that the proposed algorithm

reduces the number of handovers by 39.1% to 75.53% and improves throughput by 14.6% to 157.7%

compared to benchmark handover algorithms, thereby objectively demonstrating the superior performance of the

proposed approach.
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면서도 탁월한 성능과 실시간 적응 능력을 갖춘 중앙
집중학습및분산실행 (CTDE, Centralized Training
Decentralized Execution) 알고리즘인 MAPPO

(Multi-Agent Proximal Policy Optimization) 기반 핸
드오버기법을제안한다. 본알고리즘은학습단계에서
중앙집중식으로전역정보를활용하여안정적인정책

업데이트를구현하고, 중앙비평가와클리핑기법을활
용하여환경의비정상(Non-Stationary) 문제에효과적
으로대응한다. 또한, 실행 단계에서는 분산 방식으로

작동하여 신속한 처리 및 확장성을 달성한다. 이러한
접근은기존중앙화방식이제공하는높은최적화성능
과분산방식의실시간적응능력을동시에확보함으로

써, 기존방법들이가진한계를극복하는데기여한다.

본 연구의 주요 기여도는 다음과 같다.

•제안된핸드오버알고리즘은각사용자가독립적으

로지역정보를활용하여즉각적으로핸드오버결정
한다. 이때, 우리는빔간또는위성간핸드오버비
용차이, 사용자서비스품질제약조건, 그리고부하

균형을고려하면서핸드오버횟수를최소화하고, 동
시에 처리율(Throughput)을 최대화하는 다중 목적
최적화 문제를 공식화한다.

•우리는이최적화문제를다중빔안테나이득, 채널
페이딩(Fading) 등다중빔저궤도위성의통신특성
을 고려한 MAPPO 최적화 문제로 변환한다.

•시뮬레이션 결과, 제안된 알고리즘은 분산 학습 및
분산 실행(DTDE, Decentralized Training
Decentralized Execution) 방식의 알고리즘인

Multi-agent Deep Q-network (MADQN)과기존핸
드오버 알고리즘에 비해 가장 적은 핸드오버 횟수
와가장높은처리율을보이며 우수한성능을입증

하였다.

Ⅱ. 시스템 모델 및 문제 정의

2.1 시스템 모델
우리는 다중 빔 저궤도 위성 네트워크에서 연속된

개의시간슬롯동안의핸드오버의사결정문제를고
려하며, 여기서 총 개의 저궤도 위성이 개의 다중
빔을가지고동일한궤도주기로미리구성된궤도면을

따라계속해서궤도운동을하며, 유한한관심지역 

내에균일하게분포된 K명의지상사용자를서비스한
다. 저궤도위성의빔이충분히넓은커버리지영역을
가지고있으므로, 각시간슬롯동안각유저는적어도

하나의 빔 커버리지 내에 있다고 가정한다. 그림 1은
고려된 시나리오를 나타낸다. 사용자의 집합은

 로 표기한다. 위성의 집합은
  로 각 위성의 빔 집합은
  로 정의한다. 편의를 위해 우리는

네트워크내모든빔에관한새로운집합인    × 

을 정의하며, 위성 의 번째 빔을 나타내는 이차원
벡터는   ∊  로표기한다. 각위성빔의커버
리지영역은원으로가정하며, 각빔의중심은커버리지

영역의 중심에 위치한다.

시간 슬롯(Time Slot)의 인덱스 집합을
  로 나타낸다. 각 시간 슬롯마다 채널은
준정적페이딩(Quasi-statci Fading) 겪지만, 시간슬롯
이변경될때마다달라진다. 각빔의시스템대역폭은
이다. 각사용자는 GPS(Global Position System)를

사용해 자신의 위치를 파악하고, 저궤도 위성의 예측

가능한움직임덕분에사용자는서비스하는위성의빔
을인식하게된다[12]. 저궤도위성의높은이동성때문
에 각 사용자가 사용할 수 있는 위성의 빔이 각 시간

슬롯마다 동적으로 변한다. 따라서 사용자는 매 시간
슬롯마다 어떤 빔과 통신할지 결정해야 한다.

