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Ⅰ. Introduction

Kubernetes is the de-facto container orchestrator

for cloud services by automating deployment, scaling,

and management of containerized applications across

clusters[1]. Cloud services[2,3], like distributed deep

learning and blockchain platforms, rely on Kubernetes

networking. Containers in Kubernetes are deployed as

pods, and multiple pods communicate heavily among

themselves for these cloud services. Therefore, the

network performance between pods (containers)

significantly impacts the user experience, directly

determining the quality of services[4-6].

The networking configuration of containers is

managed by the container network interface (CNI)

plugin, which performs two key tasks: 1) creation and

deletion of container network components (e.g., veth

pairs for connecting containers and hosts) and 2)

assignment of unique IP addresses to containers. CNI

plugins automate these configurations to enhance the

scalability and flexibility of container-based services.

There are four widely-used open source CNI plugins:

Flannel, Calico, Cilium, and Kube-router. Cloud

services can select a CNI plugin for their services,

and because of the internal architecture differences of

plugins, the network performance varies upon the CNI

plugin selection[7]. Thus, it is important to understand

the performance of plugins for better service quality.

Previous studies have compared the performance

of CNI plugins. However, they are quite limited in
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the following aspects. First, the CNI plugins have

different internal architectures[8-12], but it has not been

analyzed how such differences affect the network

performance (e.g., throughput and latency) and

resource usage (e.g., CPU usage). Second, the

evaluations of CNI plugins[13-15] only cover

micro-benchmarks such as netperf or iperf that

perform iterative packet transmissions but do not

reflect the realistic aspects of realworld workloads. As

containers today are used for a wide range of

workloads, from network-intensive to CPU-intensive

ones, it is essential that evaluations reflect this

diversity of workloads. Third, existing studies[7,13-18]

mostly focus on analyzing the throughput and latency

or give only a rough summary of CPU overhead. They

failed to comprehend the correlation between

kernel-level CPU usage and network throughput to

identify the root causes of network performance

differences between CNI plugins.

This paper aims to provide a comprehensive

characterization of CNI plugins, overcoming the

limitations of previous studies. We first detail the

architecture and internal dataflow of each CNI plugin

(§Ⅱ). In particular, we focus on the packet

transmission path because it is the primary challenge

for timely and responsive cloud services. For example,

web servers of Google, Baidu, Yahoo, and Microsoft

Bing serve answers to hundreds of millions of user

requests each day[19], which rely heavily on packet

transmission.

Second, we employ Memcached, Nginx and Kafka

as real-world workloads for the performance analysis

(§Ⅲ). These workloads are chosen due to their

popularity[20-22], for the following reasons. Cloud

services are distributed systems and typically have a

distributed storage for storing data, a web server to

send and deliver required data to users and a

synchronization service for the containers to maintain

consistent states. To reflect these components, we

choose Memcached, Nginx and Kafka, which address

the three components mentioned above. These

workloads exhibit distinct network traffic and

respective resource usage patterns, but to our

knowledge, the behavior with CNI plugins has not

been investigated yet.

Third, existing studies measure the performance

with ~25 GbE[7,16]. However, current datacenters are

already equipped with servers in Kubernetes clusters

that communicate at up to 100 GbE[23]. This means

that we cannot determine if the analysis from previous

studies is applicable to higher bandwidths. Therefore,

we conduct the extensive measurement of CNI plugins

in both 10 GbE and 100 GbE NICs (§Ⅳ).

Specifically, we analyze the network performance

differences between the plugins in terms of network

throughput, CPU usage, and latency. In addition, we

perform detailed profiling of CPU usage for packet

processing (Softirq) to identify the root causes of

performance differences depending on workload

characteristics. Through the comparative analysis

between plugins, this study provides insights into

choosing the best possible plugin depending on the

characteristics of the workloads. We make the

following novelties:

• First in-depth structural analysis of four CNI

plugins, which offers guidelines to understand CNI

performance.

• Analysis using three real-wor ld applications for

both 10 GbE and 100 GbE settings.

• Extensive experiments and kernel-level

investigations to investigate performance

differences and assess CPU resource efficiency,

which provides meaningful insights for cloud

service deployment.

Ⅱ. Background

2.1 Kubernetes
A Kubernetes cluster consists of nodes that are

classified into worker or master. The worker node

runs pods, the basic container deployment units in

Kubernetes. A pod consists of a set of containers. The

containers of a pod share the network and storage

resources with the others belonging to the same pod.

For simplicity, we assume that one pod maintains one

container.

