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요 약

최근 완전동형암호 기반의 컨볼루션 신경망 연구가 활발히 진행되고 있으며, 대표적인 완전동형암호 스킴인

residue number system variant of Cheon–Kim–Kim–Song(RNS-CKKS) 상에서 residual network(ResNet)을 높

은 정확도로 구현한 사례가 보고되었다. 그러나 기존 방법은 암호문 슬롯을 충분히 활용하지 못해 부트스트래핑을

자주 수행해야 하고, 그만큼 계산 시간이 길어지는 한계가 있다. 이를 개선하기 위해 본 논문에서는 여러 이미지

에 대해 동시에 ResNet을 수행하는 경우, 복수의 암호문을 단일 암호문으로 병합한 후 부트스트래핑을 수행하는 '

병합 부트스트래핑' 방법을 제안한다. 이는 암호문의 전체 슬롯을 효율적으로 활용하여 수행 시간을 크게 감소시

키는 방법이다. RNS-CKKS 스킴 라이브러리인 Lattigo에서의 실험 결과, 병합 부트스트래핑을 사용하여 2개, 4개,

8개의 Canadian Institute for Advanced Research-10(CIFAR-10) 이미지를 ResNet-20으로 분류할 경우, 기존 방법

에 비해 평균 부트스트래핑 시간이 각각 39%, 55%, 59% 줄어들었음을 확인하였다. 또한, 병합 부트스트래핑을

사용한 ResNet-20에 의한 2개 이미지 분류 구현 결과 평균 수행 시간이 기존 연구에 비해 37% 감소하였다.

키워드 : 부트스트래핑, 컨볼루션 신경망, 동형 암호, 잔차신경망
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ABSTRACT

Recent studies on convolutional neural networks based on fully homomorphic encryption(FHE) have gained

momentum, and there are reports of implementing ResNet with high accuracy on the representative FHE

residue number system variant of Cheon–Kim–Kim–Song(RNS-CKKS). However, existing approaches

under‑utilize ciphertext slots, requiring frequent bootstrapping and therefore incurring substantial computational

overhead. In response to this, our paper proposes a 'merged bootstrapping' method that, when performing

residual network(ResNet) on multiple images simultaneously, merges multiple ciphertexts into a single ciphertext

before bootstrapping. This effectively utilizes all slots of the ciphertext, significantly reducing computation time.

Experimental results using the RNS-CKKS scheme library, Lattigo, confirmed that when classifying 2, 4, and 8

Canadian Institute for Advanced Research-10(CIFAR-10) images with ResNet-20 using merged bootstrapping,
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Ⅰ. 서 론

동형암호(homomorphic encryption)는암호화된상
태에서도대수연산을수행할수있게해주는특수한
암호방식이다. 초창기에는암호화된데이터위에제한

된횟수의동형연산만허용되었으나, 2009년 Gentry가
무제한 연산을 지원하는 완전동형암호(fully homo-

morphic encryption, FHE) 체계를제안하면서획기적

인진전이이뤄졌다[1]. 이후연구들은연산속도와정밀
도를지속적으로개선해왔으며, 현재완전동형암호는
컴퓨터비전, 자연어처리, 통계분석, 의료데이터등

다양한분야에서프라이버시보호도구로활용되고있
다[2].

최근에는 완전동형암호 환경에서 컨볼루션 신경망

(convolutional neural networks)을실행하려는연구가
활발하다[3-6]. 이연구들이초점을두고있는클라이언
트-서버 시스템에서는 사용자가 이미지를 완전동형암

호로 암호화해 서버에 전송하면, 서버는 복호화 없이
이미지 추론을 수행한 뒤 암호화된 결과만 돌려준다.

덕분에서버는원본데이터를전혀볼수없고, 비밀키

를 가진 클라이언트만이 결과를 확인할 수 있다.

본 연구는 완전동형암호 스킴 가운데 널리 쓰이는
RNS-CKKS(residue number system variant of Cheon

–Kim–Kim–Song)[7,8] 기반컨볼루션신경망연산에
초점을맞춘다. RNS-CKKS는실수형데이터를한암
호문에대량으로담아빠르게계산할수있어각광받고

있다. 최근 RNS-CKKS를 이용해 residual net-

work(ResNet)으로 CIFAR-10 이미지를분류한연구가
보고됐는데[4], 이들은효율적인데이터인코딩기법과

rectified linear unit(ReLU) 함수의다항식근사덕분에
높은 정확도를 달성했다.

하지만선행연구[4]에서는처리시간이여전히길었

으며, 이는 주로 부트스트래핑 단계 때문이었다.

RNS-CKKS 스킴에서부트스트래핑이가장고비용연
산이므로, 그 횟수를 줄이는 것이 필수적이다.