시간슬롯 에서 각위성의 빔   와사용자

∊  간의 커버리지 인디케이터(Indicator)는 


로나타내며, 시간슬롯 에서사용자 가빔  커버리
지내에있으면 1, 그렇지않으면 0으로정의된다. 따라

서, 시간 슬롯 t에서 사용자 를 커버하는 위성의 빔

집합은 
 ≡

    ∊  로 나타낸다.

시간슬롯 에서사용자 와위성의빔 간의연결

은인디게이터변수 
 로나타내며, 이는사용자 가

위성의빔 에연결된경우 1로정의되며, 그렇지않으

면 0으로정의된다. 시간슬롯 에서각위성의빔 의

부하는 
  

  




 로표현된다. 사용자 는자신을커

버하는위성빔(∀ ∊ 
 )에대한부하를지역정보로

그림 1. 시스템 모델
Fig. 1. System model
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얻을 수 있다. 시간 슬롯 에서 사용자 와 모든 빔

간의연결을 xk
t  

 
 로나타낸다. 사용자

는각시간슬롯마다하나의빔에만연결될수있으며,

핸드오버는 
 ≠

 일때발생한다. 따라서시간슬

롯 에서사용자 의핸드오버비용은다음과같이정
의된다.


  




 ≠

 and E 위성간핸드오버


 ≠

 and E 빔간핸드오버


(1)

여기서, E E는

E  ≠     ∊ 

E    and 

≠    ∊ 

이고,  는각각시간슬롯 t에서사용자 와

연결된 위성과 대응하는 빔을 나타낸다.

핸드오버는위성간핸드오버와빔간핸드오버두
가지로구분되며, 위성간핸드오버는다른위성의빔으
로전환되는경우를의미한다. 특히, 두핸드오버방식

에는발생비용에차이가있다. 빔간핸드오버인경우
같은위성내에서이뤄지기때문에리소스를재할당이
상대적으로수월하다. 그러나위성간핸드오버인경우

타겟(Target) 위성에게핸드오버요청을보내고핸드오
버승인을받아야하는과정이추가된다. 따라서일반적
으로위성간핸드오버가더높은신호비용(Signalling

Cost)과신호지연(Signalling Delay)[5]로인해더높은

핸드오버 비용( ≪   )을 발생시킨다.

시간슬롯 에서사용자 와위성빔 간의안테나
이득을포함한채널이득은다음과같이나타낸다[10,13].


 





 





(2)

여기서 ,은각위성의빔송신, 사용자수신안테
나 이득이며, 는 쉐도우 라이시안 페이딩
(Shadowed-Rician-fading) 나타내며, 는 사용자와

빔사이의거리이며, 는파장이다. 이때 와 은
위성과사용자의안테나방사패턴에의해결정된다는

점을유의해야한다. 구체적으로 ITU-R S.1528[14]를참

조하면 위성의 안테나 방사 패턴은 다음과 같다.












max


max
 



 ≦ 

   ≦ 

max
  log



   ≦ 
  



(3)

여기서 (, 도단위)는오프축각도(Off-Axis Angle)

이며 는 3dB 빔폭 의 절반이다. max
 는 송신

안테나의 최대 이득을 나타내며,

max
  log






 



으로 계산한다.

  × 
max

  에서 는 주빔(Main
Beam)과 피크(Peak) 이득 아래의 내부 측엽 마스크
(Near-In Side-Lobe Mask) 교차점을 나타내며,

   는 외부 측엽(Far-Out Side-Lobe) 레벨

(Level)이고,   다.

