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Ⅰ. Introduction

Text-to-SQL is a technology that converts

sentences written in natural language into SQL queries

that databases can understand. It bridges the gap

between users and complex databases, showing high

potential in various fields such as business intelligence

(BI), data analytics, and chatbot systems. In particular,

it simplifies the user-database interaction by retrieving

real-time data from the database, reducing the time

to make business decisions and improving customer

service[3].

Large Language Models (LLMs) have been a hot

topic of research in the text-to-SQL space in recent

years. By leveraging the language processing power

of LLMs, it has become possible to generate

sophisticated SQL by better understanding natural

language and mapping it to schema information.

However, LLM-based text-to-SQL has some

fundamental limitations. The main limitation is the

inability to use online LLMs for security reasons.

Text-to-SQL relies on the internal database schema

information of a company or organization, which is

sensitive information that should not be leaked to the

outside world. In addition, LLM is much more

expensive per token than sLLM, which is the main

reason for the high cost of LLM-based Text-to-SQL

using the Few-Shot Learning method. Finally,

domain-specific output is difficult to verify in

traditional LLM-based Text-to-SQL. Additional

training is required to produce domain-specific results,

and LLM requires more expensive and

time-consuming training than sLLM.

Previous LLM-based text-to-SQL research has

focused on improving the performance of text-to-SQL

itself. However, there is a lack of research on security

issues, high cost, and difficulty in domain-specific

services. In this paper, we propose a lightweight
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ABSTRACT

This study proposes a lightweight Text-to-SQL implementation based on sLLM (smaller Large Language

Model) to solve the high cost and security issues of existing LLM (Large Language Model) based

Text-to-SQL models. To this end, we implemented a Text-to-SQL model using DAIL-SQL[1] and Llama3-8B

and evaluated its performance using Spider dataset[2]. In this study, we secure the shortcomings of the existing

Few-shot Learning method and propose improvement measures such as fine-tuning, knowledge distillation, and

selection of similar queries through RAG to improve the performance of sLLM-based Text-to-SQL. By

resolving the security vulnerabilities of existing LLM-based Text-to-SQL and presenting an efficient way to

implement sLLM-based Text-to-SQL, we expect to expand the utilization of Text-to-SQL in various industries.
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Text-to-SQL model implementation based on sLLM

(smaller Large Language Model). To solve the

existing problems of the existing LLM-based

Text-to-SQL, we designed a sLLM-based Text-to-SQL

model. We prove that sLLM is a more suitable

language model for Text-to-SQL than LLM, and we

also propose specific measures to improve the

performance of sLLM-based Text-to-SQL. Through

this research, we expect to be able to design a

Text-to-SQL model that is suitable for companies and

institutions that are sensitive to information leakage

and have specialized domains such as national defense

and healthcare.

Ⅱ. Related Work

2.1 sLLM

2.1.1 Definition of sLLM

Traditional large language models (LLMs) are

highly performant as they contain hundreds of billions

of parameters, but they also require vast computing

resources and are expensive to learn and infer. The

small Large Language Model (sLLM) has emerged

to overcome the limitations of LLMs. An sLLM is

a small language model with about 1 billion

parameters, which maintains the performance of

LLMs while increasing efficiency in terms of

computing resources and costs.

2.1.2 Background of sLLM

The sLLM emerged to address the shortcomings

of traditional LLMs. LLMs provide high performance,

but due to their size, they require a lot of resources

and time during the learning and inference process.

To solve this problem, sLLM is a way to reduce the

size of the model and still operate efficiently. It is

increasingly recognized that not only the size of the

model, but also the quality of the data and specialized

training are important factors in improving

performance. Instead of simply throwing in large

amounts of data, we show that high performance can

be achieved with small models using properly

processed data and optimized learning strategies.

2.1.3 Recent Technological Trends in sLLM

Recently, sLLM-related techniques have evolved

into a variety of methodologies to achieve model

reduction while maintaining performance. First,

knowledge distillation techniques have been actively

studied to efficiently compress knowledge from large

models into small models[4-8]. Second, model

lightweighting techniques are also widely used to

reduce computing resources by removing unnecessary

parameters or optimizing the model structure. In

addition, methods such as fine-tuning have been

proposed to efficiently train small models tailored to

specific domains[9-11].