The master node runs control plane, such as 1) etcd,

2) kube-apiserver, 3) kube-scheduler, and 4) kube-
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proxy. etcd is a key-value store to save container

network configurations and IP addresses. Containers

can retrieve the etcd data through APIs provided by

kubeapiserver. Kube-scheduler receives container

creation requests from users via kube-apiserver and

assigns the newly created containers to appropriate

worker nodes. When a Kubernetes cluster is formed,

kube-proxy creates new iptables to manage

Kubernetes traffic.

Each node in the cluster runs a kubelet that is

responsible for initiating and running containers. Also,

each node starts a CNI daemon that interacts with the

kubeapiserver to allocate IP addresses to each

container and create network interfaces per container.

Containers communicate using the network interfaces

configured by the CNI daemon.

2.2 Packet processing in Kubernetes cluster
The packet processing of containers can be divided

into User, System, and Softirq contexts. First, the User
context is in charge of executing the application that

runs within the container. Second, when the

application executes a system call (e.g., sendmsg to

transmit a network packet), the System context handles

the system call in the kernel space. At last, the Softirq
context supports asynchronous packet delivery

between different network interfaces (e.g., VXLAN
and eth) and virtual interfaces (e.g., veth). This is

because the container networking in a Kubernetes

cluster consists of multiple network interfaces. When

a packet is delivered between the interfaces, a

software interrupt (NET_RX_SOFTIRQ) is raised and

handled by the Softirq handler (NET_RX_ACTION)

that processes the packet through the network protocol

stack. The detailed operations of the Softirq contexts

vary depending on the type of CNI plugins, which

are explained in the next subsection.

2.3 CNI Plugin Comparison
Fig. 1 shows the detailed architectures of CNI

plugins. The solid line represents the packet

processing workflow in the Softirq context. The green

boxes are networking method with interfaces. The

dashed line indicates the use of table structures during

the workflow. We explain the details below.

Networking method. We explain the networking

method of Softirq by green boxes in Fig. 1. Packets

from the container go to veth in the host namespace.

For Flannel (Fig. 1a), packets are delivered to the

Linux bridge. When the bridge receives the packets,

it forwards packets to VXLAN that encapsulates

packets with Layer-2 (L2, Ethernet) headers for

overlay networking. The packets are then forwarded

to the NIC, which finally transmits them out of the

host machine. For Calico (Fig. 1b), the packets

received at veth are forwarded to IPIP. Unlike

VXLAN of L2 overlay, IPIP provides L3-based

overlay by encapsulating packets with IP headers.

Cilium (Fig. 1c) has a similar workflow of Calico but

uses VXLAN instead of IPIP. In summary, Flannel,

Calico, and Cilium employ overlay networking (e.g.,

VXLAN and IPIP). An advantage of the overlay is

that it provides flexibility in security by enforcing

security policies on containers that communicate

within the same overlay network.

However, these methods may impact network

performance due to the overhead of performing

encapsulation. Moreover, it is known that

overlay-based plugins of VXLAN and IPIP cannot

utilize TCP segmentation offload (TSO) functionality

of native Linux, which may further reduce

performance[24].

In contrast, Kube-router (Fig. 1d) uses underlay

networking. When packets arrive veth, Kube-router

delivers the packets to the bridge and then directly

forwards packets to the NIC by the container IP

address without overlay. Kube-router can forward

packets without overlay because it exchanges routing

information of containers through BGP. Also,

Kuberouter can leverage the TSO feature in Linux,

which offloads packet segmentation to the NIC.

Although Kube-router avoids overlay, it requires the

Fig. 1. CNI plugin architectures.
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BGP processing for adding or modifying routing

information. These frequent changes are known to

possibly disrupt packet forwarding due to the outdated

routing information not being updated promptly[25].

Packet forwarding: The gray cylinders in Fig. 1

are table structures for packet forwarding. Flannel,

Calico, and Kube-router forward packets using Linux

iptables. Specifically, each CNI plugin performs

multiple lookups in iptables (e.g., mangle, nat, and

filter) to carry out packet processing, such as

time-to-live and type-of-service configurations,

network address changes, and packet filtering. The

iptables include processing policies that are registered

at five hooks: prerouting, input, output, forward, and

post-routing. On the other hand, Cilium forwards

packets using the eBPF program by registering the

packet processing policies into the eBPF map. Each

network interface uses an eBPF program that finds

the proper policy from the eBPF map instead of

iptables, allowing Cilium to avoid traversing the IP

layer, unlike other plugins.