ITU-R S.465-6[15]을 참조하면 사용자 터미털
(Termianl)의 안테나 방사 패턴은 다음과 같다.













max


log
 ≦ min

min   ≦ 

   

 (4)

여기서 min  max이고,

max
  log






 



는수신안테나의최대이득

이다. 이때 는사용자안테나개구면(Aperture)의직
경이다.

빔 의송신전력은 로나타내며, 문제의복잡성

을줄이고자위성의총전력 가위성의빔들에게

균등하게 분배된다고 가정한다(즉,   ). 간

섭은부하수에따라대역폭 을공유하여사용함에

따라 간섭은 존재하지 않음을 가정한다. 따라서 시간

슬롯 에서위성빔 에의해서비스되는사용자 와의
신호대잡음비율(SNR, Signal-to-Noise ratio)은다음

과 같이 표현된다.


 




 

 (5)

여기서   
는 잡음 전력을 나타내며,
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 는각각 볼츠만상수(Boltzmann’s Constant),

수신기잡음온도를나타낸다. 더나아가, 수식 (2)-(5)

을정리하면, 시간슬롯 에서빔 에의해서비스되는

사용자 의 성취 가능한 처리율(Achievable
Throughput)은 다음과 같이 표현할 수 있다.


 





log

  (6)

이때우리는사용자의목표서비스품질을만족시키고

자, 사용자는각자최소처리율(
 ≧ 

)을만족한

다고 가정한다.

2.2 최적화 문제 정의
본논문에서는다중빔저궤도위성의효율적인핸드

오버관리를 위해, 시간 슬롯동안 위성 또는 빔간
핸드오버의비용차이, 부하균형, 그리고서비스품질
제약조건을고려하며핸드오버발생을최소화하고동
시에처리율을최대화하는것을목표로한다. 이에따라

최적화 문제를 정의하면 다음과 같다.

P  min
 

 
  




  




  

 ∊ 


 

  (7)

s t  
 ∊  ∀ ∊  (8)


 ∊ 


   ∀ ∊ K (9)


 ∊ 


 

 ≧ 
 ∀ ∊ K (10)

여기서 은처리율값을스케일링(Scaling)하는요소

이다. 제약사항 (8)과 (9)는각사용자가매시간슬롯마

다커버리지내에있는오직하나의빔과연결됨을의미
한다.

Ⅲ. 제안된 다중 빔 저궤도 위성 위한 다중
에이전트 심층 강화 학습 기반 핸드오버 전략

최적화 문제 (7)의 주요 목표는 사용자가 커버리지
내에있는빔들의부하나채널정보같은현재및지역
정보를기반으로장기간(Long-term)적인성능을 극대

화하는것이다. MADRL은복잡한무선통신환경에서
고차원상태공간및행동공간을가진다중의사결정

자(또는행동자, Actor)가도전적인문제를해결하기위
한탁월한접근법이다[16]. MADRL은동적으로변화는
환경에서 에이전트들이 자신의지역 정보를 기반으로

숨겨진패턴(Hidden Pattern)을학습할수있으므로문
제를 최적화할 수 있다. 따라서, 본 장에서는 최적화
문제 (7)를 MADRL 프레임워크(Framework)로 공식

화한다.

3.1 다중 에이전트 심층 강화학습 공식화
최적화문제 (7)를MADRL 기반으로해결하기위해

서는 최적화 문제를 분산된 부분 관측 마르코프 결정

과정(Dec-POMDP, Decentralized Partially

Observable Markov Decision Process)[17] 프레임워크
로공식화해야한다. 구체적으로 Dec-POMDP의에이

전트, 관측(Observation), 행동(Action) 그리고 보상
(Reward)를 정의 내리면 다음과 같다.

1) 에이전트: 각사용자  ∊ K가하나의에이전트
로써 다른 에이전트 및 환경과 상호작용한다.

2) 관측: 각시간슬롯 마다사용자는환경과상호작

용하면서관측된값을업데이트한다. 사용자 의관측

(상태)
은 다음과 같이 정의된다.