2.2 Text-to-SQL

2.2.1 Definition of sLLM

In real time, important information is stored in

databases. Text-to-SQL is used as a technology to

effectively retrieve this important information in real

time. Text-to-SQL is a technology that learns the

schema structure of a database and converts queries

written in natural language into SQL queries that the

database can understand. This overcomes the

limitation that LLM (Large Language Model)

provides results based only on learned information,

and allows you to directly retrieve the latest

information stored in the database.

2.2.2 Development Process of Text-to-SQL

The early days of Text-to-SQL research were

dominated by rule-based approaches. The first

rule-based Text-to-SQL can be considered the CHILL

system [12] by Zelle and Mooney. It used Inductive

Logic Programming (ILP) to implement rule-based

Text-to-SQL, and later evolved to generate

domain-specific rules [13] to translate natural language

questions into SQL. These early efforts focused on

generating SQL queries using explicit rules between

the database schema and natural language questions.

In the early 2010s, to overcome the limitations of

rule-based approaches, statistical approaches began to

replace them. In the early 2010s, a statistical approach

was proposed[14] to automatically learn the mapping

between database schema and natural language using
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data-driven models, which can be described as an

important step forward as a generalized methodology

that can be applied to a wide variety of database

structures without being specific to a particular

domain.

In the late 2010s, advances in deep learning-based

natural language processing led to the use of deep

learning-based models in text-to-SQL[15-18], with

Seq2Seq models gaining significant attention in

text-to-SQL research. A representative model that

utilizes Seq2Seq models is the Seq2SQL model[19].

This model proposed a method for generating SQL

queries from natural language using reinforcement

learning, and showed excellent performance on the

WikiSQL dataset.

More recently, large language models (LLMs) and

transformer-based approaches have significantly

improved the performance of Text-to-SQL[20-23].

Models such as RAT-SQL[24] improve Text-to-SQL

performance by explicitly modeling schema-query

relationships using transformers[25].

2.2.3 LLM-based Text-to-SQL

Recently, the text-to-SQL space has also seen a

flurry of research based on Large Language Models

(LLMs). According to the Spider[2] leaderboard, four

out of the top five (as of April 12, 2024) are

Text-to-SQL models based on LLMs. LLM is widely

used in Text-to-SQL because it performs well in

accurately understanding and processing users' natural

language queries.

The basic sequence of Text-to-SQL is

systematically performed as shown in Fig. 1 First,

there is a step to relate the natural language (NL

Query) queried by the user to the schema structure

of the database. This step is called Schema Linking,

which matches the natural language query with the

schema information of the database to identify the

database elements that match the intent of the query.

The next step is to generate SQL based on this

schema structure. The SQL generation process reflects

the meaning of the natural language query and

generates a query that conforms to SQL syntax. The

complex natural language representation must be

properly mapped to the tables, columns, and

conditions in the database.

The generated SQL queries are not executed

immediately, but are evaluated. The main evaluation

factors are whether the query is grammatically correct

and produces logically correct results. If grammatical

errors or execution errors are found during the

evaluation process, the SQL is debugged and fixed [26].

2.2.4 Issues with LLM-based Text-to-SQL

LLM-based Text-to-SQL has two main problems.

The first is that the LLM is expensive to implement

and maintain. Figure. 2 compares the price of GPT-4o

and Llama3-8B APIs, you can see that GPT-4o costs

25 times more. From this cost perspective, sLLM is

much more economical than LLM.

Second, if schema information is compromised, the

database can be exposed to a number of serious

security threats[27]. First, SQL Injection attacks can

become more sophisticated. If the schema structure

is compromised, an attacker can determine the internal

structure of the database, including tables, columns,

Fig. 1. Text-to-SQL flowchart Fig. 2. GPT-4o, GPT-3.5-turbo, Llama3-8B API(input) cost
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and so on, which can be used to target specific data.

These attacks can enable illegal data manipulation,

such as viewing, modifying, or deleting data.

It also increases the risk of data theft. Attackers

can utilize schema information to identify the tables

where sensitive data is stored, and then target and

attempt to steal sensitive information. In particular,

such an attack can severely impact the credibility of

an organization/enterprise, with the potential for legal

and financial damage.

Finally, you may be vulnerable to a database denial

of service (DoS) attack. If schema information is

leaked, an attacker can design complex,

resource-intensive queries based on the structure of

the database to deplete the database's resources. This

can prevent the database server from functioning

properly and severely degrade the availability of your

application.