CNI plugins also offer different levels of packet

filtering by iptables or eBPF map. Calico provides

filtering configurations for both ingress and egress

traffic by iptables rules. Cilium implements filtering

configurations for ingress and egress traffic using

eBPF programs. On the other hand, Kube-router only

supports the ingress traffic control by iptables rules.

Flannel does not support any packet filtering

configurations, meaning that it cannot filter any traffic

for containers.

Ⅲ. Workloads

We select Memcached and Kafka to assess the

network plugins. Table 1 presents the characteristics

of the workloads.

Memcached is a key-value store mainly used to

boost web applications by caching data from

databases or remote storage into memory[20].

Memcached communicates with clients by its own

binary protocol that creates TCP packets with

operations (SET and GET) and key-value data. In our

experiments, Memcached presents nearly 100% CPU

usage while network bandwidth is only 22% utilized

(experiment setup to be explained in §IV). This

reveals that the networking performance of

Memcached is limited by the CPU, meaning that

Memcached is CPU-intensive, which aligns with

Yoann et al.[26].

Nginx is a web server that transmits HTML, CSS,

and Javascript pages to web browsers[21]. Unlike

Memcached’s binary protocol, Nginx uses HTTP to

interact with clients. When it receives an HTTP

request, Nginx generates a response containing a

status code (success or failure of the request),

metadata headers, and the requested file. For resource

usage, we test 1 KB and 1 MB payload sizes because

the web server processes payloads from small to large.

With 1 KB payloads, CPU usage is at 96%, while

network bandwidth utilization is only 12%. For 1 MB

payloads, CPU usage is only 9% while network

utilization is 90%. The results show that the major

resource consumption of Nginx differs per payload

size—for small payloads (1 KB), it is CPU-intensive,

and for large payloads (1 MB), it is network-intensive.

Kafka is a publish-subscribe messaging system that

handles real-time message collection and provision[22].

It consists of producer, broker, and consumer. A

producer sends requests to one or more brokers to

store new messages. A broker stores the messages,

and a consumer then sends requests to brokers to

receive messages. Kafka uses its wire protocol to

create TCP packets for operations (e.g., produce,

fetch, create, and delete). For resource usage, we test

small (1 KB) and large (1 MB) as Kafka handles

various sizes. For 1 KB payloads, CPU and network

usage are 82% and 34%, each. For 1 MB payloads,

they are 21% and 91%. Thus, we can say Kafka is

Workload Protocol
Major payload

size

Resource
usage Primary

resourceCPU
(%)

Network
(%)

Memcached
Memcached

binary
key : 64 B,

value : 1024 B
99 22 CPU

Nginx HTTP
1 KB 96 12 CPU

1 MB 9 90 Network

Kafka Kafka wire
1 KB 82 34 CPU

1 MB 21 91 Network

Table 1. Characteristics of workloads.
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CPU-intensive for small payloads and

network-intensive for large payloads.

Ⅳ. Experiment Settings and Results

This section shows the results of extensive

experiments. Our experiments evaluate the network

throughput, CPU usage, and latency of the network

plugins in different environments. We first explain the

analysis method and then the detailed results.

4.1 Analysis Methodology

4.1.1 Testbed

We use two network settings: 1) 10 GbE servers

from our on-premise clusters and 2) 100 GbE servers

from CloudLab[27]. Table 2 summarizes specifications.

The software versions are the latest ones that can run

on each server and testbed.

10 GbE servers. We use two servers, each running

a master node and a worker node of the Kubernetes

cluster, similar to previous studies[13,14]. The master

node also runs load generators (e.g., generating cache

requests to Memcached servers). The worker node

runs two containers for Memcached, Nginx or Kafka.

All servers are connected by 10 GbE with receive

flow steering (RFS) of NICs enabled.

100 GbE servers. We use 100 GbE NIC servers

from CloudLab[27]. The increased network bandwidth

causes the load generator to suffer from CPU shortage

with a single server, so we add one more server for

the load generator. Thus, we use three nodes for

Mecached, Nginx and Kafka. All servers are

connected by 100 GbE with RFS enabled.

4.1.2 Measurement Methodology

For each workload, we measure network

throughput (MB/s) and latency (ms) by the

widely-used benchmarks. We use Memaslap for

Memcached, wrk[28] for Nginx servers, and

kafka-consumer-perf-test[29] for Kafka, which are the

official benchmarks for each workload. The

benchmark configurations are set to generate a

sufficient amount of load, and the results are

explained in the following subsections. We also

measure the CPU usage by mpstat, the de-facto

benchmark in Linux. We conduct in-depth profiling

of CPU usage, categorizing it into User, System, and

Softirq. Since Softirq is a key CPU usage for packet

processing, the Softirq results are presented. We

repeat each experiment five times and plot the average

values.