 〈

  
 

 〉 ∀ ∊ 
 (11)

여기서 
는특징 정보(Fingerprint)로, 사용자 의

이전시간슬롯에서의행동정보이다. 특징정보기반

MADRL은리플레이 버퍼를안정화를 통해비정상성
(Non-Stationary) 환경에서보다안정적인학습을가능

하게한다[18]. 이때관측은 × 로고정된크기
를갖는평탄화된행벡터이고, 커버리지내에없는빔의
정보는–1로설정한다. 채널과부하정보는위성의방
송을 통해 얻을 수 있다.

3) 행동: 시간슬롯 때사용자 의행동은커버리지

내 빔 중 하나를 선택하는 것이다. 즉, 
  

∀ ∊ 
이다.

4) 보상: 시간슬롯 때사용자 의보상 
는다음과

같다.


 















if 



  



if 
 ≠

 and 



 ≧ 



min  
  otherwise

(12)
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여기서 는사용자 가목표사용자서비스품질 


을만족시키지못한통신장애(Outage)에대한페널티

(핸드오버여부와무관하게적용됨)이다. 
는서비

스품질을만족하고핸드오버가일어났을때페널티(즉,

핸드오버 성공에 대한 페널티)이다. 는 처리율의

편차가크기때문에너무큰보상을방지하는특정고정

값이다.

3.2 제안된 Multi-Agent Proximal Policy 
Optimization 알고리즘

본절에서는앞서정의한 MADRL 프레임워크을활

용하여최적화할수있는 MAPPO 알고리즘을제안한
다. 그림 2는우리가제안하는 MAPPO의구조를나타
낸다. MAPPO는 CTDE 구조를따른다. 학습단계에서

는중앙비평가(Critic) 네트워크가모든에이전트의상
태, 행동, 보상정보를통합하여, 에이전트간의상호작
용을고려하여 학습을최적화(정책 업데이트)한다. 이

때우리가제안하는 MAPPO 구조는모든에이전트가

동일한 정책 을 공유하며, 각 에이전트(사용자)
는 자신이 얻을 수 있는 지역 정보(즉, 관측 정보)를

바탕으로독립적으로행동을결정한다. 학습이완료된
후, 각에이전트는중앙비평가없이학습된정책을바
탕으로독립적으로실행된다. 이와같은방식은 DTDE

에비해협력적인환경에서효율적이며, 복잡한환경에
서도 높은 성능을 발휘할 수 있다.

MAPPO의 핵심 개념은 행위자-비평가

(Actor-Critic) 구조와클리핑(Clipping) 기법이다. 행위
자-비평가구조는에이전트가상태(또는관측)의가치
를 학습하고 평가하는데, 이때 이점 함수

(Advantage Function) 
를활용한다. 이점함수는정

책을업데이트할때, 행동의상대적가치를평가하는데

사용되며, 상태 
에서취한행동 

가얼마나좋은지

를 계산한다.


    

 (13)

여기서  는상태 
에서얻은실제보상이다. 즉, 이점

함수는비평가가평가한상태가치와실제로얻은보상
간의차이를계산하여, 행위자가더나은행동을선택할

수 있도록 정책 업데이트를 유도한다.

클리핑 비율 는 다음과 같이 정의된다.




 



 


(14)

여기서 
 

는새로운정책에서상태 
에서행동


를선택한확률이고, 

 
는이전정책에서상

태 
에서행동 

을선택할확률이다. 이비율은새로

운 정책이 이전 정책과 얼마나 다른지를 나타낸다.

MAPPO는클리핑된정책비율을사용하여손실함수
를 다음과 같이 정의한다.



 min
  clip  

 
(15)

여기서 은클리핑파라미터(Parameter)로정책이지나
치게변하지않도록설정된범위다. 즉, 이손실함수는

정책업데이트시너무큰변화가일어나지않도록클리
핑하며, 학습과정에서정책의안정적인업데이트를보
장한다.