Canadian Institute for Advanced Research-10

(CIFAR-10) 이미지데이터를분류하는경우암호문에
포함되는 데이터의 양이 전체 슬롯(slot) 개수에 비해

적어, 기존연구에서는암호문전체슬롯을완전히활용
하지않은상태에서부트스트래핑을수행하였다. 이러

한방식은비효율적이며, 결과적으로더많은부트스트
래핑을 요구하게 된다.

본 논문에서는 여러 이미지에 대해 동시에 ResNet

연산을수행하는경우, 암호문전체슬롯을활용한상태
에서 부트스트래핑을 수행함으로써 연산 시간을 줄이
는 방법을 제안한다. 구체적으로는 병합 알고리즘

 및 분리 알고리즘 을 도입한
다. 부트스트래핑을수행하기직전에여러암호문들을
하나의 암호문으로 병합한 후 부트스트래핑을 수행하

고, 다시여러 암호문으로 분리하는 방식이다. 이렇게

하면여러암호문에대해수행해야할부트스트래핑을
하나의부트스트래핑으로대체함으로써전체적인연산

시간을 크게 줄일 수 있다.

본연구에서는유명한 RNS-CKKS 스킴라이브러리
인 Lattigo[9]를활용하여 제안하는 병합 부트스트래핑

사용시, 전체 ResNet에서필요한부트스트래핑 수행
시간을분석한다. 제안하는병합부트스트래핑을사용
해 각각 2개, 4개, 8개의 CIFAR-10 이미지를 동시에

ResNet-20으로분류할경우, 분할상환시간(이미지당
시간)이 각각 415초, 306초, 283초가 소요된다. 이는
기존연구[4]에서제시된분할상환시간인 683초에비

해각각 39%, 55%, 59%의시간이줄어든것을의미한
다. 또한, 2개의이미지를병합부트스트래핑을사용하
여 동시에 분류하는 경우를 실제로 구현한 결과 분할

상환 시간이 기존 연구에 비해 37% 감소하였다.

Ⅱ. 배경지식

본장에서는완전동형암호 RNS-CKKS에대한개념

과 RNS-CKKS 상에서의컨볼루션신경망연산방법에
대해 소개한다.

2.1 RNS-CKKS
RNS-CKKS 스킴[7,8]은완전동형암호를대표하는방

식 가운데 하나로, 암호화된 상태에서도 대수 연산을
수행할 수 있게 한다. 스킴의 모든 연산은 다항식 환

(polynomial ring)에서정의되며, 다항식차수가  이

면하나의암호문에는 개의실수(또는복소수)
요소로이루어진벡터가담긴다. RNS-CKKS는이벡

터에대해성분별덧셈과곱셈을동형적으로지원한다.

the per-image computation time was reduced by 43%, 58%, and 61% respectively, compared to the previous

methods. Additionally, the implementation of two-image classification using ResNet-20 with merged

bootstrapping resulted in a 37% reduction in amortized runtime compared to previous work.
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암호화와 복호화를 각각 로 표기하면, 벡터

∈을암호화한결과는 이고복호화를거치
면 가성립한다. 벡터 의각요소는

암호문에서 ‘슬롯’으로불리며슬롯의 총개수는 이
다.

RNS-CKKS 스킴의 동형 덧셈(⊕), 스칼라 곱셈

(⊙), 넌스칼라 곱셈(⊗) 연산은 다음을 만족한다.

⊕ 

⊙ ⊙ ⋅

⊗ ⋅

여기서 ⋅는두벡터 의성분별곱셈결과벡터
를 나타낸다.

또한, RNS-CKKS 스킴에서는 벡터의 성분들의 위

치를이동시키는회전연산 ⋅을제공한다. 어떤

벡터  ⋯∈ 및음이아닌정수 에
대해 다음 식이 성립한다.

 ⋯⋯ 

여기서 ⋯⋯ 은 벡터 를

왼쪽으로 만큼순환이동(cylic shift)시킨벡터를나타
낸다. 만약 이음수라면 은벡터 의

성분들을 오른쪽으로 만큼 순환 이동시킨다.
RNS-CKKS 스킴을활용하면어떤대수적연산이든

암호화된상태에서수행가능하다. 예를들어, 어떤실

수벡터 에대해다수의성분별덧셈, 곱셈을사용하
여실수벡터 를출력하는연산회로 를생각해보자.

즉, 가성립하는상황이다. 이때, 모든덧셈을
⊕로대체하고모든상수곱을 ⊙로, 모든변수간의곱

셈을 ⊗로대체하여생성한동형연산회로를 라하
자. 이 경우, 다음의 식이 성립한다.