4.2 Memcached
First, we present the experiment results of the

Memcached for network throughput, latency, and

CPU usage. We run two containers executing the

Memcached workloads on a worker node. Then, we

execute two Memaslap instances on a server to

generate requests to the Memcached containers in 10

GbE servers. For 100 GbE servers, we execute two

Memaslap instances on two separate servers to create

the sufficient amount of requests. Each Memaslap

instance generates 10 million requests to Memcached

containers for every experiment trial.

4.2.1 Network Throughput and Latency

Fig. 2 shows the results of Memcached throughput

(left y-axis) and latency (right y-axis) with 10 GbE

and 100 GbE servers. Kube-router, the underlay

network-based plugin, provides higher throughput and

lower latency than Flannel, Calico, and Cilium, that

are all based on overlay networking. Specifically, in

the 10 GbE servers, Kube-router outperforms Flannel,

Calico, and Cilium with 22%, 42%, and 42% higher

throughput. Also, Kube-router shows 18%, 29%, and

30% lower latency than the three. This trend is similar

in 100 GbE servers—Kube-router achieves 23%, 46%,

and 51% higher throughput and 18%, 30%, and 34%

lower latency than the three, respectively. We find that

Specification 10 GbE servers 100 GbE servers

HW
CPU

One Intel Xeon 
E5-2650 v3

10-core CPU 
at 2.30GHz

One Intel Xeon 
Silver 4314

16-core CPU 
at 2.40 GHz

RAM 256GB 128GB

SW

OS Ubuntu 20.04, Linux kernel 5.4

Runtime containerd 1.6.12, 
Kubernetes 1.27.2

containerd 1.6.32, 
Kubernetes 1.24.17

Plugins Flannel v.0.22.0, Calico v.3.26.1, Cilium 
v.1.13.0, Kube-router v.1.5.4

Table 2. Specification of the servers.
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this is because the overlay-based plugins require

additional computations for packet en/de-capsulation.

Specifically, when a packet is transmitted through

an overlay-based plugin, it needs to be delivered to

the additional network interface (i.e., VXLAN of

Flannel, IPIP of Calico, and VXLAN of Cilium) at

the host kernel. The network interface then creates

a new packet header with the host address and

encapsulates the container’s packet as the payload.

The reverse operations are also needed at the

destination, which decreases the network throughput

of overlay-based plugins. On the other hand,

Kube-router eliminates the need for packet

en/decapsulation by utilizing the container’s IP

address directly to communicate with containers on

different hosts. This reduces per-packet processing

overhead and allows Kube-router to achieve higher

network throughput than the overlay-based plugins.

Next, we analyze the results of overlay-based

plugins. Flannel outperforms Calico in both 10 GbE

and 100 GbE servers with 16% and 19% higher

throughout and 13% and 15% lower latency,

respectively. We find that the reason for the low

throughput of Calico is due to the high number of

iptables rules. Table 3 demonstrates that Calico

generates three times more iptables rules than Flannel,

resulting in high overhead. Calico has iptables rules

required for packet filtering (both ingress and egress),

while Flannel does not support any filtering; thus, the

corresponding rules are not configured, which is why

Flannel has much fewer iptables rules. As a result,

Calico requires a long time to traverse iptables rules

for per-packet processing and degrades the network

throughput.

Also, Cilium uses the eBPF program for packet

forwarding instead of iptables and does not configure

any iptables rules. Although Cilium avoids the packet

forwarding overhead from iptables, Fig. 2 shows that

Cilium has lower network throughput (14% and 19%

in 10 GbE and 100 GbE servers) and higher latency

(16% and 24% in 10 GbE and 100 GbE servers)

compared to Flannel. This is due to the additional

eBPF programs attached to each network interface.

Cilium filters ingress and egress traffic in those eBPF

programs, resulting in higher packet forwarding

overhead than Flannel.

4.2.2 CPU Usage

Fig. 3 depicts that plugins with higher throughput

have lower Softirq in both 10 GbE and 100 GbE

servers. For example, the underlay-based Kube-router

shows the lowest Softirq CPU usage compared to the

overlaybased plugins. The CPU usage of Softirq in

Kuberouter is 25%, 29%, and 29% smaller than

Flannel, Cilium, and Calico, respectively, in 10 GbE

servers, and 9%, 17%, and 19% smaller, respectively,

in 100 GbE servers. This indicates that the

underlay-based plugin requires less CPU usage for

Softirq processing than overlay-based plugins, as it

saves additional packet en/de-capsulation. As a result,

with the same number of CPUs (e.g., 8 cores in our

experiments), the underlay-based plugin can spare

Fig. 2. Memcached throughput and latency.

