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ABSTRACT

This study proposes a lightweight Text-to-SQL implementation based on sLLM (smaller Large Language

Model) to solve the high cost and security issues of existing LLM (Large Language Model) based
Text-to-SQL models. To this end, we implemented a Text-to-SQL model using DAIL-SQL™ and Llama3-8B

and evaluated its performance using Spider dataset

. In this study, we secure the shortcomings of the existing

Few-shot Learning method and propose improvement measures such as fine-tuning, knowledge distillation, and

selection of similar queries through RAG to improve the performance of sLLM-based Text-to-SQL. By

resolving the security vulnerabilities of existing LLM-based Text-to-SQL and presenting an efficient way to

implement sLLM-based Text-to-SQL, we expect to expand the utilization of Text-to-SQL in various industries.
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I. Introduction

Text-to-SQL is a technology that converts
sentences written in natural language into SQL queries
that databases can understand. It bridges the gap
between users and complex databases, showing high
potential in various fields such as business intelligence
(BI), data analytics, and chatbot systems. In particular,
it simplifies the user-database interaction by retrieving
real-time data from the database, reducing the time
to make business decisions and improving customer
service'”.

Large Language Models (LLMs) have been a hot
topic of research in the text-to-SQL space in recent
years. By leveraging the language processing power
of LLMs, it has become possible to generate
sophisticated SQL by better understanding natural
language and mapping it to schema information.
However, LLM-based text-to-SQL has some

fundamental limitations. The main limitation is the
inability to use online LLMs for security reasons.
Text-to-SQL relies on the internal database schema
information of a company or organization, which is
sensitive information that should not be leaked to the
outside world. In addition, LLM is much more
expensive per token than sLLM, which is the main
reason for the high cost of LLM-based Text-to-SQL
using the Few-Shot Learning method. Finally,
domain-specific output is difficult to verify in
traditional LLM-based Text-to-SQL. Additional
training is required to produce domain-specific results,
and LLM requires more expensive and
time-consuming training than sLLM.

Previous LLM-based text-to-SQL research has
focused on improving the performance of text-to-SQL
itself. However, there is a lack of research on security
issues, high cost, and difficulty in domain-specific

services. In this paper, we propose a lightweight
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Text-to-SQL model implementation based on sLLM
(smaller Large Language Model). To solve the
existing problems of the existing LLM-based
Text-to-SQL, we designed a sLLM-based Text-to-SQL
model. We prove that sLLM is a more suitable
language model for Text-to-SQL than LLM, and we
also propose specific measures to improve the
performance of sLLM-based Text-to-SQL. Through
this research, we expect to be able to design a
Text-to-SQL model that is suitable for companies and
institutions that are sensitive to information leakage
and have specialized domains such as national defense
and healthcare.

II. Related Work

2.1 sLLM

2.1.1 Definition of sLLM

Traditional large language models (LLMs) are
highly performant as they contain hundreds of billions
of parameters, but they also require vast computing
resources and are expensive to learn and infer. The
small Large Language Model (sLLM) has emerged
to overcome the limitations of LLMs. An sLLM is
a small language model with about 1 billion
parameters, which maintains the performance of
LLMs while increasing efficiency in terms of

computing resources and costs.

2.1.2 Background of sLLM

The sLLM emerged to address the shortcomings
of traditional LLMs. LLMs provide high performance,
but due to their size, they require a lot of resources
and time during the learning and inference process.
To solve this problem, sLLM is a way to reduce the
size of the model and still operate efficiently. It is
increasingly recognized that not only the size of the
model, but also the quality of the data and specialized
training are important factors in improving
performance. Instead of simply throwing in large
amounts of data, we show that high performance can
be achieved with small models using properly

processed data and optimized learning strategies.
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2.1.3 Recent Technological Trends in sLLM

Recently, sLLM-related techniques have evolved
into a variety of methodologies to achieve model
reduction while maintaining performance. First,
knowledge distillation techniques have been actively
studied to efficiently compress knowledge from large

481 Second, model

models into small models
lightweighting techniques are also widely used to
reduce computing resources by removing unnecessary
parameters or optimizing the model structure. In
addition, methods such as fine-tuning have been
proposed to efficiently train small models tailored to

specific domains®'!,

2.2 Text-to-SQL

2.2.1 Definition of sLLM

In real time, important information is stored in
databases. Text-to-SQL is used as a technology to
effectively retrieve this important information in real
time. Text-to-SQL is a technology that learns the
schema structure of a database and converts queries
written in natural language into SQL queries that the
database can understand. This overcomes the
limitation that LLM (Large Language Model)
provides results based only on learned information,
and allows you to directly retrieve the latest

information stored in the database.