 

따라서, 입력 에대해연산회로 를수행하는것
은, 먼저 를암호화한다음에암호화된상태에서 에

대응하는 동형 연산 회로 을 수행하고, 마지막으로
결과를복호화하는과정과동일하다는것을알수있다.

이를클라이언트-서버시스템에적용해본다면, 서버는

클라이언트의 암호화된 이미지 에 대해 동형

연산회로 를수행하는상황에해당된다. 이러한방식

으로, 클라이언트는자신의데이터를서버에게노출하
지않아도이미지추론서비스를이용할수있게된다.

RNS-CKKS 스킴에서는연속적인곱셈을수행할수

있는횟수가암호문의 ‘레벨’로제한된다. 곱셈을한번
실행할때마다레벨이감소하고, 레벨이 0에도달하면
부트스트래핑[10]을 통해 레벨을 다시 높여야 한다. 이

과정을주기적으로거치면사실상무제한으로동형연
산을이어갈수있지만, 부트스트래핑은스킴전체에서
가장시간이오래걸리는단계이므로그횟수를최소화

하는 것이 성능 개선의 핵심이다.

2.2 RNS-CKKS 상에서의 컨볼루션 신경망
최근에 RNS-CKKS 상에서암호화된데이터로컨볼

루션신경망을계산하는연구가활발히진행되고있다
[5,6]. 컨볼루션 신경망에서는 비대수적 활성화 함수
(activation function) ReLU 함수를포함하는경우가많
아, 이를 RNS-CKKS 스킴에서 직접적으로 계산하는

것은어렵다. 그래서일반적으로 ReLU 함수를다항식
으로근사하고, 이근사된다항식을동형연산으로연산
한다. 최근에는 ReLU 함수를정밀하게다항식으로근

사하는방법[11,12]이연구되었고, ReLU 함수를이근사
다항식으로대체한근사컨볼루션신경망이기존컨볼
루션신경망과매우유사한추론정확도를보이는것이

확인되었다[3].

또한, 컨볼루션 신경망은 기본적으로 3차원 텐서
(tensor) 간의 복잡한 연산을 수행하는데 RNS-CKKS

에서는 1차원벡터연산만을지원한다. 기존연구[4]에
서는 RNS-CKKS 상에서 1차원벡터연산만을활용하
면서도대표적인컨볼루션신경망인 ResNet을수행하

는방법을개발하였다[4]. 이논문에서는먼저 3차원텐

서  ≤   ≤  ≤  ∈××을
1차원 벡터 ∈로맵핑하는 함수 를
정의한다. 3차원텐서를 1차원벡터에맵핑할때일정
한간격(gap)을두면서맵핑하는데그간격을 라하

자. 간단한설명을위해 
이라고가정하자. 만약, 

가 
의배수가아니라면텐서에 0 값을가진추가적인

채널을채널 에덧붙여채널개수가 
의배수가되도

록조정한다.   
라하자.  함수를수

행하기 위해, 먼저 텐서 를 또 다른 3차원 텐서

′  ′≤   ≤  ≤  ∈××
로 맵핑하는데 이 때,

′ ⌊⌋⌊⌋ modmod가 되도록
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한다. 이과정은 
개의채널텐서를하나의큰텐서에

멀티플렉싱(multiplexing)[4]하는형태이다. 그후, 텐서

′를 1차원 벡터 ∈ 에 맵핑하는데
래스터-스캔방식(raster-scan fashion)으로순차적으로

맵핑한다. 구체적으로는, 첫번째채널부터마지막채널
까지순서대로데이터를맵핑한다. 각채널의데이터를
맵핑할때, 왼쪽에서오른쪽으로수평적으로값을나열

하고, 이후아래행으로이동하여이과정을반복한다.

이 때, 이 ∈가 바로 가 된다.

ResNet 파라미터의 경우 어떤  
에 대해

  가 된다. 이 때, ∈를
번만큼반복하여얻은벡터를  ′∈ 이라고할
때  함수는 

   ′∈를 만족시키도록 정의된다. 즉,
 ′   ⋯ 를 만족한다.
기존 연구[4]에서제시된 멀티플렉스 병렬컨볼루션

(multiplexed parallel convolution)은 

형태로 RNS-CKKS로암호화된데이터에대해컨볼루

션을수행하더라도결과가동일한  형태
로유지되도록설계되었다. 평문 ResNet에서의특정컨

볼루션의 입력 텐서를 ∈××라 하고 출력을
′∈××라하자. 그러면이에대응하는멀티플

렉스 병렬 컨볼루션은 를 입
력으로받아 ′ 를출력하는알
고리즘이다. 기존연구에서구현된 RNS-CKKS 기반의

ResNet은 입력 이미지를  형태로 암호
문에패킹하고, 암호화된상태에서멀티플렉스병렬컨
볼루션과 ReLU 등의연산을반복적으로수행한다. 그

리고이과정을거친후마지막에복호화를통해암호화
된 상태에서의 ResNet 연산 전체를 완료한다.