Flannel Calico Cilium Kube-router

# of rules 56 141 - 99

Table 3. Number of iptables rules.

Fig. 3. Softirq CPU usage of Memcached containers.
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more time to generate packets (e.g., User and System),

which increases the network throughput compared to

the overlay-based plugins.

Among overlay-based plugins, Calico consumes

more CPU in Softirq than Flannel, with an increase

of 5% and 10% in 10 GbE and 100 GbE servers,

respectively. This is due to the larger size of iptables

for Calico, which incurs more packet forwarding

overhead in Softirq. Thus, Flannel spends more time

for User and System to generate packets, thereby

increasing network throughput than Calico. Similar to

Calico, Cilium also consumes more Softirq CPU

resources than Flannel, with 5% and 12% more in

10 GbE and 100 GbE servers. We find that the extra

hook points for eBPF programs increase the packet

processing in Softirq.

In addition, we calculate the performance

efficiency that divides the network throughput by the

total CPU usage, which represents the network

throughput per unit of CPU. Thus, the high

performance efficiency means that the network plugin

achieves high network throughput given the CPU

usage. The reason why we introduce the performance

efficiency is to help select suitable network plugins

for cloud services. The lines with symbols (right

y-axis) in Fig. 3 depict the performance efficiency of

each plugin, and Kube-router shows the highest

efficiency in both 10 GbE and 100 GbE servers.

Specifically, Kube-router achieves 27%, 46%, and

47% higher than Flannel, Cilium, and Calico,

respectively, in 10 GbE servers and 22%, 55%, and

62% higher in 100 GbE servers. This is because

underlay-based Kube-router reduces the overhead in

the overlay-based plugins, notably, Softirq.

Also, Flannel shows the second highest

performance efficiency in both 10 GbE and 100 GbE

servers. This indicates that network performance

efficiency increases as Softirq usage for iptables

lookup decreases. Also, despite using the eBPF,

Cilium lags behind Flannel due to the additional hook

points, which increase Softirq CPU usage.

4.3 Nginx
Next, we evaluate the Nginx workload. We create

two Ngnix containers on a worker node. Then, we

execute wrk as load generator that transmits HTTP

requests to retrieve files continuously. For the

experiment, each wrk instance generates 10 threads

and 100 connections toward each Nginx container.

Our experiments measure two file sizes: 1 KB and

1 MB.

4.3.1 Network Throughput and Latency

Fig. 4a depicts the network throughput (MB/s) and

latency (ms) of Nginx containers for delivering 1 KB

files. For 10 GbE servers, Kube-router outperforms

overlay-based plugins. In particular, Kube-router

achieves 8%, 14%, and 15% higher network

throughput and 7%, 12%, and 13% lower latency

compared to Flannel, Cilium, and Calico, respectively.

However, the difference in performance between

underlay-based and overlay-based plugins decreases

compared to Memcached. For example, in

Memcached, Kube-router has 19% higher network

throughput than Flannel but only 8% higher in Nginx

with 1 KB. This is because Nginx uses HTTP packets,

which takes longer to send and receive than the

regular TCP packet-based Memcached. This increased

(a) 1 KB

(b) 1 MB

Fig. 4. Nginx throughput and latency.
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time leads to the reduction in the number of processed

packets (e.g., from 558 MB/s in Memcached to 152

MB/s in Nginx with 1 KB for Kube-router), resulting

in lower performance difference. For the same reason,

Flannel also presents only 5% higher throughput than

Calico and Cilium. Also, 100 GbE servers show

similar trends in throughput and latency between

plugins.

When the file increases to 1 MB (Fig. 4b), the CNI

plugins have little performance difference among

them—within 4% and 3% difference in throughput

and 4% and 1% latency, respectively. Moreover, we

find that the containers fully utilize the network

bandwidth capacity independent of the type of

plugins. We measure the network throughput,

categorizing it into TX and RX by vnstat. In 10 GbE

servers, the TX path averages at 9.85 Gbps, which

includes response packets from the containers, and the

RX path averages at 0.1 Gbps, which includes the

reception of requests from clients. Also, in 100 GbE

servers, the TX path averages at 99.6 Gbps and the

RX path at 0.19 Gbps. This is because Nginx with

1 MB files is network-intensive, causing all plugins

to saturate the network bandwidth, resulting in similar

throughput among plugins.