MAPPO는위에서언급한대로 CTDE 구조로동작
하기때문에, 복잡하고협력적인동적환경에대한적응
성이 뛰어나다. 또한, 안정적인 정책업데이트를 위한

그림 2. 제안된 MAPPO 구조
Fig. 2. Proposed architecture of MAPPO
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클리핑 기법과 이점 함수를 활용하여, 주어진 우리의
최적화 문제를 효과적으로 해결할 수 있다. 전반적인
MAPPO의 학습과정에서의 의사코드(Pseudocode)는

그림 3을 통해 기술했다.

Ⅳ. 시뮬레이션 결과 및 성능 분석

4.1 시뮬레이션 파라미터
우리는다중빔저궤도위성이정해진궤도를따라

움직이며, 반경 70km인원내부에균일하게분포된지

상사용자들과시간슬롯간격 1초로총 40 슬롯동안
통신하는시뮬레이션을진행하였다. 또한, 각위성은반
경약 100km의빔커버리지를통해서비스를제공하며,

매시간슬롯마다사용자가 1~5개의빔커버리지영역
내에위치하여시뮬레이션기간동안지속적으로통신
서비스를받는상황을고려하였다. 자세한시스템파라

미터는표 1에정리했다. 제안된 MAPPO의네트워크
및학습파라미터는표2에정리했다. 행위자네트워크
는주어진상태에서적절한행동을선택하는네트워크

로, 입력 크기는 관측 정보의 크기이고, 출력 크기는
행동공간의크기이다. 비평가네트워크는주어진상태
에대한가치를평가하는네트워크로, 입력크기는관측

정보의크기이고, 출력의크기는해당상태의가치이므

로 1이다. 보상과 관련된 값  ,  ,

 ,   ,   로 설정되었다.

파라미터 값

위성 수  3

각 위성의 빔 수  7

위성 고도 450 km

위성 공전 속도 7.6 km/s

빔의 전송 전력  
9.8 W

빔의 시스템 대역폭  200 MHz

최소 처리율 
 10 Mbps

사용자 수  100

사용자 안테나 개구면  0.4 m

잡음 온도  300 K

반송파 주파수 11.7 GHz(Ku-band)

표 1. 시스템 파라미터
Table 1. System parameters

행위자 네트워크

계층 입력 크기 출력 크기 활성화함수

입력 계층 × 256 ReLU

완전연결계층 256 256 ReLU

출력 계층 256
×

(행동)
-

비평가 네트워크

계층 입력 크기 출력 크기 활성화함수

입력 계층 × 256 ReLU

완전연결계층 256 256 ReLU

출력 계층 256
1(상태
가치)

-

학습 파라미터 값

훈련 에피소드,  4700 에피소드

리플레이 버퍼
사이즈

500 에피소드

학습률  0.0001

클리핑  0.15

배치 사이즈 128 에피소드

에폭 수  15

표 2. MAPPO 네트워크 및 학습 파라미터
Table 2. Parameters of MAPPO networks and training

본논문에서는제안된핸드오버방식(MAPPO)을다

음과 같은 3가지 알고리즘과 비교한다.

1) 무작위(Random) 핸드오버알고리즘[19]: 사용자가
매 시간 슬롯마다 커버리지 내에 있는 빔 중 하나를

무작위로 선택한다.

그림 3. 제안된 MAPPO 학습과정에서의 의사코드
Fig. 3. Proposed pseudocode of MAPPO
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2) 최대채널이득(MAX-CG) 핸드오버알고리즘[1]:

사용자가매시간슬롯마다커버리지내에있는빔중
채널 이득이 제일 큰 빔을 선택한다.

3) Multi-agent Deep Q-network (MADQN) 핸드오
버알고리즘[1]: DTDE 방식으로사용자는매시간슬롯
마다 MADQN 통해최적화된정책을따라빔을선택

한다.