Schema information leakage is more than just a

security threat; it is a serious problem that threatens

the integrity, confidentiality, and availability of the

database. By changing the online-based LLM to an

offline-based sLLM that prevents schema leakage and

makes it inaccessible from the outside, you can

effectively solve the security problem.

Ⅲ. Experimental Setup

3.1 Dataset
For our experiments, we used the Spider dataset, a

leading benchmark dataset in the Text-to-SQL field.

Spider[2] was annotated by 11 Yale University students

to address the problem that existing datasets like

WikiSQL contain only simple SQL queries and single

tables. The dataset contains complex SQL queries with

10,181 questions and covers a wide range of SQL syntax,

including multiple tables, Having, Group By, Limit, and

Join. The SQL difficulty level is categorized into Easy,

Medium, Hard, and Extra Hard. We collected 200

databases covering 138 domains from various sources,

including university databases, DatabaseAnswers, and

WikiSQL, from which Yale students wrote 20-50

questions and SQL labels for each database.

3.2 Experimental Model
In this study, we organized the experimental model

as shown in Fig. 3, the experimental model was

configured as shown in Fig. Predicated SQL was

created through DAIL-SQL and Llama3-8B, and

actual SQL was executed through SQL Test Module

to evaluate the performance.

3.2.1 DAIL-SQL

As a text-to-SQL model, we use DAIL-SQL[1].

DAIL-SQL is a Text-to-SQL model proposed by

Dawei Gao, which is a Text-to-SQL model based on

Few-shot learning implemented with the DAIL

Selection method, which combines Masked Question

Similarity Selection (MQS) and Query Similarity

Selection (QRS). We chose DAIL-SQL as a

text-to-SQL-based model in this study because it has

a running accuracy of 86.6\% on the Spider dataset

and has shown high adaptability and performance for

various domains and complex SQL queries.

Masked Question Similarity Selection (MQS)

replaces table names, column names, values, etc. in

questions with mask tokens to minimize the negative

impact of cross-domain information. Their embedding

similarity is calculated using the k-Nearest Neighbor

(kNN) algorithm to increase applicability across

different domains. This allows us to effectively select

the right SQL samples for few-shot learning.

Query Similarity Selection (QRS) utilizes a prior

model to select examples similar to the target SQL

to generate initial SQL based on the target question

and the database. It uses the generated initial SQL

as an approximation and encodes it into a binary

discrete phrase vector based on keywords in the SQL.

Fig. 3. Lightweight Text-to-SQL Model Architecture with
DAIL-SQL and Llama3-8B
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The best examples are selected by considering their

similarity to the approximated SQL and the diversity

among the selected examples. In this way, DAIL-SQL

can effectively perform text-to-SQL conversion in

different domains and select the best SQL queries.

3.2.2 Llama3-8B

In this study, we used the Llama3-8B model

released by Meta AI in April 2024 as sLLM.

Llama3-8B is a model that realizes high performance

with fewer parameters by introducing Grouped Query

Attention (GQA) technology, which was previously

applied only to large-scale models in Llama2, to small

and medium-sized models. In particular, Llama3-8B

outperforms Llama2 70B, and also shows superior

results in terms of computational efficiency and

resource utilization. The study was conducted in May

2024, shortly after the release of Llama3-8B, and

these characteristics are consistent with the purpose

of this study, which requires a high-performance

model in a limited resource environment.

3.2.3 SQL Test Module

To measure the accuracy of Text-to-SQL, we used

the method proposed in their study [28]. This method

is a test suite-based evaluation method for evaluating

the semantic accuracy of Text-to-SQL models, and

since traditional string matching or single database

comparison methods can lead to errors, we created

a small test suite that runs queries across multiple

databases to evaluate accuracy. This method is more

reliable for semantic evaluation of complex queries

and can effectively reduce false negative and false

positive errors than traditional metrics.

Ⅳ. Experiment

4.1 Experimental Procedure

4.1.1 Selection of Examples for Few-shot

Learning

Masked Question Similarity Selection (MQS) and

Query Similarity Selection (QRS) techniques are used

to select examples that are appropriate for the

questions required for the experiment.In this course,

you will learn how to select appropriate examples for

Few-shot Learning to improve learning performance.

4.1.2 Querying the Llama3-8B Model

Generate predictive SQL queries by querying the

Llama3-8B model with real-world questions along

with examples selected for Few-shot Learning.