4.3.2 CPU Usage

Fig. 5 illustrates the Softirq CPU usage of the

server and performance efficiency running Nginx

containers. Fig. 5a shows that the underlay-based

Kube-router shows the lowest Softirq CPU usage in

both 10 GbE and 100 GbE servers. In 10 GbE servers,

the Softirq CPU usage of Kube-router is reduced by

4%, 16%, and 16% compared to overlay-based

Flannel, Calico, and Cilium, respectively. So the low

CPU usage for Softirq of Kube-router allows room

for User and System, which increases the number of

requests processing in the containers and improves the

network throughput. As a result, Fig. 5a demonstrates

that Kube-router achieves the highest efficiency while

maintaining similar total CPU usage to other plugins.

Similarly, Flannel reduces the CPU usage of Softirq
by 12% compared to Calico in 10 GbE servers. This

is due to the low packet forwarding overhead resulting

from the smaller number of iptables rules. The

reduction in the Softirq CPU usage results in a 5%

increase in performance efficiency. The results of 100

GbE servers also follow the trends observed in the

10 GbE servers.

When the file size increases to 1 MB, Fig. 5b

exhibits that the underlay-based Kube-router shows

the lowest Softirq in both 10 GbE and 100 GbE

servers. Specifically, the Softirq CPU usage of

Kube-router decreases by 6%, 27%, and 30%

compared to Cilium, Flannel, and Calico in 10 GbE

servers, and by 7%, 19%, and 23% in 100 GbE

servers. We find that Kube-router reduces the Softirq
overhead by offloading packet segmentation to

hardware (i.e., TSO), while overlay-based plugins

cannot utilize TSO functionality, so they segment

packets in the kernel, increasing Softirq.

When we compare the performance efficiency,

Kube-router shows the highest value in both 10 GbE

and 100 GbE servers. This is because Kube-router

consumes the least Softirq CPU, which implies it

consumes the least total CPU while achieving similar

throughput close to the network capacity.

(a) 1 KB

(b) 1 MB

Fig. 5. Softirq CPU usage of Nginx containers.
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Next, among overlay-based plugins, Cilium

consumes the lowest CPU for Softirq in 10 GbE and

100 GbE servers. The Softirq of Cilium decreases by

22% and 25% compared to that of Flannel and Calico

in 10 GbE servers, respectively, and by 13% and 17%,

in 100 GbE servers. This implies that Cilium can

effectively reduce Softirq in network-intensive

workloads by utilizing eBPF to bypass packet

forwarding at the IP layer. As a result, Cilium

provides higher performance efficiency than Calico

and Flannel.

On the other hand, Flannel in 10 GbE and 100 GbE

servers shows 3% and 5% lower Softirq CPU usage

compared to Calico. The gap between the two is

reduced when compared to Nginx with 1 KB. This

is due to the iptables lookup being performed for each

packet. Therefore, the number of packets that perform

iptables lookup decreases as the number of requests

processed per second decreases. Thus, the impact of

packet forwarding overhead on CPU usage is reduced,

and Flannel and Calico have similar performance

efficiency.

Also, in 100 GbE servers, Fig. 5b shows that CNI

plugins achieve 7.6× higher performance efficiency

on average compared to 10 GbE servers. This is

because Nginx with 1 MB is network-intensive, so

as the network capacity increases to 100 GbE, the

plugins achieve 10× higher network throughput while

CPU usage increases much less (only 56% on

average), resulting in better performance efficiency.

4.4 Kafka
We present the Kafka evaluation results. We run

two containers on a server, and each container acts

as a Kafka broker with 4 partitions and 1 replication

factor for 1 topic. Kafka-consumer-perf-test is

executed as load generator to generate requests to

Kafka containers and receive published messages in

the containers. We vary the message size and the

number of requests to (1 KB, 100M) and (1 MB, 1M).

4.4.1 Network Throughput and Latency

Fig. 6a depicts the network throughput (MB/s) and

latency (ms) of Kafka containers for processing 1 KB

messages. For 10 GbE servers, Kube-router achieves

higher network throughput than overlay-based

plugins. Specifically, Kube-router achieves 18%,

20%, and 24% higher network throughput and 4%,

4%, and 14% lower latency compared to Flannel,

Cilium, and Calico, respectively. Also, 100 GbE

servers show similar trends in throughput and latency

between plugins.