2.2.2 Development Process of Text-to-SQL

The early days of Text-to-SQL research were
dominated by rule-based approaches. The first
rule-based Text-to-SQL can be considered the CHILL
system "? by Zelle and Mooney. It used Inductive
Logic Programming (ILP) to implement rule-based
Text-to-SQL, and later evolved to generate
domain-specific rules " to translate natural language
questions into SQL. These early efforts focused on
generating SQL queries using explicit rules between
the database schema and natural language questions.

In the early 2010s, to overcome the limitations of
rule-based approaches, statistical approaches began to
replace them. In the early 2010s, a statistical approach
was proposed'” to automatically learn the mapping
between database schema and natural language using
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data-driven models, which can be described as an
important step forward as a generalized methodology
that can be applied to a wide variety of database
structures without being specific to a particular
domain.

In the late 2010s, advances in deep learning-based
natural language processing led to the use of deep
learning-based models in text-to-SQL!'®  with
Seq2Seq models gaining significant attention in
text-to-SQL research. A representative model that
utilizes Seq2Seq models is the Seq2SQL model!".
This model proposed a method for generating SQL
queries from natural language using reinforcement
learning, and showed excellent performance on the
WikiSQL dataset.

More recently, large language models (LLMs) and
transformer-based approaches have significantly
improved the performance of Text-to-SQLP*%],
Models such as RAT-SQLP4 improve Text-to-SQL
performance by explicitly modeling schema-query
relationships using transformers'®,

2.2.3 LLM-based Text-to-SQL

Recently, the text-to-SQL space has also seen a
flurry of research based on Large Language Models
(LLMs). According to the Spider™ leaderboard, four
out of the top five (as of April 12, 2024) are
Text-to-SQL models based on LLMs. LLM is widely
used in Text-to-SQL because it performs well in
accurately understanding and processing users’ natural
language queries.

The Dbasic sequence of Text-to-SQL is

systematically performed as shown in Fig. 1 First,

NL Query Schema Linking

Schema Information Schema Mapping

- - °
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Fig. 1. Text-to-SQL flowchart

there is a step to relate the natural language (NL
Query) queried by the user to the schema structure
of the database. This step is called Schema Linking,
which matches the natural language query with the
schema information of the database to identify the
database elements that match the intent of the query.

The next step is to generate SQL based on this
schema structure. The SQL generation process reflects
the meaning of the natural language query and
generates a query that conforms to SQL syntax. The
complex natural language representation must be
properly mapped to the tables, columns, and
conditions in the database.

The generated SQL queries are not executed
immediately, but are evaluated. The main evaluation
factors are whether the query is grammatically correct
and produces logically correct results. If grammatical
errors or execution errors are found during the
evaluation process, the SQL is debugged and fixed .

2.2.4 Issues with LLM-based Text-to-SQL

LLM-based Text-to-SQL has two main problems.
The first is that the LLM is expensive to implement
and maintain. Figure. 2 compares the price of GPT-40
and Llama3-8B APIs, you can see that GPT-4o costs
25 times more. From this cost perspective, SLLM is
much more economical than LLM.

Second, if schema information is compromised, the
database can be exposed to a number of serious
security threats™”. First, SQL Injection attacks can
become more sophisticated. If the schema structure
is compromised, an attacker can determine the internal

structure of the database, including tables, columns,
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and so on, which can be used to target specific data.
These attacks can enable illegal data manipulation,
such as viewing, modifying, or deleting data.

It also increases the risk of data theft. Attackers
can utilize schema information to identify the tables
where sensitive data is stored, and then target and
attempt to steal sensitive information. In particular,
such an attack can severely impact the credibility of
an organization/enterprise, with the potential for legal
and financial damage.

Finally, you may be vulnerable to a database denial
of service (DoS) attack. If schema information is
leaked, an attacker can design complex,
resource-intensive queries based on the structure of
the database to deplete the database’s resources. This
can prevent the database server from functioning
properly and severely degrade the availability of your
application.