4.1.3 Evaluation of SQL Queries

Evaluate the generated predictive SQL query to

ensure that it works correctly.The SQL queries are

executed on the real database and the results match

the correct answer (Gold SQL). For example, if you

ask Llama3-8B the question “How many singers do

we have?” in the Spider dataset, Llama3-8B will

return SQL like “SELECT count(*) FROM singer”.

This is called Prediction SQL, and we will compare

Prediction SQL to Gold SQL.

4.2 Evaluation Metrics
The Spider dataset uses two evaluation metrics:

Exact Match Accuracy (EM) and Execution Accuracy

(EX). Each metric plays an important role in

measuring the performance of the model. First, Exact

Match Accuracy (EM) evaluates how well the

predicted SQL query (Prediction SQL) matches the

gold SQL (Gold SQL) character by character. This

metric focuses on determining if the predicted SQL

is structurally and syntactically identical to the correct

answer. EM will only have a high value if all elements

of the SQL query match exactly - keywords, tables,

columns, conditional expressions, etc. This is useful

for evaluating how accurately the model's predicted

query embodies the correct query, and is especially

important for verifying that it has accurately learned

the complex syntactic structure of SQL. EM is the

percentage of correctly matched queries out of all

predictions, expressed as a percentage.

Execution Accuracy (EX), on the other hand, is a

metric that measures how well the results of a

predicted SQL query match the results of the correct
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SQL when it is executed on the actual database. This

metric focuses on evaluating the performance of the

model based on the execution results of the SQL

query. Because slightly different SQL syntax can

often lead to the same result, EX is useful for

determining whether the model actually performed the

correct database operations. For example, in a

SELECT query, there may be multiple ways to return

the same query result, and EX evaluates whether these

query results match the correct answer. EX is the

percentage of SQL executions that matched the

correct result, expressed as a percentage.

These two metrics complement each other. EM

evaluates how accurately the model generated the

same SQL syntax as the correct query, while EX

evaluates whether the syntax actually produces the

correct result. This allows you to measure both the

syntactic correctness and the practical validity of your

model. Because EM and EX have their own strengths

and weaknesses, using both metrics together provides

a more comprehensive assessment of a model's

performance.

4.3 Experimental Results
According to Table.1, which compares the

performance with the existing LLM-based

Text-to-SQL model, the DAIL-SQL +Llama3-8B

model has a performance of EX 69.2, which is 82.9\%

of the performance of the comparison model,

DAIL-SQL + GPT-4 model. This result proves that

the sLLM-based lightweight text-to-SQL design

approach can solve the problems of the existing

LLM-based text-to-SQL model and maintain high

performance. In particular, this result is meaningful

because it shows competitive performance despite

adopting a lightweight structure with sLLM.

4.4 Results Analysis
In Table 1, the DAIL-SQL + Llama3-8B model

performs 46.8 in Exact Match Accuracy (EM) and

69.2 in Execution Accuracy (EX). EM evaluates how

well a Predicated SQL query matches Gold SQL

character by character, and is a measure of the

structural correctness of SQL. The result of 46.8 on

EM may seem low, but this is because the nature of

SQL is such that there are many different syntaxes

that can produce the same result, and EM only

evaluates structural matching. On the other hand, EX

scored 69.2, which is about 82.9\% better than the

83.4 of EX for the comparison model, DAIL-SQL +

GPT-4. This shows that the lightweight sLLM model

can provide competitive performance while

maintaining high cost-effectiveness and security.

Also, as shown in Table 2, the accuracy of

DAIL-SQL + Llama3-8B model by SQL difficulty

tends to decrease gradually as the difficulty increases.

At the EASY level, both EX and EM recorded a high

accuracy of 85.1\%, but as the difficulty level

increased to MEDIUM, HARD, and EXTRA, the

performance dropped sharply to 68.2 for EX and 46.8

for EM. These results indicate that the model is

struggling to handle difficult SQL queries. This is

likely due to the fact that the general performance of

Llama3-8B is worse than that of LLM. We found that

Llama3-8B is less accurate on complex SQL

compared to LLM because it uses Few-shot Learning,

which is highly influenced by the general performance

of the model.