Ⅲ. 병합 부트스트래핑

기존 연구[4]에서의 ResNet 구현에서 수행 시간의
70% 이상을부트스트래핑이차지하므로, 실행시간을

줄이기 위해서는 부트스트래핑 과정의시간을 최소화
하는것이중요하다. 현재문제점은기존연구에서부트
스트래핑과정에서암호문의슬롯전체를활용하지않

아비효율성이발생하는점이다. 본연구에서는이러한
문제를해결하기위해여러 CIFAR-10 이미지에대해

동시에 ResNet을수행하면서 개의슬롯전체를최대
한활용하려고한다. 이를위해제안하는병합및분리
알고리즘을 사용하여 암호문의 모든 슬롯을 효율적으

로활용하며, 이를통해필요한부트스트래핑의횟수를
줄이고자 한다.

3.1 병합 알고리즘
기존연구[4]에서사용된  패킹방법은

데이터를 만큼 중복하여 암호문에 담는다. 이는

실제데이터개수 가암호문의전체슬롯개수 보다

작기때문이며, 전체-슬롯부트스트래핑 대신 희소-슬
롯부트스트래핑[10]을사용하여수행시간을줄이기위
한 것이다. 본 논문에서는 이러한 중복을 최소화하고,

데이터전체슬롯을보다효율적으로활용하여부트스
트래핑의횟수를줄이기위한암호문의병합과정을제
안한다.

2의 거듭제곱인 와 가 주어졌다고 하자. 개의
암호문 ⋯ 각각에는 개의슬롯에만

실제데이터가들어있고, 나머지슬롯들은 0으로채워

져있다. 이암호문들을하나로합쳐, 개모든슬롯에
데이터가가득한단일암호문을만들수있다. 구체적으

로는 부터 까지포함된총 개의데이터를

순서대로이어붙인뒤, 이배열을 번반복해 개의

데이터를채운다.   인경우동일데이터를여러번
복제해두는이유는희소-슬롯부트스트래핑기법을활

용하기위해서다. 알고리즘1은이렇게 개의암호문을

하나로합치는  절차를설명하며, 여기서
는 영벡터를 암호화한 암호문을 뜻한다.

여기서주목해야할점은기존연구[4]에서멀티플렉
스-병렬 컨볼루션을 수행한 후의 암호문이 텐서

∈××에  함수를 적용하여 얻
은 ∈ 꼴이며 이는 어떤 ′ 을
만족하는 ′에대해 ′개의데이터가 ′번반복된
형태라는점이다. 이는알고리즘 1의입력암호문형태,

즉, 반복이 안 된 형태와는 다르다. 알고리즘1에서의

입력암호문은 개의슬롯에만  형
태의데이터가있고나머지슬롯은 0으로채워져있다.

그러나기존연구에서의멀티플렉스-병렬컨불루션과

정을살펴보면먼저  꼴을만들고이를
회전 및 덧셈 연산을 사용하여 반복함으로써

를 얻는다. 이러한 점을 고려하면,
마지막 회전/덧셈 연산 과정을 생략하고
 꼴을얻은상태에서바로 

알고리즘을사용할수있다. 이후에설명할 

알고리즘을통해다시  꼴을얻게되
므로, 후속멀티플렉스-병렬컨볼루션수행에는문제가

없다.
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Input: Ciphertexts ⋯ 
Output: Merged ciphertext 

1. ←
2. for   to 
3. for   to 
4.  ← 

5.  ← ⊕

6. Return 

알고리즘 1.  알고리즘
Algorithm 1.  algorithm

그림 1.  알고리즘의 동작 과정
Fig 1. Process of  algorithm

그림 1은   인경우  의동작과정을
시각화하며, 각암호문들을복호화했을때얻을수있는
데이터를표현하고있다. 이그림에서색칠된사각형은

데이터가존재하는부분을나타내며, 이는   

개의숫자로구성되어있다. 반면, 흰색사각형은 0으로
전부채워진부분을나타낸다. 4개의암호문에각각적

절히 회전 연산 을 적용하여 회전시킨 후 합치면,
모든슬롯에데이터가존재하는병합된암호문 
를 얻을 수 있다.