4.2 복잡도 및 수렴 분석
제안된 MAPPO 학습과정에서의 복잡도를 표 2를

참고하여 분석하면 다음과 같다.

1) 행위자 네트워크:

× × × × ×  × 

2) 비평가 네트워크:

× × × ×  × 

따라서 MAPPO 학습과정에서의 총 복잡도는 다음과

같다.

× ×  × 

MAPPO는수렴성을보장하기위해클리핑기법, 이
점함수기반업데이트, 그리고중앙비평가과같은여

러요소들을활용한다. 그림 4는제안된알고리즘의훈
련 과정에서의 에피소드 보상 값의 변화를 보여준다.

이를통해, 제안된알고리즘은훈련에피소드가증가할

수록 에피소드 보상 값이 점진적으로 증가하고, 약

3000 에피소드 이후부터수렴하는것을 확인할수있
다. 이때, 제안된방식이 DTDE 방식인 MADQN에비

해수렴값이약  더좋은것을확인할수있다.
이는우리가제안한 CTDE 방식의 MAPPO 알고리즘
이 보다 효과적으로 최적화 문제를 해결한 결과이다.

4.3 성능 비교
표 3은핸드오버알고리즘에따른성능비교표이다.

각 요소는 총 40 슬롯의 에피소드 중 첫 번째 슬롯을
제외한 39 슬롯동안의성능을측정한값이다. QoS’는
최소 처리율을 만족시키지 못한 횟수를 나타내며, 총

핸드오버, HO는 빔 간 핸드오버, BHO 또는 위성 간
핸드오버, SHO 발생횟수를합친값이다. Ack는서비
스품질을만족시키면서핸드오버가발생하지않은횟

수를의미한다. 결과적으로, 제안된알고리즘은다른알

고리즘대비약  적은핸드오버를발
생시켜 성능이 우수함을 확인할 수 있다.

그림 5는에피소드동안의사용자의평균처리율을
나타낸다. 해당결과를통해, 우리가제안한방식이평
균적으로가장우수한처리율을보인다는것을확인할

수있다. 표 3과그림 5의결과를종합해보면, 제안된
알고리즘은비교알고리즘에비해가장적은핸드오버

그림 4. 학습 과정에서의 에피소드 보상
Fig. 4. An illustration of episode reward during training

기법 QoS’ Ack BHO SHO HO
Random 12.81 6.28 3.89 16.02 19.91
MAX-CG 0.47 22.44 0.14 15.95 16.09
MADQN 1.82 29.18 0.65 7.35 8.00
Proposed 1.23 32.9 1.24 3.63 4.87

표 3. 알고리즘에 따른 성능 비교표
Table 3. Performance comparison table by algorithm

그림 5. 에피소드 동안의 사용자 평균 처리율
Fig. 5. Average throughput of users during episode
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횟수와가장높은평균처리율을 보였으며, 이는최적
화 문제 (7)를 매우 효과적으로 해결한 결과라고 할
수 있다.

Ⅴ. 결 론

본논문에서는 CTDE 방식의 MADRL 알고리즘인

MAPPO 기반 다중 빔 저궤도 위성 핸드오버 전략을
제안하였다. 제안된방식은저궤도위성다중빔채널
특성을반영하며, 빔간및위성간핸드오버비용차이,

사용자서비스품질제약조건, 그리고부하균형을고
려하면서, 핸드오버횟수최소화하고처리율최대화한
다. 제안된 알고리즘은 각 사용자가 독립적으로 지역

정보(커버리지 내 부하 수 및 채널 정보)를 바탕으로
핸드오버 결정을 하며 이는 복잡하고 동적인 다중 빔
저궤도위성에즉각적으로대응할수있다. 시뮬레이션

결과, 제안된알고리즘은비교알고리즘대비가장적은
핸드오버횟수와가장높은처리율을보이며우수한성
능을 보였다.
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