From the failure cases presented in Table 3, we

can see that the proposed model tends to fail in cases

of high SQL complexity, especially for JOIN

operations involving multiple tables. For example, the

Model EM EX

DAIL-SQL + Llama3-8B 46.8 69.2

DAIL-SQL + GPT-4[9 shot] 72.8 83.4

DIN-SQL + GPT-4 [29] 60 85.3

RESDSQL-3B + NatSQL[30] 72.0 79.9

Table 1. DAIL-SQL + Llama3-8B experimental results
and the accuracy of existing Text-to-SQL models

EASY MEDIUM HARD EXTRA ALL

EX 85.1 74.4 61.5 39.8 68.2

EM 85.1 46 33.3 14.5 46.8

Table 2. Results of DAIL-SQL + Llma3-8B by SQL
Difficulty Level



논문 / Approaches to Lightweight Text-to-SQL Implementation Based on sLLM

1189

SQL queries generated by the model on HARD and

EXTRA difficulty levels did not accurately capture

the relationships between tables compared to the

target SQL query, leading to incorrect results. This

shows that the model's performance degrades

significantly as the complexity of the SQL query

increases.

Ⅴ. Conclusion and Implications

In this study, we propose an implementation of

sLLM-based text-to-SQL model to compensate for the

limitations of LLM, rather than focusing on

performance improvement of existing LLM-based

text-to-SQL research. As a result of the study, the

sLLM-based model showed stable results in terms of

performance compared to the existing LLM model,

and the possibility of significantly reducing the cost

of deployment and maintenance was confirmed. In

particular, sLLM is different from LLM in that it is

easy to deploy offline and can provide

domain-specific services. These features are expected

to be a major factor in selecting sLLM-based

text-to-SQL models over LLM-based text-to-SQL

models in companies and institutions with specialized

domains and network environments that are isolated

from the outside world, such as defense, healthcare,

and public institutions.

In this study, we found that sLLM-based

Text-to-SQL models still have limitations in handling

complex SQL queries. To overcome this, we propose

additional performance improvement measures as

follows. First, we introduce fine-tuning techniques

such as LoRA(Low-Rank Adaptation)[31] and

QLoRA(Quantized LoRA)[32] to enhance the

performance of sLLM. We expect these techniques

to be useful in improving both efficiency and accuracy

through domain-specific learning while maintaining

model size. In addition, we utilize Knowledge

Distillation techniques to transfer LLM's high SQL

generation performance to sLLM by using LLM as

a teacher model, which improves the ability to handle

complex SQL while maintaining lightweight. Finally,

by employing a vector database to retrieve schema

elements semantically aligned with natural language

queries and integrating them using the

Retrieval-Augmented Generation (RAG) [33]

framework, the system can better capture complex

schema structures and inter-table relationships. This

approach enhances query accuracy by enabling

context-aware identification and mapping of relevant

tables and attributes, while also improving efficiency

in large-scale relational databases through automated

schema retrieval.

In future work, we will focus on training sLLM

on additional datasets, such as BIRD[34], in addition

to the Spider dataset, using the Fine-Tuning technique

to precisely learn the relationships between database

tables and optimize the generation of complex SQL

queries. Fine-tuning is expected to further enhance the

performance of sLLM-based Text-to-SQL models and

Prediction Gold

EASY

SELECT
AVG(LifeExpectancy)

FROM country
WHERE Continent =
'Africa' AND Region

= 'Central'

SELECT
avg(LifeExpectancy)

FROM country
WHERE Region =

"Central Africa"

MEDIUM

SELECT
COUNT(DISTINCT
continent) FROM
countrylanguage

WHERE language =
'Chinese'

SELECT COUNT(
DISTINCT Continent)

FROM country AS
T1 JOIN

countrylanguage AS
T2 ON T1.Code =

T2.CountryCode
WHERE T2.Language

= "Chinese"

HARD

SELECT p.birth_date
FROM poker_player

p ORDER BY
p.earnings ASC

LIMIT 1

SELECT
T1.Birth_Date FROM
people AS T1 JOIN
poker_player AS T2
ON T1.People_ID =

T2.People_ID ORDER
BY T2.Earnings ASC

LIMIT 1

EXTRA

SELECT state FROM
VOTES GROUP BY

state ORDER BY
COUNT(*) DESC

LIMIT 1

SELECT T1.area_code
FROM

area_code_state AS
T1 JOIN votes AS
T2 ON T1.state =

T2.state GROUP BY
T1.area_code ORDER
BY count(*) DESC

LIMIT 1

Table 3. Failure Case of DAIL-SQL + Llma3-8B
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greatly expand their applicability in various domains.

Ultimately, the results of this research will enable

domain-specific optimized SQL query generation,

enabling efficient data processing in various

industries.
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