이렇게 4개의 암호문을 병합한 후 부트스트래핑을

수행하면, 단 한 번의 전체-슬롯 부트스트래핑만으로
충분하다. 이를 “병합부트스트래핑”이라부르며, 이는
연산효율성을크게향상시킨다. 이와대조적으로, 병합

을하지않는경우, 총 4번의희소-슬롯부트스트래핑이
필요하게 된다. 희소-슬롯 부트스트래핑은 전체-슬롯
부트스트래핑에비해시간이약간덜소요되지만, 이를

4번 반복하게 되면 전체-슬롯 부트스트래핑보다 많은
시간이 소요된다.

3.2 분리 알고리즘
 알고리즘으로 개의암호문을하나로

합친뒤부트스트래핑을적용하면, 본래 번수행해야
했던 (희소-슬롯) 부트스트래핑을 단 한 번으로 줄일
수있다. 다만합친암호문에부트스트래핑을끝낸뒤에

는, 이후멀티플레스병렬컨볼루션을위해다시여러
암호문으로 분리하는 과정이 필요하다.

가령 개의 슬롯에만 데이터가 있고 나머지는
0으로채워진 개의암호문을합쳐암호문 를얻었다

고하자. 는 개의슬롯모두에데이터가존재하며,

원래 개암호문에있떤값이슬롯마다 회씩반복저
장돼있다. 이제 를 개의데이터를 회반복한

형태로구성된 개의암호문 
 

 ⋯
로

되돌리고자한다. 알고리즘2는이와같이병합된 를
다시 개의 암호문으로 분할하는  절차를
설명한다.

알고리즘 2에서 ∈는원소가 1과 0으로만이

루어진 일차원 벡터이다. 각각의 ≤   에 대해
 범위 안에 있는

인덱스 에대해     이되며, 그외의 에대해

서는     이다. 이 는모든슬롯에데이터

가들어있는암호문에서선택된데이터에만 1을곱하고
나머지데이터에는 0을곱하여제거하는기능을수행한

다.

그림 2는 의동작과정을시각적으로보여

준다. 4개의암호문이병합된암호문 가주어져있을
때  벡터를곱하여원하는부분만추출하고나머지

값들은 0으로만든다. 그후동형회전및덧셈연산을
사용하여 동일한 데이터가 4번 반복되어 모든 슬롯에

데이터가차게한다. 이는어떤텐서 ∈××에
 함수를 적용하여 얻은 

Input: Ciphertexts 

Output: Splitted ciphertexts 
  

  ⋯
 

1. for   to 

2.  ← 

3.  ← ⊙

4. for   to 

5.  ← ⊕

6. 
  ← 

알고리즘 2.  알고리즘
Algorithm 2.  algorithm

그림 2.  알고리즘의 동작 과정
Fig. 2. Process of  algorithm
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∈ 꼴이며, 이는이후멀티플렉스병렬컨볼루
션의 수행을 가능하게 한다.

3.3 병합 부트스트래핑을 사용한 ResNet-20
기존 연구[4]에서는 RNS-CKKS 상에서 ResNet이

CIFAR-10 이미지들을독립적으로분류하는방식을구
현하였다. ResNet을수행하는과정에서암호문에포함

된 데이터의 수는 →→ 순서대로 감소하며,
ResNet-20의경우각데이터의수에대해암호문에대
한 부트스트래핑을 6번씩 수행한다. 즉,

 
 각각에대해 6번의희소-슬롯부트스

트래핑을 수행한다.

이 때, 병합 부트스트래핑을 활용하여 2개의
CIFAR-10 이미지를동시에분류하는경우를고려해보

자.  
 만큼의데이터가포함되어있는두

암호문(서로다른이미지에대한)을각각  ,
 ,  알고리즘을통해병합한다.

이렇게하면병합된암호문은각각  
개

의 데이터가 번씩 반복된 형태가 될 것이다. 즉,

 
 각각에대해 6번의희소-슬롯부트스트래

핑및  
에대한 6번의전체-슬롯부트스트래핑

을수행하면된다. 그후에는  ,  ,
 알고리즘을 사용하여 병합된 암호문을 분
리하면, 이후에후속 ResNet 레이어를계속수행할수
있다.

4개의 CIFAR-10 이미지를동시에분류하는경우를

생각해보자. 데이터크기가  
인경우네이

미지에 대한 암호문을  ,  알

고리즘을사용하여병합하면된다. 그런데  
인

경우최대 2개의암호문만 알고리즘을사

용하여병합할수있다. 따라서, 총  
에대한희

소-슬롯부트스트래핑 6번,  
에대한전체-슬롯

부트스트래핑 18번이 필요하게 된다.