Schema information leakage is more than just a
security threat; it is a serious problem that threatens
the integrity, confidentiality, and availability of the
database. By changing the online-based LLM to an
offline-based sLLM that prevents schema leakage and
makes it inaccessible from the outside, you can

effectively solve the security problem.
. Experimental Setup

3.1 Dataset
For our experiments, we used the Spider dataset, a
leading benchmark dataset in the Text-to-SQL field.

2 was annotated by 11 Yale University students

Spider
to address the problem that existing datasets like
WikiSQL contain only simple SQL queries and single
tables. The dataset contains complex SQL queries with
10,181 questions and covers a wide range of SQL syntax,
including multiple tables, Having, Group By, Limit, and
Join. The SQL difficulty level is categorized into Easy,
Medium, Hard, and Extra Hard. We collected 200
databases covering 138 domains from various sources,
including university databases, DatabaseAnswers, and
WikiSQL, from which Yale students wrote 20-50

questions and SQL labels for each database.
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3.2 Experimental Model

In this study, we organized the experimental model
as shown in Fig. 3, the experimental model was
configured as shown in Fig. Predicated SQL was
created through DAIL-SQL and Llama3-8B, and
actual SQL was executed through SQL Test Module

to evaluate the performance.

3.2.1 DAIL-SQL

As a text-to-SQL model, we use DAIL-SQL™.
DAIL-SQL is a Text-to-SQL model proposed by
Dawei Gao, which is a Text-to-SQL model based on
Few-shot learning implemented with the DAIL
Selection method, which combines Masked Question
Similarity Selection (MQS) and Query Similarity
Selection (QRS). We chose DAIL-SQL as a
text-to-SQL-based model in this study because it has
a running accuracy of 86.6\% on the Spider dataset
and has shown high adaptability and performance for
various domains and complex SQL queries.

Masked Question Similarity Selection (MQS)
replaces table names, column names, values, etc. in
questions with mask tokens to minimize the negative
impact of cross-domain information. Their embedding
similarity is calculated using the k-Nearest Neighbor
(kKNN) algorithm to increase applicability across
different domains. This allows us to effectively select
the right SQL samples for few-shot learning.

Query Similarity Selection (QRS) utilizes a prior
model to select examples similar to the target SQL
to generate initial SQL based on the target question
and the database. It uses the generated initial SQL
as an approximation and encodes it into a binary

discrete phrase vector based on keywords in the SQL.
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The best examples are selected by considering their
similarity to the approximated SQL and the diversity
among the selected examples. In this way, DAIL-SQL
can effectively perform text-to-SQL conversion in
different domains and select the best SQL queries.

3.2.2 Llama3-8B

In this study, we used the Llama3-8B model
released by Meta AI in April 2024 as sLLM.
Llama3-8B is a model that realizes high performance
with fewer parameters by introducing Grouped Query
Attention (GQA) technology, which was previously
applied only to large-scale models in Llama2, to small
and medium-sized models. In particular, Llama3-8B
outperforms Llama2 70B, and also shows superior
results in terms of computational efficiency and
resource utilization. The study was conducted in May
2024, shortly after the release of Llama3-8B, and
these characteristics are consistent with the purpose
of this study, which requires a high-performance

model in a limited resource environment.

3.2.3 SQL Test Module

To measure the accuracy of Text-to-SQL, we used
the method proposed in their study *®. This method
is a test suite-based evaluation method for evaluating
the semantic accuracy of Text-to-SQL models, and
since traditional string matching or single database
comparison methods can lead to errors, we created
a small test suite that runs queries across multiple
databases to evaluate accuracy. This method is more
reliable for semantic evaluation of complex queries
and can effectively reduce false negative and false

positive errors than traditional metrics.
IV. Experiment

4.1 Experimental Procedure

4.1.1 Selection of Examples for Few-shot

Learning

Masked Question Similarity Selection (MQS) and
Query Similarity Selection (QRS) techniques are used
to select examples that are appropriate for the

questions required for the experiment.In this course,

you will learn how to select appropriate examples for

Few-shot Learning to improve learning performance.

4.1.2 Querying the Llama3-8B Model
Generate predictive SQL queries by querying the
Llama3-8B model with real-world questions along

with examples selected for Few-shot Learning.

4.1.3 Evaluation of SQL Queries

Evaluate the generated predictive SQL query to
ensure that it works correctly.The SQL queries are
executed on the real database and the results match
the correct answer (Gold SQL). For example, if you
ask Llama3-8B the question “How many singers do
we have?” in the Spider dataset, Llama3-8B will
return SQL like “SELECT count(*) FROM singer”.
This is called Prediction SQL, and we will compare
Prediction SQL to Gold SQL.