However, despite the network capacity increasing

from 10 GbE to 100 GbE, the average throughput of

the four plugins (in Fig. 6a) decreases from 376 MB/s

to 300 MB/s on average. We find this decrease is due

to the lower file I/O throughput of the 100 GbE server

testbed (CloudLab). We additionally measure the file

I/O throughput (iops) using ioping. The 10 GbE

servers achieve 159 MiB/s, while 100 GbE servers

achieve only 130 MiB/s. This lower file I/O

performance in the 100 GbE servers affects Kafka

operations, such as file I/O for reading messages in

brokers (explained in §III). As a result, the network

throughput of 100 GbE servers is reduced compared

to 10 GbE servers.

Next, for 1 MB messages (Fig. 6b), the average

throughput of four plugins in 100 GbE servers is 4.12

(a) 1 KB

(b) 1 MB

Fig. 6. Kafka throughput and latency.
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GB/s, which is 3.7× higher than 10 GbE servers (1.13

GB/s on average). This is because Kafka is network-

intensive for 1 MB messages so the throughput of

Kafka is largely determined by network throughput.

The increased network bandwidth to 100 GbE

prevents Kafka from suffering from networking

bottlenecks, resulting in higher throughput. Also, the

lower I/O performance of the file system in 100 GbE

servers in CloudLab, as discussed in the previous

paragraph, does not have a significant impact because

this workload is network-intensive.

4.4.2 CPU Usage

Fig. 7 illustrates the Softirq CPU usage of the

worker node and performance efficiency for 1 KB and

1 MB. In 10 GbE servers, Fig. 7a shows Kube-router

uses 12%, 15%, and 19% lower Softirq than Flannel,

Calico, and Cilium, respectively, and Kube-router

achieves the highest efficiency. In addition, Flannel

uses 5% less Softirq, compared to Calico and Cilium,

and Flannel brings performance efficiency

improvement by 5%. For 100 GbE servers, the Softirq

CPU usage is reduced by 12% on average because

the network throughput is lower than that of 10 GbE

servers by the lower file I/O throughput (§4.4.1).

When we increase the message size to 1 MB, Fig.

7b shows Kube-router consumes the least Softirq CPU

due to its minimal packet processing overhead. As a

result, Kube-router achieves the highest performance

efficiency, which is 14%, 23%, and 29% higher than

Cilium, Flannel, and Calico, respectively. Among

overlay-based plugins, Cilium shows the lowest

Softirq CPU usage, lower than Flannel and Calico by

7% and 10%, respectively. The reduced CPU usage

in Softirq leads to the decrease in the total CPU usage

for Cilium. As a result, Cilium exhibits the highest

performance efficiency that outperforms Flannel and

Calico by 14%. For 100 GbE servers, the performance

efficiency is twice as high as that of 10 GbE servers

due to the 3× increase in throughput and 22% increase

in Softirq usage.

Ⅴ. Summary of Results

Based on our analysis, we summarize the results

as follows:

CPU-intensive workloads. When running

CPU-intensive workloads, such as Memcached and

Kafka 1 KB, all plugins saturate the given CPU

resources in both 10 GbE and 100 GbE servers.

However, the difference in the amount of Softirq
usage makes performance efficiency vary significantly

between plugins. The results show that the

underlay-based Kube-router plugin consumes the

fewest Softirq usage, achieving the highest

performance efficiency. Among overlay-based

plugins, Flannel exhibits the highest performance

efficiency due to its lowest iptables lookup overheads.

However, Flannel lacks support for containerlevel

packet filtering configurations.

Network-intensive workloads. For network-

intensive workloads (Kafka 1 MB), all plugins

saturate the network bandwidth resources, revealing

small differences (4-5%) in network performance.

However, the CPU resources to achieve the network

throughput vary significantly between plugins. In the

overlay-based plugins, Cilium shows the highest

(a) 1 KB

(b) 1 MB

Fig. 7. Softirq CPU usage of Kafka containers.
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performance efficiency with the lowest CPU usage.

The reason is that Cilium reduces the time required

to process these packets in the IP layer by its

eBPF-based packet forwarding.

Insight on plugin selection. In short, the underlay-

based Kube-router plugin is the best choice for both

CPU-intensive and network-intensive workloads in

terms of performance efficiency. However, many

cloud service providers utilize overlay networks for

container management when they need to isolate

container networks from host namespaces, or when

BGP is not available which is necessary to realize

underlaybased networks. For CPU-intensive

workloads, Flannel is recommended. For

network-intensive workloads, Cilium is a suitable

option.