마지막으로 8개의 CIFAR-10 이미지를동시에분류

하는경우를살펴보자. 데이터크기가  
인경우

 알고리즘을이용하여암호문을병합하면

된다.  
인 경우 최대 4개의 암호문을

 알고리즘을 통해 병합할 수 있으며,

 
인경우최대 2개의암호문을  알

고리즘을통해병합할수있다. 결과적으로총 42번의
전체-슬롯 부트스트래핑이 필요하게 된다.

이렇게 8개의이미지가병합되는것이평균부트스

트래핑 시간을 줄일 수 있는 최대 암호문 개수라 할
수있다. 이는 ResNet에서데이터양이가장적은경우

인  
에서최대 8개의암호문을병합할수있기

때문이다. 만약데이터가 보다더적은다른신경망
을사용하는경우, 8보다큰 에대하여 

및  알고리즘을 적용할 수 있을 것이다.

Ⅳ. 실험 결과

이 장에서는 병합 부트스트래핑을 활용한 RNS-

CKKS 기반의 ResNet-20 성능에대한실험결과를제

시한다.

4.1 실험 환경
이실험은유명한오픈소스 RNS-CKKS 스킴라이

브러리인 Lattigo[9]를기반으로진행되었다. 실험에사

용된 컴퓨터는 2.096 GHz의 AMD Ryzen

Threadripper PRO 3995WX 프로세서와 512 GB의
RAM을탑재하였으며, Ubuntu 22.04를운영체제로사

용한다. 본 실험에서는 1개의 CPU 코어를 사용한다.

4.2 파라미터
이실험에서는기존연구[4]에서사용한 RNS-CKKS

기반의 ResNet-20 구현을 대상으로 하므로 비슷한

RNS-CKKS 파라미터를채택하였다. 먼저, 다항식 차

수파라미터는 로설정하였고, 따라서암호화된

벡터의 성분 개수는  가 된다.
RNS-CKKS 스킴의비밀키의 해밍 무게(Hamming

weight)는 192로 설정하였다. 특수 모듈러스(special

modulus)와기초모듈러스(base modulus)로는 51 비트

소수를 사용하였으며, 그 외의 모듈러스로는 46 비트
소수를사용하였다. 본논문에서는연산속도를향상시
키기위해기존연구[4]에서사용한 1개대신 2개의특수

모듈러스를 사용하였다[13]. 기존 연구에서 사용한
SEAL 라이브러리는여러개의특수모듈러스사용기
법을지원하지않아, 당시에는 1개의특수모듈러스만

사용할수있었다. 스케일링팩터(scaling factor)는 

으로 설정하였다.

4.3 희소-슬롯 부트스트래핑 시간
기존연구[4]에서 RNS-CKKS 상에서 ResNet을수행

하는데필요한희소-슬롯부트스트래핑에서의슬롯개

수 은 
로설정되었다. 본논문에서제안하

는병합부트스트래핑을사용할경우에는  
 의
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경우도 필요하게 된다. 결과적으로, 총

 
 슬롯에대한부트스트래핑을수행

하게되며이에대한부트스트래핑시간을비교하고자
한다. 이때, 병합부트스트래핑을사용하는경우레벨

을하나더필요로하게된다. 구체적으로 

알고리즘에서 상수벡터와의 곱셈에서 레벨을 하나 추
가로소모하며, 기존연구[4]에서는레벨 30 (부트스트래

핑을위한레벨포함)을사용하였는데병합부트스트래
핑을쓰면레벨 31을사용하게된다. 병합부트스트래
핑사용으로인한레벨추가는약간의부트스트래핑시

간 증가로 이어지지만 그럼에도필요한 부트스트래핑
횟수가 줄어들기 때문에 결과적으로 평균 부트스트래
핑 시간을 줄일 수 있다.

표 1는슬롯개수및레벨에따른부트스트래핑시간
을나타낸다. 표 1의결과는 4.4절에서병합부트스트래
핑의 수행 시간을 구하기 위해 사용된다.

#slots( )    

(sparse-slot)
bootstrapping
runtime (s)

level
30

36.1 38.9 38.9 47.1

level
31

39.5 42.2 42.2 53.9

표 1. 슬롯 개수 및 레벨에 따른 (희소-슬롯) 부트스트래핑
시간
Table 1. Runtime of (Sparse-slot) bootstrapping depending
on the number of slots and level

4.4 병합 부트스트래핑을 사용한 ResNet-20 수
행 시간

표 2는 ResNet-20을이용한 CIFAR-10 이미지분류
에 소요되는 총 부트스트래핑 시간을 보여준다. 이는
기존방법을사용하여한번에 1개의이미지를분류하

는 경우와, 본 연구에서 제안하는 병합 부트스트래핑
기법을사용하여한번에 2개, 4개, 8개의이미지를동

시에분류하는경우를비교한다. 실험결과, 병합부트

스트래핑기법을통해 2개, 4개, 8개의이미지를동시에

ResNet-20을이용하여분류하는경우, 기존방법에비
해부트스트래핑의분할상환시간이각각 39%, 55%,

59% 줄어든 것을 확인할 수 있다.