4.2 Evaluation Metrics

The Spider dataset uses two evaluation metrics:
Exact Match Accuracy (EM) and Execution Accuracy
(EX). Each metric plays an important role in
measuring the performance of the model. First, Exact
Match Accuracy (EM) evaluates how well the
predicted SQL query (Prediction SQL) matches the
gold SQL (Gold SQL) character by character. This
metric focuses on determining if the predicted SQL
is structurally and syntactically identical to the correct
answer. EM will only have a high value if all elements
of the SQL query match exactly - keywords, tables,
columns, conditional expressions, etc. This is useful
for evaluating how accurately the model’s predicted
query embodies the correct query, and is especially
important for verifying that it has accurately learned
the complex syntactic structure of SQL. EM is the
percentage of correctly matched queries out of all

predictions, expressed as a percentage.

EM Number of Exact Matches
= *
Total Number of Predictions

Execution Accuracy (EX), on the other hand, is a
metric that measures how well the results of a

predicted SQL query match the results of the correct
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SQL when it is executed on the actual database. This
metric focuses on evaluating the performance of the
model based on the execution results of the SQL
query. Because slightly different SQL syntax can
often lead to the same result, EX is useful for
determining whether the model actually performed the
correct database operations. For example, in a
SELECT query, there may be multiple ways to return
the same query result, and EX evaluates whether these
query results match the correct answer. EX is the
percentage of SQL executions that matched the

correct result, expressed as a percentage.

Number of Correct Executions

*
Total Number of Executions

These two metrics complement each other. EM
evaluates how accurately the model generated the
same SQL syntax as the correct query, while EX
evaluates whether the syntax actually produces the
correct result. This allows you to measure both the
syntactic correctness and the practical validity of your
model. Because EM and EX have their own strengths
and weaknesses, using both metrics together provides
a more comprehensive assessment of a model’s

performance.

4.3 Experimental Results

According to Table.l, which compares the
performance  with  the existing LLM-based
Text-to-SQL model, the DAIL-SQL +Llama3-8B
model has a performance of EX 69.2, which is 82.0\%
of the performance of the comparison model,
DAIL-SQL + GPT-4 model. This result proves that
the sLLM-based lightweight text-to-SQL design
approach can solve the problems of the existing
LLM-based text-to-SQL model and maintain high

Table 1. DAIL-SQL + Llama3-8B experimental results
and the accuracy of existing Text-to-SQL models

performance. In particular, this result is meaningful
because it shows competitive performance despite

adopting a lightweight structure with sLLM.

4.4 Results Analysis

In Table 1, the DAIL-SQL + Llama3-8B model
performs 46.8 in Exact Match Accuracy (EM) and
69.2 in Execution Accuracy (EX). EM evaluates how
well a Predicated SQL query matches Gold SQL
character by character, and is a measure of the
structural correctness of SQL. The result of 46.8 on
EM may seem low, but this is because the nature of
SQL is such that there are many different syntaxes
that can produce the same result, and EM only
evaluates structural matching. On the other hand, EX
scored 69.2, which is about 82.9\% better than the
83.4 of EX for the comparison model, DAIL-SQL +
GPT-4. This shows that the lightweight SLLM model
can provide competitive performance while
maintaining high cost-effectiveness and security.

Also, as shown in Table 2, the accuracy of
DAIL-SQL + Llama3-8B model by SQL difficulty
tends to decrease gradually as the difficulty increases.
At the EASY level, both EX and EM recorded a high
accuracy of 85.1\%, but as the difficulty level
increased to MEDIUM, HARD, and EXTRA, the
performance dropped sharply to 68.2 for EX and 46.8
for EM. These results indicate that the model is
struggling to handle difficult SQL queries. This is
likely due to the fact that the general performance of
Llama3-8B is worse than that of LLM. We found that
Llama3-8B is less accurate on complex SQL
compared to LLM because it uses Few-shot Learning,
which is highly influenced by the general performance
of the model.