Ⅵ. Related Work

We summarize the related studies in Table 4 and

compare them with this study. First, to our knowledge,

existing studies evaluate CNI plugins with limited

workloads. For example, most existing studies

evaluate CNI plugins with only micro-benchmarks

that can have artificial and simple traffic structures.

For instance, Koukis et al.[30] measure network

throughput of several CNI plugins using

micro-benchmark, iperf, and demonstrate that Calico

achieves the highest throughput. However, our study,

which measures network throughput using real-world

applications, shows that Calico performs poorly due

to excessive CPU usage, which provides new insights

into their performance and resource usage.

Furthermore, some other studies include Nginx, a

real-world application, in their evaluations, but they

only examine it in CPU-intensive scenarios. The

results for CPU-intensive scenario under identical

configurations (e.g., MTU size) align with our

experiment results (Fig. 4a). However, Nginx also

works as a network-intensive webserver, where our

experiment results (Fig. 4b) show different results. In

addition, no studies consider real-world workloads

like Memcached and Kafka that we cover, which

represent both CPU and network-intensive tasks.

Second, existing research mostly focuses on

analyzing their throughput and latency or provides

only a rough summary of CPU overheads. For

example, Qi et al.[7,16] study the architecture of

different CNI plugins and measure their throughput,

latency, and CPU cycles in intra- and inter-host

environments. Suo et al.[14] evaluate the performance

of CNI plugins and investigate various factors (e.g.,

packet size and the number of containers) that affect

the network performance of containers. However, they

do not analyze the kernel-level CPU resource usage

for packet processing (i.e., Softirq). CPU usage plays

a critical role in determining the CNI plugin

efficiency. For example, even though a plugin

achieves high throughput, it can be inefficient if it

requires heavy CPU usage.

Lastly, existing studies evaluate performance

limited to 25 GbE[7,16]. In contrast, we cover 10 GbE

and 100 GbE and show how plugins behave

differently.

Ⅶ. Discussion

Reasons for choosing four CNI plugins: To

choose CNI plugins for analysis in this study, we

review CNI plugins listed in the official Kubernetes

documentation[32]. While various CNI plugins are

available for Kubernetes, we choose and analyze four

plugins, Flannel, Calico, Cilium, and Kube-Router, as

the state-of-the-art (SOTA) plugins for the following

Study
Realistic

workloads

Analysis metrics

Servers
Latency

Performance
efficiency

CPU
usage

profiling

[13] × ⃝ × × 1 GbE

[14] × ⃝ × × 10 GbE

[7],
[16]

Nginx ⃝ × △
10 GbE,
25 GbE

[15] × ⃝ × × 10 GbE

[17] Nginx × × × Unknown

[18] × × × × 1-5 GbE

[30] × × × △
Single
server

[31] × ⃝ × × 1-10 GbE

This
study

Memcached,
Nginx, Kafka

⃝ ⃝ ⃝
10 GbE,
100 GbE

Table 4. Related work comparison.
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reasons.

First, the four plugins in this study are continuously

and actively updated and maintained. Second, they are

the most commonly used plugins for networking in

Kubernetes clusters[33-35]. Third, tools to support

running CNI plugins, like Canal[36] and CNI-Genie[37],

also utilize these four plugins.

On the other hand, some CNI plugins listed in the

Kubernetes documentation, such as WeaveNet[38] and

Romana[39], have not been maintained for the past five

years or have officially ceased their updates, which

means they are not SOTA methods. Also, plugins,

such as Spiderpool[40], Multus[41], and Contiv[42], are

designed to support hardware acceleration features

like DPDK or RDMA. These plugins depend on

specific hardware configurations, whereas this study

focuses on plugins that operate without additional

hardware. Additionally, Antrea[43] and kube-OVN[44]

are plugins that require extra software switches or

SDN controllers beyond the kernel’s networking

stack. As they operate under different network

architectures, they do not fall within the scope of this

study. In summary, the four plugins analyzed in this

study represent the SOTA models among Kubernetes

networking plugins.

Ⅷ. Conclusion

This study explores four widely used Kubernetes

network plugins in terms of architecture, throughput,

latency, and CPU usage. We first analyze the packet

processing of the plugins in-depth and compare the

structural differences. We then conduct extensive

experiments to evaluate the impact of these

differences on network performance. Unlike previous

studies that presented only micro-benchmarks, our

study includes realistic workloads such as

Memcached, Nginx and Kafka. These workloads

encompass CPU-intensive and network-intensive

workloads, reflecting the real-world. The major

contribution of this study is that it devises a plugin

selection criteria by workload characteristics, which

can help Kubernetes cluster performance significantly.
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