또한, 본연구에서는 2개의이미지를병합부트스트
래핑을사용하여동시에분류하는경우를실제로구현
하고 각 구성요소 별 수행시간을 분석한다. 그림 3은

병합부트스트래핑기법을활용하여 ResNet-20으로두
이미지를 동시에 분류하는 아키텍처를 보여준다.

여기서 컨볼루션과 배치 정규화(batch normal-

ization)를합한알고리즘인 ConvBN’는기존연구[4]의
알고리즘을거의그대로사용하되마지막부분에서동
일한데이터를여러번반복하여나열하는부분만생략

한 것이며 구분을 위해 프라임(’) 기호를 사용하였다.

다만, 가장 먼저 사용되는 ConvBN 알고리즘은 여러
번반복하여나열하는부분까지그대로포함한다. 구체

적인 ConvBN 알고리즘이 필요하면 기존 논문[4]의
ConvBN 알고리즘과공개소스코드를참고할수있다.

알고리즘 3은위아키텍처에서사용되는 

알고리즘을 보여준다.

먼저 ′∈을 다음과 같이 정의한다.

previous proposed

1 image 2 images 4 images 8 images

runtime (s) 683 830 1223 2264

amortized
runtime (s)

683 415 306 283

표 2. 병합 부트스트래핑을 활용한 ResNet-20 실행에 대한
총 부트스트래핑 시간
Table 2. Total bootstrapping time for ResNet-20
execution utilizing merged bootstrapping

그림 3. 병합 부트스트래핑 기법을 활용하여 ResNet-20으로
두 이미지를 동시에 분류하는 아키텍처
Fig. 3. Architecture for simultaneous classification of two
images using ResNet-20 with merged bootstrapping
technique
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′   ≤  
 

이때, 은단순히입력암호문 에대해

⊙′를반환한다. 이는동일한데이터가 번반복

되어있는형태인입력암호문에서첫 개의데이터
만남겨두고나머지는 0으로만듦으로써반복을없애는

역할을 한다.

표 3은그림 3의아키텍처를사용하여병합부트스
트래핑을활용한 ResNet-20에의한두이미지분류를

수행할 때의 수행 시간을 나타낸다.

2개의이미지를동시에분류할때컨볼루션, ReLU,

다운샘플링, 평균-풀링(average-pooling), 완전연결 레

이어(fully-connected layer)의경우더많은횟수수행
이필요하므로시간이더오래걸린다. 부트스트래핑의
경우횟수자체는동일하지만파라미터의레벨이하나

더크고슬롯개수를더많이필요로하므로 (희소-슬롯)

부트스트래핑시간이증가한다. 따라서전체수행시간
은 증가하지만 분할 상환 시간을 계산하기 위해 2로

나누어야한다. 그결과분할상환시간은기존의 888s

에서 558s로감소하게되며이는 37% 감소에해당한다.

4.5 병합·분리 알고리즘의 정확도·수행시간 영향
과 확장성 분석

RNS-CKKS 기반의 ResNet-20 추론과정에서는, 일
반적인(평문상의) ResNet-20 대비다소의정확도하락
이 발생할 수 있다. 이러한 정확도 저하는 주로 동형

덧셈, 스칼라곱셈, 회전등의 RNS-CKKS의근사연산,

부트스트래핑, 그리고근사 ReLU에기인한다. 그러나
충분히 큰 스케일링 팩터를 사용하는 경우,

RNS-CKKS 연산자체의오차는상대적으로무시할수
있을정도이며, 전체정확도저하는대부분부트스트래
핑과근사 ReLU의근사화에의해결정된다. 실제로본

연구에서 사용한 환경에서는, 부트스트래핑과 근사

ReLU의 평균 오차가 약 ∼ 수준인 반면,
일반적인 RNS-CKKS 연산의 평균 오차는

∼ 수준으로 측정되어, 후자의 영향은 매우
작다.

제안하는 병합 부트스트래핑 기법은 기존의

RNS-CKKS 기반 ResNet-20 추론구조를그대로유지
하면서, 병합및분리알고리즘을추가한형태이다. 이
알고리즘들은 동형덧셈, 스칼라 곱셈, 회전 연산만을

사용하며, 이들연산의오차는앞서설명한바와같이
전체정확도에거의영향을미치지않을것으로예상된
다.