From the failure cases presented in Table 3, we
can see that the proposed model tends to fail in cases
of high SQL complexity, especially for JOIN

operations involving multiple tables. For example, the

Model EM EX Table 2. Results of DAIL-SQL + Llma3-8B by SQL
Difficulty Level
DAIL-SQL + Llama3-8B 46.8 69.2
DAIL-SQL + GPT-4[9 shot] 72.8 834 EASY | MEDIUM | HARD | EXTRA | ALL
DIN-SQL + GPT-4 [29] 60 85.3 EX 85.1 74.4 61.5 39.8 68.2
RESDSQL-3B + NatSQL[30] 72.0 79.9 EM 85.1 46 333 14.5 46.8
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Table 3. Failure Case of DAIL-SQL + Llma3-8B

Prediction Gold
AVG(SE;iCzctanc ) SELECT
P o avg(LifeExpectancy)

FROM country

EASY | WHERE Continent =| _ FROM country
Ao s ] WHERE Region =
Africa’ AND Region .
R s “Central Africa”
= ’Central
SELECT COUNT(
COUNT(DISTINCT T IC;’(‘;H\?
MEDIUM C:gtﬁin;;nFR:)? countrylanguage AS
Ty anguag T2 ON T1.Code =
WHERE language =
*Chinese’ T2.CountryCode
ese WHERE T2.Language
= "Chinese”
SELECT
T1.Birth_Date FROM
SELECT p.birth_date 1rih_Late
people AS T1 JOIN
FROM poker_player oker_player AS T2
HARD p ORDER BY | POXeI-P&y
carnings ASC ON T1.People_ID =
P- LIMIgT A T2.People_ID ORDER
BY T2.Earnings ASC
LIMIT 1
SELECT Tl.area_code
FROM

SELECT state FROM| area_code_state AS
VOTES GROUP BY | T1 JOIN votes AS
EXTRA statt. ORDER BY T2 ON Tl.state =
COUNT(*) DESC | T2.state: GROUP BY
LIMIT 1 Tl.area_code ORDER
BY count(*) DESC
LIMIT 1

SQL queries generated by the model on HARD and
EXTRA difficulty levels did not accurately capture
the relationships between tables compared to the
target SQL query, leading to incorrect results. This
shows that the model’s performance degrades
significantly as the complexity of the SQL query

increases.
V. Conclusion and Implications

In this study, we propose an implementation of
sLLM-based text-to-SQL model to compensate for the
limitations of LLM, rather than focusing on
performance improvement of existing LLM-based
text-to-SQL research. As a result of the study, the

sLLM-based model showed stable results in terms of

performance compared to the existing LLM model,
and the possibility of significantly reducing the cost
of deployment and maintenance was confirmed. In
particular, sLLM is different from LLM in that it is
easy to deploy offline and can provide
domain-specific services. These features are expected
to be a major factor in selecting sLLM-based
text-to-SQL models over LLM-based text-to-SQL
models in companies and institutions with specialized
domains and network environments that are isolated
from the outside world, such as defense, healthcare,
and public institutions.

In this study, we found that sLLM-based
Text-to-SQL models still have limitations in handling
complex SQL queries. To overcome this, we propose
additional performance improvement measures as
follows. First, we introduce fine-tuning techniques
such as LoRA(Low-Rank Adaptation)® and
QLoRA(Quantized LoRA)® to enhance the
performance of sLLM. We expect these techniques
to be useful in improving both efficiency and accuracy
through domain-specific learning while maintaining
model size. In addition, we utilize Knowledge
Distillation techniques to transfer LLM’s high SQL
generation performance to sLLM by using LLM as
a teacher model, which improves the ability to handle
complex SQL while maintaining lightweight. Finally,
by employing a vector database to retrieve schema
elements semantically aligned with natural language
queries and  integrating them using the
Generation  (RAG) (331

framework, the system can better capture complex

Retrieval-Augmented

schema structures and inter-table relationships. This
approach enhances query accuracy by enabling
context-aware identification and mapping of relevant
tables and attributes, while also improving efficiency
in large-scale relational databases through automated
schema retrieval.

In future work, we will focus on training sSLLM
on additional datasets, such as BIRD™*, in addition
to the Spider dataset, using the Fine-Tuning technique
to precisely learn the relationships between database
tables and optimize the generation of complex SQL
queries. Fine-tuning is expected to further enhance the
performance of sLLM-based Text-to-SQL models and
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greatly expand their applicability in various domains.

Ultimately, the results of this research will enable

domain-specific optimized SQL query generation,

enabling efficient data processing in various
industries.
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