또한병합·분리알고리즘은매우낮은연산레벨(레
벨 1~3)에서수행되며, 연산복잡도역시낮기때문에
전체추론시간에미치는영향이제한적이다. 실제표

3에따르면병합알고리즘과분리알고리즘의전체수

행시간은 0.63초, 1.56초로부트스트래핑연산 827초에
비해매우미미한수준이다. 다만, 분리연산은추가적

인 레벨 소모로 인해 부트스트래핑 수행 시간이 소폭
증가하며, 이는표1, 2를통해확인할수있다. 그러나
이러한오버헤드는부트스트래핑횟수감소효과에비

해작기때문에, 결과적으로분할상환시간이감소하는
이점이 있다. 추가적인 레벨 소모를 최소화하기 위해
향후분리알고리즘을컨볼루션등의연산과적절히통

합하여레벨을공유하는전략은향후연구과제로고려
될 수 있다.

제안된병합·분리알고리즘은부트스트래핑사용으

로인해슬롯크기는크지만실제데이터가적어슬롯이

previous
(one image)

proposed
(two images)

runtime
(amortized

runtime) (s)
runtime (s)

amortized
runtime (s)

ConvBN 59 119 59

Boot 684 827 414

ReLU 143 162 81

Merge - 0.63 0.31

Split - 1.56 0.78

Downsamp 1.07 1.83 0.91

Avg-Pool 0.57 1.13 0.57

FC-layer 1.37 2.74 1.37

total 888 1115 558

표 3. 병합 부트스트래핑을 활용한 ResNet-20에 의한 두 이
미지 분류의 수행 시간
Table 3. Runtime for classifying two images using
ResNet-20 with merged bootstrapping

Input: Ciphertexts 

Output: Splitted ciphertexts 
 

  ⋯
  

1. for   to 

2.  ← 

3.  ← ⊙

4. for   to 

5.  ← ⊕

6. 
  ← 

알고리즘 3.  알고리즘
Algorithm 3.  algorithm
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비효율적으로사용되는상황에효과적이다. 특히한클
라이언트가여러이미지의추론을요청할때유용하다.

이알고리즘은 FHE 기반 ResNet-20과유사한조건을

가진상황은물론, 컨볼루션신경망외의다른종류의
모델에도 활용될 수 있을 것으로 예상된다.

본연구에서는 RNS-CKKS를중심으로분석하였으

나, 제안한알고리즘은벡터패킹및슬롯회전을지원
하는 Brakerski-Gentry- Vaikuntanathan(BGV)[14],

Brakerski- Fan-Vercauteren(BFV)[15] 등 다른 Ring

Learning With Errors(RLWE) 기반 FHE 스킴에도적
용가능하다. 또한, 본기술은순수 FHE만을사용하는
환경에적합하며, FHE와다자간계산을결합한하이브

리드접근법과비교하면수행시간이상대적으로길지
만 통신량이 적다는 장점이 있다.

Ⅴ. 결 론

본연구는암호문의슬롯을모두활용해여러이미지
를동시처리하도록 ResNet을실행함으로써부트스트

래핑 시간의 대폭 절감을 실현하는 방안을 제시한다.

제안한병합–분리절차를적용하면, 원래각암호문마
다수행해야했던부트스트래핑을단한번의작업으로

대체할 수 있다. 이 방법을 사용하여 2개, 4개, 8개의
CIFAR-10 이미지를동시에 ResNet-20으로분류한경
우, 부트스트래핑의분할상환시간(amortized runtime;

이미지당시간)이기존방법에비해각각 39%, 55%,

59% 줄어들었다. 또한, 2개의이미지를병합부트스트
래핑을사용하여동시에 ResNet-20으로분류하는경우

를전체를구현한결과분할상환시간이기존연구에
비해 37% 감소한것을확인하였다. 이결과는본연구
에서제안한방법이암호화된딥러닝연산의효율성을

크게 향상시킬 수 있음을 보여준다.

제안한병합-분리알고리즘은정확도에미치는영향
이 거의 없다. 다만, 이 알고리즘은 추가적인 암호문

레벨을하나소모하여부트스트래핑수행시간이소폭
증가하지만, 부트스트래핑횟수감소로인해전체적인
분할상환시간은감소한다. 향후연구에서는레벨소모

에 따른 오버헤드까지 제거할 수 있는 방안을 모색할
필요가 있다.

본연구에서제안한기법은부트스트래핑을사용해

야하는구조로인해슬롯은충분하지만실제데이터는
적어슬롯을다활용하지못하는비효율적인상황에특
히 효과적이다. 이러한 상황을 가지는 다양한 암호화

딥러닝응용에적용가능하며, RNS-CKKS 뿐만아니
라 BGV, BFV 등 RLWE 기반의 다른 완전동형암호

스킴에도유사한방식으로적용할수있을것으로기대
된다.
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